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Abstract: This work introduces the concept of global sensitivity based on simultaneous variation of a complete 
set of enzymes, metabolite concentrations, and cofactors in finite ranges of concentrations. Perturbations are 
defined by finite ranges of concentrations and corresponding probability density distributions. Effects of per-
turbations of the homeostatic state variables including input and output products of a considered flux, and co-
factors on the flux analysis are evaluated. The flux sensitivities are determined as first and second order relative 
multidimensional variances. The first order effects are reflection of random perturbation of each individual en-
zyme, metabolite and cofactor. The dispersions of fluxes due to each perturbation are evaluated by numerical 
simulation and the Fourier Amplitude Sensitivity Test algorithm. The implications of the proposed theory are 
demonstrated by computer simulation of theoretical problem on regulation of branched metabolism pathway at 
steady state, and also unsteady control flux analysis based on experimental data of E. coli central metabolism 
upon perturbation by glucose impulse.      
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1 Introduction 
 
Metabolic Control Analysis (MCA) is a mathe-
matical theory stemming from electrical engineer-
ing network analysis applied to biological systems. 
Availability of annotated genome, metabolomics 
and proteomics of numerous industrial important 
microorganism leads fundamental research of in-
dustrial microbiology “in silico“ [1]. From engi-
neering point of view, open are possibilities for 
computer design of synthetic genome and proteins-
for development of new technologies, most impor-
tantly for bioenergetics based on synthetic micro-
organism with integrated photosynthesis and fer-
mentation metabolisms (bioethanol) or biodiesel 
production by algae [2]. The main obstacles toward 
this far reaching goal are not in chemical synthesis 
of genome, but rather in biological and computer 
analysis of intricate metabolism control on a mo-
lecular level. At present, most of MCA analysis is 
based on steady state (homeostatic constraint) 
analysis and study of “one factor at a time” infini-
tesimal effects of perturbations of each individual 
enzyme and metabolite concentration on metabolic 
fluxes and individual reaction rates.  
Control of metabolic networks is result of evolution 
encoded in a genome and epigenetic processes re-
sulting to adaptation to external conditions. The re-
sult is highly structured and hierarchical systems of 

interrelated pathways responding to multi-objective 
life support goal functions. Although annotated ge-
nomes of numerous industrially important microor-
ganisms are known, and related pathways can be 
discerned from the corresponding stoichiometric 
matrix of metabolic reactions, control of fluxes 
through the pathways on the cellular level is very 
complex and open to experimental and theoretical 
(mathematical) research. For example, analysis of 
the flux control to lipid production in autotrophic 
and heterotrophic algae is of interest for optimiza-
tion of microbial biodiesel production 
Most of approaches are based on assumptions that 
pathways can be isolated (and commonly of a lin-
ear structure) from the whole, a top to down de-
composition (from catabolism to anabolism) is ap-
plicable, and steady state (cell homeostasis) condi-
tions is presumed..  
However, these assumptions are usually “ad hoc” 
and systems analysis can assist experimental re-
search to prove or disapprove these assumptions. 
The aim of this work is to apply systemic or global 
approach to metabolic control analysis for a model 
of a steady state branched pathway and the un-
steady flux analysis of E. coli central metabolism 
under glucose impulse, and to infer conclusions 
from comparison of the local versus the global ap-
proach.  
 



2 Problem Formulation 
 
The problem of metabolic control analysis is usu-
ally formulated to a single pathway of importance. 
For a flux Ji the relative effect (local sensitivity) of 
involved enzyme ej the flux control coefficient is 
defined as [2-5] 
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It is assumed that the flux is at a steady state, and 
that perturbation of the i-th enzyme does not reflect 
on homeostatic state (homeostatic constraint), as 
depicted in Fig. 1. Concentration control coeffi-
cients are defined by 
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where the relative sensitivity of metabolite concen-
tration xi on perturbation of enzyme concentration 
ej is considered. Similarly are defined the concen-
tration control coefficients with the respect to a 
change in to the pathway external concentrations. 
From the kinetic modeling view point, the local 
property termed as flux elasticity is of the most im-
portance 
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The various metabolic control coefficients are in-
terrelated by the summation and connectivity theo-
rems [2-5]. 
 
In view of distribution of enzyme distribution over 
a population of cell generations, and especially due 
to inherently large errors in modeling and estima-
tion of kinetic parameters in metabolic networks, 
here is applied a stochastic approach in evaluation 
of sensitivities. Proposed is the alternative ap-
proached based on the concept of systemic global 
sensitivities. Enzyme concentrations ei are consid-
ered as independent random variables in a finite 
range of concentrations [ei,min, ei,max] with associate 
probability distribution functions ρi(ei). The joint 
probability distribution function is a product of in-
dividual distributions, as statistical independence of 
enzyme concentrations is assumed. Effect of total 
(ensemble) enzyme distribution on a metabolic flux 
is determined on the basis of the first and the sec-
ond moments. The first moment is 
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The second moment is the variance of the flux 
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The average enzyme ensemble of the square term is 
given by 
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Effect J
ijS   of each individual enzyme ej on the flux 

Ji is evaluated by the ratio of the conditional vari-
ance of a given enzyme and the total dispersion of 
the ensemble of enzymes 
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The multidimensional integrals can be numerically 
evaluated by random number generation and Monte 
Carlo method. This work is focused on numerically 
more efficient method of pattern search called the 
Fourier Amplitude Sensitivity Test (FAST) [6,7]. 
 
Assumed is a uniform probability distribution of 
enzyme concentration in a preselected concentra-
tion range. The concentration range is scaled to the 
standard range [-1,1]. The uniform probability dis-
tribution is generated by piece wise linear functions  
arcsin(sin(s)) of a scan variable s and two ran-
domly selected parameters, frequency jω , and 

phase jϕ , corresponding to each enzyme ej 
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Randomly are selected integer frequencies in a pre-
selected range, and the scan variable is incremen-
tally covering the complete range. Random selec-
tion of the parameters ensures that the functions (8) 
are mutually independent, i.e. uncorrelated. For 
each scan variable the flux is evaluated and the re-
sulting data are interpolated to provide a continuous 



function function ( )sJi  is expanded into Fourier 

series 
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The total dispersion is calculated from the spectra 
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Contribution of each enzyme je in the total disper-

sion is calculated from the harmonics of the corre-
sponding fundamental frequency jω  
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The global flux control coefficient (termed flux 
global sensitivity) is determined as the ratio of the 
dispersion corresponding to each enzyme and the 
total dispersion 
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Numerical simulation and Fourier analysis is effi-
ciently and numerically accurate and stably evalu-
ated by Wolfram Research “Mathematica” software 
[11]. 
 

 
 
Fig.1. Schematic presentation of a pathway and 

homeostatic variables in a cell. S is the 
metabolite consumed by the pathway 
(substrate), and P1 and P2 are the me-
tabolites produced by the pathway. A and 
AH are the cofactors globally regulated 
on a cell level. 

3 Problem Solutions 
 
3.1. Steady state branched network 
 
The first case study is a problem of control analysis 
of a branched pathway. The model is used as a 
standard case due to its kinetic complexity and po-
tential application for a flux redirection at a branch 
point [4,8]. The pathway, Fig. 2, consumes an ex-
ternal substrate (metabolite) S which is originally 
considered at a constant concentration level as a 
part of the homeostatic (steady state) assumption. 
The pathway branches and produces two products 
(metabolites) P1 and P2 which are also assumed to 
be constant concentration levels. 
 

 
Fig. 2. Structure of a branched pathway. Metabo-

lites engaged in the pathway are denoted from 
M1 to M6. For each reaction are designated 
corresponding enzymes from E1 to E8. The 
fluxes through the branch point are denoted as 
J1 to J3 [4,8]. 

 
The network includes 8 enzymes with complex ki-
netics, negative and positive feedback interactions, 
allosteric regulation, and moiety due to cofactor 
generation and consumption. As a part of the ho-
meostatic constraint is assumed that the cofactors 
are conserved, i.e. its total amount is constant. The 
enzyme kinetics include 1 reversible Hill rate (in-
cluding 7 parameters reflecting allosteric control), 3 
reactions with ordered bi-bi kinetics (10 parame-
ters), and 3 reactions with uni-uni kinetics (4 pa-
rameters). The model is highly nonlinear with pos-

 AH  AH 

 S 

 M1 

 M2 

 M3  M5 

 M4  M6 

 P1  P2 

 A 

 A  A 

 AH 

 E1 

 E2 

 E3 

 E4 

 E5 

 E6 

 E7 

 E8 

 J1 

 J2  J3 

cell 

pa
th

w
ay

 A
H 
AH 

 S 

P1 P2 



sible existence of multiple steady states (unex-
plored). 
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Fig. 3. Local flux control coefficients evaluated at 

steady state S =  1 mmol/L, P1 = 0.1 mmol/L, 
and P2 = 0.2 mmol/L. 
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Fig. 4. Local concentration control coefficients 

evaluated at the given steady state. 
 
The metabolic flux control coefficients and local 
concentration coefficients are evaluated by simula-
tion of the perturbed dynamic balances and applica-
tion of eq. (1-2). The results are presented in Fig. 3-
4. The main result is that the total flux J1 is domi-
nantly regulated by the enzyme E2 at the branch 
point, while E4 is the key enzyme for the first 
branch J2, while a set of enzymes E2 , E4 and E7  
regulate the second branch J3. Global flux control 
coefficients are presented in Fig. 5-6. The first set 
of results, Fig. 5., is obtained by perturbation of the 
enzyme concentrations in the range 1:4 at the given 
steady state (homeostatic condition). The second 
set of results, Fig. 6., is obtained when simultane-
ous perturbation of the enzymes and the flux exter-
nal variables (substrate S, products P1 and P2, and 
total cofactors  concentrations A and AH) are per-
turbed in the same range. The results reveal a very 
different control. The first enzyme E1 controls the 
total flux J1 for the steady and the perturbed ho-
meostasis. In contrast to the local flux control re-
sults the enzyme E2 at the branch point does not 

 
 

 
 

 
Fig. 5. Global flux control coefficients SJ evaluated 

at homeostatic conditions for perturbations of 
the enzyme concentrations (activities) in the 
range from 1 to 4. 

 

 

 
 

 
Fig. 6. Global flux control coefficients SJ evaluated 

at perturbations of the enzyme concentrations 
and substrate S, products P1 and P2, and the 
cofactors in the range from 1 to 4. Indexes 
from 1-8 are enzymes, while from 9 to 12 are 
flux “external” substrate, products, and cofac-
tor variables. 
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exert the control over the branches. The dominant 
enzymes for J2 and J3 are enzymes E3 and E6 which 
are bellow the branch point in the respective 
branches. This conclusion is also irrespective to 
steady or perturbed homeostasis. The strong effect 
of hemostasis perturbation is revealed on the role of 
the enzyme E8, at the end of the second branch re-
sponsible for synthesis of P2. It becomes a key en-
zyme which controls not only the second branch 
flow but also the total flux. 
 
3.2. Unsteady response of E. coli central me-

tabolism 
 
The second problem is focused on metabolic flux 
control analysis through E. coli central metabolism 
under unsteady conditions. The key metabolites are 
on-line measured in intervals of 0.25 seconds dur-
ing the interval of first 15 seconds after a glucose 
impulse. The modeling details are given in [9-10]. 
The model is given as a set of 24 enzymes, 10 mass 
balances, and 132 kinetic parameters. Structure of 
the model is 

vNx ⋅=
dt

d
                        (14) 

 
where x are intracellular components (metabolites), 
N is a constant stochiometric matrix, and v is the 
vector of rates (intra and extra cellular fluxes). The 
rates are complex functions of enzyme e, metabo-
lite x , cofactor and allosteric effector concentra-
tions c: 

( )cxevv ,,=                      (15) 
 

The global flux control coefficients are determined 
for the input and output fluxes of the central me-
tabolism. From the model is revealed that there is a 
secondary input flux besides PTS which is a surge 
flow from OAA (oxaloacetate) to PEP. The global 
sensitivity coefficients are calculated at the level of  
perturbations %50± . Sensitivities are determined 
for the parameters and also for the enzymes associ-
ated to a corresponding set of parameters by    
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In Fig. 7a-b. are presented the sensitivities of PTS 
flux evaluated at 1 second and 5 seconds after the 
impulse. The result shows a sudden shift of the flux 
control from PTS enzyme(s) to PFK.  The PTS  

 
Fig. 7a. Global PTS flux control coefficients on the 

enzyme (kinetic parameters) evaluated 1 sec-
ond after the glucose impulse. 

 
Fig. 7b. Global PTS flux control coefficients of on 

the enzyme (kinetic parameters) evaluated 5 
seconds after the glucose impulse. 

 

 
 
Fig. 8. Global sensitivities Si of the flux from pyru-
vate to biomass evaluated during 5 s after the glu-
cose impulse. The maximum sensitivities are: 
(1)  pyruvate to biomass  S130(vfpyrbm) = 0.165;  
S139(Km44) = 0.152;  
(2) aldolase  S34(vmaxaldo) =0.1527;  
(3) phosphofructokinase  S19(L) = 0.00961;  
(4) PTS S4(K i1) = 0.083; 
(5) pyruvate-dehydrogenase S86(Km28) = 0.094. 
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complex is regulating the very initial  intake rush of 
glucose in the time span bellow 1 second. Soon af-
ter, the control of glucose intake is regulated by 
PFK, in particular due to the interaction (inhibition) 
of PFK by PEP. Results show that the PFK control 
remains as throughout the experiment. The second 
result depicted in Fig. 8 shows global control sensi-
tivities of the pathway from pyruvate to biomass. It 
can be inferred that this flux has a very distributed 
control over 5 to 6 enzymes involved. The given 
“snap shot” for the first 5 seconds remains ap-
proximately as a steady profile throughout the in-
terval of the experiment.  
 

4 Conclusions 
 
In view of stochastic effects involved in metabolic 
flux modeling and control analysis proposed is a 
statistical concept of the global flux control sensi-
tivity. It is based on assumption of probability den-
sity functions for parameters involved. The parame-
ters include levels of enzyme concentrations (ac-
tivities expressed as the maximum rates), substrate 
consumed and products released by a pathway. Be-
sides the parameters associated with a specific 
pathway, included are also sensitivities to parame-
ters associated with a concept of homeostasis. Spe-
cifically, is considered perturbation of cofactors af-
fecting a pathway but regulated on a systemic or 
cellular level. 
 
The studied examples show the main implications 
of the proposed concept. For the case of a steady 
flux through a branched pathway shows the essen-
tial difference between the local one by one pa-
rameter sensitivity and the global sensitivity flux 
control coefficients. The flux control is changed 
from the enzyme at the branch point to the enzymes 
on the branches. The effect of perturbation of the 
pathway products on the flux control became 
dominant. 
 
The results of unsteady flux control analysis shows 
a drastic shift of flux control in time. For example, 
it is shown that PTS enzyme(s) are dominant only 
for a fraction of second upon glucose impulse, and 
the control is shifted to PFK regulated by interac-
tion with PEP. For a pathway from pyruvate to 
biomass flux control is distributed over several en-
zymes and the same control profile remains 
throughout the experiment. 
 
In conclusion, this approach is an extension of the 
local one-to-one sensitivity analysis which can pro-

vide a broader horizon for theoretical analysis and 
experimental verification aimed to rational applica-
tion of genetic engineering.     
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