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Abstract: In this paper, feature-extraction methods based on Principal Component 

Analysis (PCA), Most Discriminant Features (MDF), and Regularized-Direct Linear 

Discriminant Analysis (RD-LDA) are tested and compared in an experimental finger-

based personal authentication system. The system is multimodal and based on features 

extracted from eight regions of the hand: four fingerprints (the prints of the finger 

tips) and four digitprints (the prints of the fingers between the first and third 

phalanges). All of the regions are extracted from one-shot grey-level images of the 

palmar surface of four fingers of the right hand. The identification and verification 

experiments were conducted on a database consisting of 1840 finger images (184 

people). The experiments showed that the best results were obtained with the RD-

LDA-based feature-extraction method − 99.98% correct identification for 920 tests 

and an Equal Error Rate (EER) of 0.01% for 64170 verification tests.  

1 Introduction 

The human hand provides the source for a number of physiological biometric 

features; among the most commonly used are the geometry of the hand [1]−[5], the 

dermatoglyptic patterns of the fingerprints [6]−[8] and the palmprints [9]-[11]. These 

features are used in both unimodal and multimodal biometric systems for user 

authentication. A detailed overview of the progress in this area can be found in 

[12]−[15].  

In this paper a comparison of three appearance-based feature-extraction methods − 

Principal Component Analysis (PCA), Most Discriminant Features (MDF) and 

Regularized-Direct Linear Discriminant Analysis (RD-LDA) − is reported for an 

experimental finger-based authentication system based on the integration of 

  



fingerprint (the prints of the fingertips) and digitprint (the prints of the fingers 

between the first and third phalanges) features. The system is a multimodal type and 

uses fusion at the matching-score level.  

The state of the art in fingerprint recognition is extensively described in the 

monograph by Maltoni et al. [8]. Most fingerprint-based authentication systems 

follow the minutiae-based approach [16]−[17]. To overcome the sensitivity of 

minutiae-based approaches to the noise of the sensor and the distortion during the 

acquisition of the fingerprint, fingerprint-authentication systems that follow 

appearance-based approaches have been developed [18]–[20]. These systems also 

offer low error rates for fingerprint images of poor quality or for images captured by 

small solid-state sensors, but at a much higher computational efficiency than 

minutiae- and ridge-based approaches. For high-security applications, multimodal 

fingerprint-based systems are used [21]. 

Finger-based personal authentication systems are mostly based on the 2- or 3-

dimensional geometry of one or two fingers. Such systems are proposed for 

low/medium-security environments [22]. The single-finger geometry-based biometric 

system [23] uses only the index finger. This finger pushes a plunger/button, which 

goes into the device. The rollers, which scan the finger, then take measurements of 12 

cross-sections of 1½ phalanges of the finger. The two-finger geometry-based 

biometric system [24] uses a camera-based sensor system to take 3-dimensional 

measurements of the index and middle fingers. From the image a set of geometrical 

features of the fingers (length, width and thickness of the fingers measured on 

different finger sections) is extracted. 

An authentication system based on the fusion of the geometry of four fingers and 

the dermatoglyptic patterns of four finger-strips is described in [25]. A finger-strip 

region is defined with respect to the finger’s line of symmetry and takes an area 

between the first phalanx of the finger and the region of the fingerprints. The system 

is based on fusion at the matching-score level of the finger geometry and the PCA 

features extracted from the finger-strips. The experimental results, obtained on a 

database of 1270 images of 127 people, showed the effectiveness of the system in the 

sense of an EER = 1.17% and the minimum TER = 2.03% for identification. 

A prototype of a biometric identification system based on fingerprint and digitprint 

features is presented in [26], where the fingerprint and digitprint regions of a finger 

  



are defined in the same way as in this paper. The most discriminant features (MDF) 

approach is used for the feature extraction. Fusion at the matching-score level of the 

MDF coefficients obtained from four fingerprint and four digitprint regions is used. 

The experimental results, obtained on a database of 1840 images of 184 people, show 

the effectiveness of the system in the sense of a correct identification rate of 99.80%. 

2 Description of the system  

Fig.1. shows the architecture of the experimental multimodal finger-based biometric 

authentication system.  

In the image-acquisition phase, an image of the palmar surface of the little, ring, 

middle, and index fingers of the right hand is taken using a small desktop scanner. 

Note that the thumb is not included because of its specific position related to the 

surface of the scanner. The spatial resolution of the images is 600 dots per inch 

(dpi)/256 grey levels, to adhere to the FBI standard for fingerprint images [27]. 

In the pre-processing module some standard image pre-processing and 

enhancement procedures (global thresholding, contour extraction, extraction of the 

relevant points on the contour) are applied. Based on the contour of four fingers and 

the relevant points on it, the eight regions of interest (ROIs) are localized: four strip-

like rectangular regions of the fingers between the first and third phalanges, called 

digitprints, and four rectangular regions of the finger tips, called fingerprints. 

Afterwards, the ROI sub-images are cropped from the grey-scale image, rotated to the 

same position, sized to fixed dimensions and then light normalized. 

In the subsequent eight feature-extraction modules, the extraction methods based 

on the PCA (for the first experiment), the MDF (for the second experiment) and the 

RD-LDA (for the third experiment) are used to extract the features from the 

normalized ROI sub-images. In the eight matching modules the matching between the 

live templates and the templates from a system database based on the Euclidean 

distance is performed. After the score normalization of the matcher’s outputs, fusion 

based on the weighted-sum rule is applied. In the decision module the output of the 

fusion module is compared with the threshold, and the final decision is made 

(acceptance or rejection of the user’s claimed identity in the case of verification, or a 

person’s identity in the case identification). 

 

 

  



 
 

Figure 1 The architecture of the experimental multimodal finger-based authentication 

system 

 

 3 Image acquisition, pre-processing and normalization 

3.1 Image acquisition 

Images of the palmar surface of four fingers of the right hand are scanned at 600 

dpi/256 grey levels using a small scanner (the dimensions of the scanning area are 

15x16 cm). The user puts his/her four fingers, spread naturally, on the scanner, which 

has no pegs or any other hand-position constrainers.  

3.2 Pre-processing 

The acquired image is binarized using thresholding. Due to the controlled light 

conditions during the acquisition process and the high contrast between the 

background and the hand in the images, simple global thresholding [28] provides 

satisfactory results. Subsequently, by using a contour-following algorithm applied to 

the binary image, the contour of four fingers is extracted. The contour-following 

  



algorithm is based on the border-following procedure for binary images described in 

[29]. The basic idea of the algorithm is to select the pixels of a finger (called the 

border pixels) that have one or more pixels in their 8-connected neighborhood 

belonging to the background. A pixel pair, where one pixel belongs to the finger and 

another is from the background, is marked with the starting label. Subsequently, in a 

clockwise direction, the algorithm assigns a new label index to the border pixels until 

the starting label is no longer met. 

3.3 Localization of the finger’s regions of interest  

The localization of the eight regions of interest (ROIs) on the grey-scale image of the 

four fingers of the right hand, applied in our system, is based on the algorithm 

described in [14] and [30]. According to this algorithm, the localization of the ROIs is 

based on determining the following relevant points on the fingers’ contour: T1, T2, T3, 

and T4 (fingertips), B2, B3, B4 and B6 (valleys between the fingers), B1 and B5, 

(additional points relevant to determining the fingers’ lengths), and, finally, on each 

finger the points F1, F2, F3 and F4 (additional points relevant for determining the ROIs 

on the fingers).  

The points T1, T2, T3, T4, B2, B3 and B4 are located by tracking the local minima 

and maxima on the fingers’ contour. Points B1 and B5 are determined so that the 

length of the straight line T1–B2 equals the length of the straight line T1–B1, and the 

length of the straight line T4–B4 equals the length of the straight line T4–B5. On the 

fingers’ contour the points are located as shown in Fig. 2a. 

On each finger, four additional, relevant points are located as follows: points F1 

and F2 at one-third of the length of the finger, and points F3 and F4 at two-thirds of the 

length of the finger, respectively. The length of the finger is defined as the length of 

the straight line between the tip of the finger, Tf, and the middle-point of the straight 

line connecting the points Bf  and Bf+1, where f is the index denoting the finger: f = 1, 2, 

3, 4. The straight line connecting the middle points of the segments F1–F2 and F3–F4 

defines the line of symmetry for the finger. Fig. 2b shows the contour of the ring 

finger, the relevant points on the contour, as well as the fingerprint and digitprint 

ROIs. 

Based on these reference points, the ROIs on the gray-level image of the four 

fingers of the right hand are determined as follows: 

  



• The digitprint ROI is a rectangle with its length chosen to be the length of the 

finger divided by 1.5, and its width equal to the length of the finger divided by 2.3. 

The rectangle is positioned on the line of symmetry, as shown in Fig. 3b. 

• The fingerprint ROI is a rectangle positioned on top of the digitprint rectangle, as 

shown in Fig. 2b. The length of the rectangle is equal to the length of the finger 

divided by 2.8, and the width is equal to the length of the finger divided by 3.45.  

The scanned gray-scale image with the marked contour, the relevant points and the 

nine regions of interest is shown in Fig. 2c.  

                             

        
                                                                                                                                         

                        a)                                          b)                                    c)                                             

 

Fig. 2. (a) Relevant points on the fingers’ contour; (b) Relevant points on the contour 

of the ring finger and the fingerprint and digitprint ROIs; (c) The fingers' contour, the 

relevant points on the contour and the eight ROIs on the gray-scale image. 

3.4 Geometry and light normalization 

The ROIs in the original grey-scale images vary in size and orientation from image to 

image. In order to apply the feature-extraction methods (PCA, MDF and RD-LDA) 

the ROIs need to be normalized to exactly the same size and orientation. The ROI 

sub-images are cropped from the grey-scale image, rotated in such a way that all have 

a vertical orientation, and then sized to the fixed dimensions: the fingerprint ROI sub-

images to 64 x 64 pixels, and the digitprint ROI sub-images to 16 x 64 pixels. The 

rotation of the cropped images and their resizing are obtained by using the functions 

cv2DRotationMatrix and cvResize from the OpenCV program library [31]. 

 

  



For the light normalization we used and tested two methods: histogram fitting and 

contrast enhancement [28]. Based on the results of the experiments we decided to 

perform the light normalization using the contrast-enhancement method.  

4 Feature-extraction methods 

The concepts of eigenspace and Fisherspace have been widely used in face and 

palmprint authentication [9], [32].  For experimental purposes, in our system we use 

the same concepts, i.e. the PCA, MDF and RD-LDA transformations of fingerprint 

and digitprint ROIs, to see whether they offer acceptable features for finger-based 

authentication when fingerprint- and digitprint-based modules are components of a 

multimodal biometric system. 

At the features-extraction stage of the proposed system the features are generated 

from the ROI sub-images of the fingers by means of three appearance-based feature-

extraction methods: the PCA [33] and two variants of the LDA [34] (the MDF [35] 

and the RD-LDA [36]), which were found to be appropriate for small numbers of 

training samples per class and the high dimensions of the ROI sub-images.  

In the context of the fingerprint and digitprint feature-extraction problem, the PCA, 

LDA, MDF and RD-LDA can be formally described as follows: 

Let us consider a ROI sub-image of a fingerprint or digitprint with the dimensions k·l 

pixels as a column n-dimensional vector xr ; (n = k·l). Each vector component 

represents the value of the grey-level of the corresponding pixel. Let us also assume 

that there is a training set L of N ROI vectors { }NxxxL v
K

vv ,,, 21= . Each ROI vector 

belongs to one of c classesLxk ∈
v { }cωωω ,,, 21 K . Let Ni denote the number of ROI 

vectors in each of the classes iω ; i = 1,2, ... ,c: 

∑
=

=
c

i
iNN

1

.                                                                  (1) 

In the original n-dimensional space we can compute: 

• the total scatter matrix:  

∑ =
Τ−−=

N

k kk xx
N 1T ))((1 μμ vvvvS ,        (2) 

• the between-class scatter matrix:  

( )( Τ

=
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i

c

i
iiN

1
BS ) and                                   (3) 

• the within-class scatter matrix: 
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where iμ
v and μv are the mean vector of the class iω  and the mean vector of the training 

set L, respectively.  

4.1 Principal component analysis  

Principal Component Analysis, also known as the Karhunen-Lóeve transform, is a 

widely used technique in pattern recognition to approximate the original n-

dimensional data with a lower m-dimensional feature vector. It can be described as 

follows: 

Let us define the linear mapping  from the original n-dimensional image space 

into m-dimensional feature space, where m ≤ min{n, N}, as:  

W

( ).T μvvv −= kk xy W                                                                             (5) 

The mapping W = WPCA is chosen to maximize the determinant of the total scatter 

matrix of the projected samples , k = 1,2,...,N,  i.e.,   kyv

[ ].maxarg 21TPCA mwww v
K

vv== Τ WSWW
W

                                        (6) 

WPCA is an n by m matrix whose columns are formed from the set of m n-dimensional 

eigenvectors , i = 1,2,...,m of Siwv T corresponding to the m largest eigenvalues. Note 

that the number of ROI vectors in the training set is usually less than the dimension of 

the image space (N  < n) and there are only N meaningful eigenvectors [32].  

Since the eigenvectors have the same dimension as the original images, and can be 

represented as k·l images, they are referred to as eigen-fingerprints or eigen-digitprints. 

The m-dimensional space spanned by these eigenvectors (eigen-fingerprints or eigen-

digitprints) is called the eigenspace. 

Fig. 3. shows examples of some eigen-fingerprints and eigen-digitprints obtained 

from the training set. The ordinal numbers of the eigen-digitprints or eigen-

fingerprints are indicated by the index i. 

  



 
Figure 3 Eigen-fingerprints and eigen-digitprints obtained from the training set 

(indicated by the corresponding ordinal numbers) 

 

 

 

 

  



4.2 Linear discriminant analysis 

Linear Discriminant Analysis, also known as Fisher’s Linear Discriminant (FLD), has 

been successfully applied in many classification problems. The LDA takes advantage 

of the fact that the available set of samples (the training set) is labelled and tries to 

find projection axes that provide the best linear separability in the transformed 

(feature) space. In the context of the fingerprint (digitprint) recognition problem LDA 

can be formally described as follows: 

Let us define the linear mapping  from the original n-dimensional image space 

into the m-dimensional feature space, where m ≤ c – 1, as:  

W

.T
kk xy vv W=                                                                                       (7) 

The LDA seeks a transformation W = WLDA that maximizes the ratio of the 

determinants of the between-class scatter and the within-class scatter matrices of the 

projected samples, i.e., the Fisher criterion: 

[ mwww v
K

vv
21

W

B
LDA maxarg ==

Τ

Τ

WSW

WSW
W

W
]                         (8) 

WLDA is an n by m matrix whose columns are formed from the set of m n-dimensional 

eigenvectors , i = 1,2,...,m of  corresponding to the m largest eigenvalues. 

Note that the upper bound of m is c – 1, i.e., there are at most c – 1 nonzero 

eigenvalues.  

iwv B
1

WSS−

Since the n-dimensional eigenvectors iwv , i = 1,2,...,m can be represented as k·l 

images, they are referred to as Fisherimages. The m-dimensional space (m ≤ c – 1) 

spanned by these eigenvectors is referred to as Fisherspace.  

The eigenvectors of the matrix can only be found in the case that the within-

class scatter matrix S

B
1

WSS−

W is not singular. Since in the field of biometrics the number of 

templates (training patterns) is limited and commonly less than the dimension of the 

ROI vectors , the matrix Skxr W is regularly singular. To overcome this problem, we 

have adopted two LDA-based feature-extraction approaches: the MDF method [35] 

and the RD-LDA method [36]. 

 

 

 

  



 

4.2.1 Most discriminant features 

Reference [35] proposes that PCA is applied first to reduce the dimension of the 

original n-dimensional space to an N – c dimensional feature space and then to apply 

the LDA to reduce the dimension to c – 1. 

According to the above-described approach the MDF seeks the transformation W 

= WMDF that maximizes the ratio of the determinants of the transformed between-class 

scatter and the within-class scatter matrices of the projected samples:   

,maxarg
W

B
MDF WSW

WSW
W

W ′

′
=

Τ

Τ

                                                (9) 

where the transformed scatter matrices are: 

PCAWPCAW WSWS Τ=′                                                     (10) 

PCABPCAB WSWS Τ=′                                                       (11) 

The n-dimensional column vectors of the matrix WMDF are MDF images. The m-

dimensional space (m ≤ c – 1) spanned by these eigenvectors is referred to as the 

MDF space.  

Fig. 4. shows examples of some MDF fingerprints and MDF digitprints obtained 

from the training set. The ordinal numbers of the MDF fingerprints and the MDF 

digitprints are indicated by the index i. 

  



 
 

Figure 4 Examples of some MDF fingerprints and MDF digitprints obtained from the 

training set (indicated by the corresponding ordinal numbers) 

 

 

 

  



4.2.2 Regularized-Direct Linear Discriminant Analysis  

Reference [36] proposes that the transformation W = WRD-LDA is chosen to maximize 

the regularized Fisher’s criterion, i.e.: 

|)()(|
||maxarg

WB

B
LDA-RD WSWWSW

WSWW
W TT

T

+
=

η
,                                (12) 

where 0≤η≤1 is the parameter that controls the strength of the regularization. 

The optimum value of the regularization parameter has to be determined 

experimentally during the system-design phase. In our case the regularization 

parameter η was 0.001. 

Fig. 5. shows examples of some RD-LDA images: RD-Fisherfingerprints and RD- 

Fisherdigitprints, obtained from the training set. The ordinal numbers of the RD 

Fisherfingerprints and RD Fisherdigitprints are indicated by the index i. 

  



 
Figure 5 Examples of some RD-Fisherfingerprints and RD-Fisherdigitprints obtained 

from the training set (indicated by the corresponding ordinal numbers)  

Due to the statistical properties of the proposed linear transformations for feature 

extraction, from basis images in Figures 3 – 5 is very difficult to explicitly point out 

the information about the salient fingerprint and digitprint features. However, we 

  



presume that the values of the features obtained by projecting the fingerprint and 

digitprint images into the subspace defined by the basis images depend on regions 

where the singularities of the fingerprint and the digitprint are usually located 

(highlighted regions in the basis fingerprint and digitprint images). Note that Figures 

3 - 5 depict only a (small) subset of all the used basis images. 

 

5 Template generation, matching, normalization, fusion and decision 

5.1 Template  

The template, which is a mathematical representation of the biometric data for a 

person p in our system consists of eight m-component feature vectors: 

pppp DFDF ,4,4,1,1 ,,...,,
r r rr

, representing the fingerprint and the digitprint ROIs of the 

little, ring, middle, and index fingers, respectively. Note, that for experimental 

purposes, the template is generated by means of ,  and  (see 

equations (5) and (7)). 

PCAW MDFW LDARD−W

5.2 Matching 

In order to identify or verify a system user, the matching process between the live 

template and the templates from the system database is performed using the Euclidean 

distance. In this step the following distances are calculated:  

• , i = 1,2, ... 4, where ),( i
j

i
x FFd
rr i

xF
r

 is a fingerprint live template of an 

unknown person x and , j = 1, 2, ... u are the fingerprint templates from the 

system database, where u is the total number of fingerprint (or digitprint) 

templates in the system database (identification) or the total number of stored 

templates per person (verification). 

i
jF
r

  



• , i = 1,2, ... 4,  where ),( i
j

i
x DDd
rr i

xD
r

 is a digitprint live template of an 

unknown person x and i
jD
r

 are digitprint templates from the database, where    

j = 1, 2, ... u.  

 

5.3 Matching-score normalization, fusion and decision 

The outputs of the matching modules are normalized and transformed into similarities 

and ; i = 1,2, ... 4, by means of eight three-linear segment functions (SFi
xjs Di

xjs Fi and SDi 

and; i = 1, 2, ... 4), which were determined experimentally from the training set [14]. 

The normalized outputs of the eight matching modules are combined using fusion at 

the matching-score level. The fusion is expressed by means of the total similarity 

measure ( ): xjTSM

Di
xj

i
i

Fi
xj

i
ixj swswTSM ∑∑

=
+

=

+=
4

1
4

4

1

,                                          (13) 

where  and ; i=1,2,3,4 represent the corresponding values of the similarities 

obtained by mapping the distances into similarities. The weights w

Fi
xjs Di

xjs

i, i= 1,2, …8, are 

set proportionally to the results of the identification based on each of the finger parts 

obtained during the evaluation of the system; more precisely: 

                                         ∑=
−=

8

1
1 _/)_(

i iii erroriderroridw .                              (14) 

In (14) id_errori = 100 – Average_correct_identificationi, where the 

Average_correct_identificationi , i = 1,2, ...,8, are given in Table III.  

By using the 1−NN classification rule, based on the maximum total similarity 

measure TSM, the final decision (the person’s identity) is made. 

  



6 Experiments and results  

For testing purposes 10 images of the four fingers of the right hands of 184 people 

were acquired. The average age of the tested population (122 males and 62 females) is 

36 years; the oldest is 78 years, the youngest is 21 years, all coming from the same 

ethnic group. To take into account the variation due to the changes between images of 

the same person, the images were acquired in two separate sessions over a period of 

three months. 

In the collected database consisting of 1840 four-fingers images (184 image 

classes, 10 images per class), two types of experiments for person authentication were 

performed: closed-set identification and verification. 

For the closed-set identification test five images from each image class in the 

database were chosen randomly and used in the enrolment stage to create the client 

database. The remaining five images were used to test the system. The total number of 

attempts in the identification test was 920. 

For the verification test the database was divided into two parts: 138 (i.e., 75%) 

classes were used for client experiments, the remaining 46 (i.e., 25%) classes were 

used for impostor experiments. The finger images of each class used for the client 

experiments were divided into two parts: five of the ten images were used in the 

enrolment stage to create the client database; the remaining five images were used for 

the testing. The client experiments were performed by comparing five test images of 

the 138 test classes with the corresponding class in the client database. The total 

number of attempts in the verification test was 64170 (690 client experiments and 

63480 impostor experiments). 

Table I summarizes the database setups for the identification and verification tests. 

 

 

 

 

  



 Database (identification) Database (verification) 

Training set - clients 
184 clients, 

5 images / client 

138 clients, 

5 images / client 

Test set – clients 

184 clients, 

5 images / client 

920 attempts 

138 clients, 

5 images / client 

138×5 = 690 attempts 

Test set – impostors 

 

0 

46 impostors 

10 images / client 

138×10×46 = 63480 attempts 

 

Table I Database setups for the identification and verification tests 

 

With the exception of the identification test in Experiment 1, which was performed 

only once, all the other tests were repeated 10 times, and every time another five 

images of four fingers where chosen randomly for the client database. 

6.1. Identification experiments 

6.1.1 Experiment 1: Looking for the optimal number of PCA coefficients 

In order to find the optimal number of PCA coefficients for a description of the 

finger's ROIs the identification test was performed with 10-, 20-, 30-, 50-, 100-, 200-, 

300-, 500- and 920-dimensional feature vectors. Table II displays the results of the 

identification tests. 

With reference to the results summarized in Table II, the first 100 PCA 

coefficients are chosen as features representing the four fingerprint ROIs and the four 

digitprint   ROIs in the subsequent identification and verification experiments. 

 

 

 

 

  



 

 PCA - Number of coefficients m 

10 20 30 50 100 200 300 500 920  

          ROI 

 
Correct Identification [%] 

Fingerprint-little 

finger   
62.5 75.2 78.1 80.3 82.5 83.2 84.1 83.8 84.0 

Fingerprint-ring 

finger 
71.9 81.0 84.3 86.2 88.1 88.3 87.8 87.8 88.6 

Fingerprint-

middle finger 
72.2 83.1 85.5 87.4 88.8 89.1 89.0 89.5 89.6 

Fingerprint-index 

finger 
67.8 80.2 82.0 84.6 86.7 87.3 87.6 87.5 87.9 

Digitprint-little 

finger   
80.5 91.5 93.8 94.9 95.5 95.2 94.1 94.0 94.1 

Digitprint-ring 

finger 
82.0 91.1 93.7 94.8 95.1 95.1 94.9 94.8 94.9 

Digitprint-middle 

finger 
82.9 92.6 94.9 95.6 96.0 95.8 95.5 95.7 95.8 

Digitprint-index 

finger 
80.5 90.7 93.5 94.6 94.8 94.8 94.9 95.0 95.0 

Fusion-all ROIs 98.8 99.1 99.2 99.2 99.3 99.3 99.3 99.3 99.3 

 

Table II Rates of correct identifications based on m-dimensional   PCA-based feature 

vectors representing the four fingerprint ROIs, the four digitprint   ROIs and their 

fusion at the matching-score level 

6.1.2 Experiment 2: Comparison of PCA, MDF and RD-LDA 

The identification tests were performed with the following dimensions of the ROI 

feature vectors: the first 100 PCA coefficients, the 183 MDF coefficients (based on 

(N-c) = 736 PCA coefficients), the 183 MDF coefficients (based on c = 184 PCA 

  



coefficients) and the 183 RD-LDA coefficients. The results are summarized in Table 

III. 

 Feature-Extraction Method 

PCA 

m =100 

MDF 

m =183 
(based on 

N - c = 734PCA 

coefficients)  

 

MDF 

m =183 
(based on 

c = 184 PCA 

coefficients) 

 

RD-LDA 

m =183 

 

ROI 

Average correct identification [%]; Standard deviation [%] 

Fingerprint-little finger 83.11; 0.82 76.30; 0.81 88.44; 0.69 91.58; 0.49 

Fingerprint-ring finger 88.48; 0.78 88.58; 0.64 95.65; 0.56 96.41; 0.41 

Fingerprint-middle finger 91.08; 0.62 89.13; 0.58 95.23; 0.58 96.78; 0.40 

Fingerprint-index finger 90.11; 0.71 85.87; 0.68 91.41; 0.62 96.52; 0.42 

Digitprint-little finger 94.82; 0.58 94.34; 0.47 94.46; 0.52 97.28; 0.36 

Digitprint-ring finger 96.41; 0.50 95.43; 0.51 95.86; 0.48 98.14; 0.34 

Digitprint-middle finger 96.95; 0.49 97.29; 0.38 96.96; 0.42 99.01; 0.24 

Digitprint-index finger 95.65; 0.62 95.91; 0.48 95.43; 0.49 98.62; 0.26 

Fusion-all ROIs 99.50; 0.43 99.78; 0.24 99.67; 0.30 99.98; 0.05 

 

Table III Rates of the average correct identification for the three tested feature-

extraction methods for the four fingerprint ROIs, the four digitprint ROIs and their 

fusion at the matching-score level 

In Table III, the rates of the average correct identification for four-fingerprint 

ROIs and four-digitprint ROIs are obtained by using the 1-NN classification rule to 

classify the live templates i
xF
r

 and i
xD
r

, based on the similarities and , 

separately for each fingerprint ROI and each digitprint ROI. 

Fi
xjs Di

xjs

6.2. Verification experiments 

6.2.1 Experiment 3: Comparison of PCA, MDF and RD-LDA 

  



The verification test was performed with the following dimensions of the ROI 

feature vectors: the first 100 PCA coefficients, the 183 MDF coefficients (based on 

184 PCA coefficients) and the 183 RD-LDA coefficients. Figures 6−8 show the 

dependency of the FAR and FRR on the threshold of the system for the PCA-, 

MDF- and RD-LDA-based feature-extraction methods, respectively. 

 

Figure 6 Verification test for the PCA-based system: plots of the dependency of 

the FAR and FRR on the threshold (average result of 10 repeated verification tests) 

 

Figure 7 Verification test for the MDF-based system: plots of the dependency of 

the FAR and FRR on the threshold (average result of 10 repeated verification tests) 

  



 

Figure 8 Verification test for the RD-LDA-based system: plots of the dependency 

of the FAR and FRR on the threshold (average result of 10 repeated verification 

tests) 

From Figures 6−8 it is clear that the lowest EER = 0.01% can be achieved for the RD-

LDA-based system at the threshold 0.721. 

The verification-system receiver-operating curves (ROCs) for the three tested 

feature-extraction methods are shown in Fig. 9. 

 

  



 

Figure 9 Verification-system receiver-operating curves (ROCs) for the three tested 

feature-extraction methods (average result of 10 repeated verification tests) 

 

7 Conclusions  

 

In this paper, feature-extraction methods based on Principal Component Analysis 

(PCA), Most Discriminant Features (MDF), and Regularized-Direct Linear 

Discriminant Analysis (RD-LDA) are tested and compared in an experimental 

personal authentication system based on four fingers. The identification and 

verification experiments showed that the best results were obtained with the RD-

LDA-based feature-extraction approach (99.98% correct for 920 identification tests 

and an EER = 0.01% for 64170 verification tests).  

The results of the correct identification rate, as well as the results of the 

verification, have encouraged us to continue with our research and develop a 

multimodal finger-based system that can be used in medium or even in high-security 

environments.  
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Since the images of the palmar surface of the fingers are usually obtained with 

different skin conditions (e.g., dry, wet, soiled, abraded, etc.), in the future we plan to 

expand our system with modules for testing the quality of the ROI sub-images and to 

empirically evaluate the effect of poor-quality ROI sub-images on the accuracy of the 

system. 
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