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∗ Faculty of Electrical Engineering and Computing, University of Zagreb,
Croatia (e-mail: ivan.markovic85@gmail.com, ivan.petrovic@ fer.hr)

Abstract: In this paper a method for speaker localization and tracking is proposed based
on Time Difference of Arrival estimation enhanced with so called tuned phase transform.
The localization method is based on Pseudo-linear estimator, and Y-shaped array for spatial
sampling is proposed and compared to square array. The tracking is realized with Recursive
Least-Squares algorithm. At the end, results recorded on a mobile robot are presented, showing
that the developed audio interface and algorithm can localize and track speaker in mobile robot
environment.

1. INTRODUCTION

In everyday life humans rely greatly on hearing as a
complementary tool for understanding the world around
us. Hearing, as one of the traditional five senses, elegantly
supplements other senses as being omnidirectional, not
limited by physical obstacles and the absence of light.

The problem of endowing systems with hearing depends,
of course, on the field of utility. This paper’s field of
utility is mobile robotics and as it will be shown, several
facts make auditory systems for mobile robots more
challenging then, for e.g., conference rooms.

Existing source localization strategies are usually divided
in three categories: those based upon maximizing the
steered response power of a beamformer (a lot of great
work with this method in mobile robotics was done by
Valin et al. [2006]), techniques adopting high-resolution
spectral estimation concepts, and approaches employing
Time Difference Of Arrival (TDOA) information. An
overview of many of these methods can be found in
Brandstein et al. [2001], and Chen et al. [2006].

This paper proposes a new sound source localization
method based on TDOA estimation using a microphone
array of 4 microphones arranged in a specific Y-geometry.
The proposed algorithm is based on Pseudo-linear estima-
tion (PLE) of the sound source location, which enables us
to solve the front-back ambiguity, increase the robustness
by using all the available measurements, and to localize
and track speaker over the full range around the mobile
robot.

The main purpose of this algorithm is to provide the
speaker location to other mobile robot systems. For
an example, when tracking humans with laser sensors
it could be useful to know which detected person is
currently speaking, or we could be getting the robot’s
attention simply by means of voice, just as we would
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call a waiter in restaurant. Advantages of knowing from
where a recorded sound comes from are numerous.

2. TDOA ESTIMATION

The main idea behind TDOA-based locators is a two
step one. Firstly, TDOA estimation of the speech signals
relative to pairs of spatially separated microphones is
performed. Secondly, this data is used to infer about
speaker location. The TDOA estimation algorithm for 2
microphones is described first.

A windowed frame of L samples is considered. In order
to determine the delay ∆τi j in the signal captured by two
different microphones (i and j), it is necessary to define
a coherence measure which will yield an explicit global
peak at the correct delay. Cross-correlation is the most
common choice, since we have at two spatially separated
microphones (in an ideal homogeneous, dispersion-free
and lossless scenario) two identical time-shifted signals.
Cross-correlation is defined by the following expression:

Ri j(∆τ) =

L−1∑

n=0

xmi [n]xm j [n − ∆τ], (1)

where xmi is the signal received by microphone i and ∆τ
is the correlation lag in samples. As stated earlier, Ri j is
maximal when ∆τ is equal to the delay between the two
received signals.

The most appealing property of cross-correlation is the
ability to perform calculation in frequency domain, thus
significantly lowering the computational intensity of the
algorithm. Since we are dealing with signal frames, we
can only estimate the cross-correlation:

R̂i j(∆τ) =

L−1∑

k=0

Xmi (k)X∗m j
(k)e j2π k∆τ

L , (2)
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Fig. 1. Computing DOA angle from TDOA

where Xmi (k) is the discrete Fourier Transform (DFT)
of xmi [n] and (.)∗ denotes complex-conjugate. We are
windowing the frames with rectangular window and no
overlap. Therefore, before applying Fourier transform to
signals xmi and xm j , it is necessary to zero-pad them with at
least 2L zeros since we want to perform linear, not circular
convolution.

A major limitation of cross-correlation given by (2) is that
the correlation between adjacent samples is high, which
has an effect of wide cross-correlation peaks. Therefore,
an appropriate weighting should be used.

2.1 Spectral weighting

The problem of wide peaks in unweighted, i.e. general-
ized, cross-correlation (GCC) can be solved by whiten-
ing the spectrum of signals prior to computing the
cross-correlation. The most common weightning func-
tion is Phase Transform (PHAT) which, if having con-
stant SNR ration on all frequency bins, yields Maxi-
mum Likelihood Estimator (MLE). What PHAT function
(ψPHAT = 1/|Xmi (k)||X∗m j

(k)|) does, is that it whitens the
cross-spectrum of signals xmi and xm j , thus giving a sharp-
ened peak at the true delay. The main drawback of the
generalized cross-correlation with PHAT weighting is that
it equally weights all frequency bins regardless of the SNR.
Using just the PHAT weighting poor results were obtained
and we concluded that the effect of the PHAT function
should be tuned down, which lead us to GCC-PHAT-β:

R̂PHAT−β
i j (∆τ) =

L−1∑

k=0

Xmi (k)X∗m j
(k)

(|Xmi (k)||X∗m j
(k)|)β e j2π k∆τ

L . (3)

where 0 < β < 1 is the tuning parameter. As it was
explained and shown by Donohue et al. [2007], the main
reason for this approach is that speech can exhibit both
wide-band and narrow-band characteristics. For example,
if uttering the word ”shoe”, ”sh” component acts as
a wide-band signal and voiced component ”oe” as a
narrow-band signal. It was proposed in the latter article
that a value of β between 0.5 and 0.6 should be taken. We
chose to work with β = 0.5.

2.2 Direction of Arrival Estimation

The TDOA between microphones i and j: ∆τi j can be found
by locating the peak in the cross-correlation:

∆τi j = arg max
τ

R̂PHAT
i j (∆τ). (4)

Once TDOA estimation is performed, it is possible to
compute the position of the sound source through series
of geometrical calculations. It is assumed that the distance
to the source is much larger than the array aperture, i.e.
we assume the so called far-field scenario. Although this
might not always be the case, being that human-robot
interaction is actually a mixture of far-field and near-
field scenarios, this mathematical simplification is still a
reasonable one. Fig. 1 illustrates the case of a 2 microphone
array with a source in the far-field. Using the cosine law
we can state the following:

ϕ = ± arccos
(

c∆τi j

d

)
, (5)

where d is the distance between the microphones, c = 344
m/s is the speed of sound, andϕ is the Direction of Arrival
(DOA) angle.

Next, we conducted experiments with two microphones
separated at distance d = 0.5 m and sampling frequency
Fs = 48 kHz to test the effects of PHAT-β. The experiments
were conducted over the range of 180◦ from the baseline
of two microphones, uttering the word ”Test”. Beneficial
effects of PHAT-β can be clearly seen from Fig. 2. In
our experiments we did not experience absolute azimuth
errors larger than 7◦, except when getting close to ϕ =
0◦, 180◦. The best estimation results occur close to where
ϕ = 90◦. Similar phenomenon was reported also by
Nakadai et al. [2002]. The reason for this kind of behavior
lies in the non-linearity of the Acos function; when getting
close to 0◦ and 180◦ small changes in TDOA error result
in high azimuth error changes. This problem can be
alleviated by using more than 2 microphones in a specific
array geometry as will be shown in section 4.
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Fig. 2. Cross-correlation with no weighting (left figure)
and PHAT-β weighting (right figure)
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Fig. 3. Source location as an intersection of hyperbolic
curves

3. HYPERBOLIC POSITION ESTIMATION

Performing sound source localization in mobile robot
environment is specific in a few ways: the dimension of
the array must be reasonably small, just as the number
and dimension of the microphones, plus the algorithm
must yield a closed-form unique solution for the sake of
real-time application. No ± ambiguities on any of the 2-D
axis is allowed. There are several methods that provide
great results when locating a speaker in a conference
room where microphones are mounted on a wall (only
the + solution on the y axis is considered), but these
methods are not practical for a mobile robot since the
speaker can be located anywhere around the robot from
0◦ to 360◦. Also, the fact that acoustical surrounding is not
constant and that the speaker is always located outside of
the microphone array (see Fig.6 and Fig. 7) makes sound
source localization in mobile robot environment more
challenging than localization in a single closed space.

Instead of searching for hyperbolae intersection as a
location of the speaker, we turned to hyperbolae ap-
proximation with its asymptotes and searched for their
intersection, giving us smaller variance over the bearing
estimation and instead of four TDOA estimates, only three
are needed for closed form solution. If we define Rmi and
Rm j as the distances of the sound source from microphones
i and j, it can easily be shown that a microphone pair (i, j)
defines possible speaker locations in a form of hyperbolic
curve:

√
(x − xi)

2 +
(
y − yi

)2 −
√(

x − x j

)2
+

(
y − y j

)2
=

= Rmi − Rm j = Rmi j = c∆τi j

(6)

where (xi, yi) represent microphone coordinates and (x, y)
sound source coordinates. Having more than one micro-
phone pair enables us to calculate the speaker position as
the intersection of the hyperbolic curves (Fig. 3).

As it was proposed by Drake et al. [2004], the bearing
angles θ±i j of the hyperbolic asymptotes with respect to

the baseline of a pair of microphones i and j, located at
(xi, yi) and (x j, y j), are calculated as follows:

θ±i j = atan2
(

y j − yi

x j − xi

)
± arccos

(
c∆τi j

||(x j, y j) − (xi, yi)||

)
. (7)

3.1 Sound Source Localization Using Hyperbolic Asymptotes

What we get with (7) is bearing of the sound source,
which is actually the asymptote of the corresponding
microphone pair hyperbola. This is where the far-field as-
sumption comes in handy again, the larger the distance of
the sound source from the microphone array, hyperbolas’
eccentricity becomes smaller giving better approximation
with its own asymptotes (see Fig. 3).

Having N microphones, (7) will yield 2
(N

2
)

hyperbolic
asymptotes, each representing a possible bearing line of
the sound source. Which bearing lines will be utilized
and how exactly, will be explained in detail in section 4.1.
First we need to determine the source location from the
available bearing lines which emanate from the midpoints
of microphone pairs defined by:

mi j =
1
2

[ xi + x j
yi + y j

]
2x1
. (8)

To triangulate the feasible bearing a Pseudolinear Esti-
mator (PLE) is used (Drake et al. [2004]) based on Least
Squares (LS) to estimate the source location. The sound
source PLE is given by the following relation:

r̂PLE = (ATA)−1ATb, (9)

where

A =



sinϕ12 − cosϕ12
...

...
sinϕi j − cosϕi j


(N

2)x2

,

b =



[
sinϕ12 − cosϕ12

]
1x2 m12

...[
sinϕi j − cosϕi j

]
1x2 mi j


(N

2)x1

.

(10)

Here {mi j, ϕi j} is the list of all feasible bearing lines of
microphones i and j, with ϕi j ∈ {θ−i j, θ

+
i j}.

4. Y-ARRAY VS. SQUARE ARRAY

We chose to work with the Y-shaped array instead of the
square shaped array. The first reason for this lies in the fact
that the Y-shaped array positions the microphones in such
a way that no two microphone-pair baselines are parallel.
Having baselines with the maximum variety of different
orientations maximizes the probability that the impinging
source wave will be coming from ϕ = 90◦ angles. This
can be best seen from Fig. 4 and Fig. 5, on which a 15◦
beam is emanating from the midpoint of microphone
pairs. We can see that 12 regions vs. 8 regions, in favor
of the Y-shaped array, are covered around the array. This
is so because in the case of the square array, two couples

285



Fig. 4. Square Array Microphone Baseline Orientation
Variety

Fig. 5. Y-array Microphone Baseline Orientation Variety

of parallel microphone baselines are used for the same
direction (positive and negative headings of the x and y
axis.).

The second reason is that the Y-shaped array (Fig. 7)
has a slightly superior resolution map than the square
array (Fig. 6) due to the greater incidence of hyperbolae
intersections.

4.1 Source Bearing Angle Decision Making

As stated in section 3.1, each bearing angle ϕi j has two
possible values. If we look at the Fig. 8 we can see that
there are 12 different cells with different bearing angle
combinations. The microphones were paired in such way
that the positive bearing angles are emanating outside
of the array (how exactly microphones were paired can
be seen from Fig. 8). For an example, if the source is
located somewhere in the cell area 1, then we would use
{θ+

12, θ
+
13, θ

+
14, θ

+
34, θ

−
23, θ

−
24} in (9) to determine the location

of the speaker.

The decision procedure is as follows: we need to calculate
12 instances of (9) for all 12 different cells, then the one
where the speaker is located will have the largest range.

4.2 TDOA estimation using N microphones

Using an array of N microphones makes it possible to
compute

(N
2
)

different cross-correlations, of which only
N − 1 are independent. Since we presume far-field case

Fig. 6. Square Array Resolution Map

Fig. 7. Y-Array Resolution Map

and constant speed planar wave front propagation, for
TDOA values following relation holds:

∆τi j = ∆τkj − ∆τki. (11)

For an example, when dealing with 4 microphones, there
are 3 independent TDOA measurements, other 3 TDOA
estimates can be derived from (11). In our algorithm only
those blocks which satisfy 12 constraints in the form of
∆τi j = ∆τkj − ∆τki < δ are considered valid and are
processed further (δ is a parameter set empirically as an
integer multiple of the sampling period 1/Fs).

Having decided on the TDOA estimation algorithm, array
geometry and hyperbolic localization procedure, next
logical step was to test the system behavior through
simulations. The simulations were performed through
Monte Carlo runs. Microphones were placed at the ver-
tices of equilateral triangle (side length a = 0.6 m), and
the fourth microphone at the orthocenter. Speaker was
located at (x, y) = (1.5, 1.5) m, each TDOA measurement
was corrupted with Gaussian noise of standard deviation
σ = 6 · 1/Fs, since that was the largest case of error we
experienced during two microphone recordings.

Fig. 9 shows results of the simulation. Unfortunately,
the measurement uncertainty of range is too great for
range estimation to be of practical use, but results for
azimuth proved to be encouraging. Histogram of azimuth
estimation is shown in Fig. 10 with corresponding mean
and variance.
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Fig. 8. Y-Array cell distribution with according to different
bearing angle combinations

Fig. 9. Speaker location Monte Carlo runs
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Fig. 10. Distribution of azimuth estimation values

5. TRACKING ALGORITHM

Recursive smoothing algorithm is used for speaker track-
ing. It has been shown and proposed in Doğanc»ay et al.
[2005] that its performance is almost identical to that of
Kalman tracker, or even in some cases better. The target
trajectory is estimated by utilizing the following kinematic
equation, which represents a constant-acceleration mo-
tion model:

sk = s0 + v0tk +
1
2

at2
k = Mkξ, (12)

where s0 and v0 are the target location and velocity at t0,
respectively, and a is the constant target acceleration, Mk
is the 2x6 time matrix:

Mk =


1 0 tk 0

1
2

t2
k 0

0 1 0 tk 0
1
2

t2
k

 , (13)

and ξ is the 6x1 target motion parameter vector:

ξ =


s0
v0
a

 . (14)

Given K ≥ 3 location estimates ŝk, the unknown vector ξ
can be estimated from:



M0
M1
...

MK−1


ξ ≈



ŝ0
ŝ1

ŝK−1


. (15)

To track a speaker, (15) can be solved by using the
Recursive Least Squares (RLS) algorithm:

ξ̂k = Φ−1
k φk, (16)

where

Φk = λΦk−1 + MT
k Mk, k = 0, 1, ... (17)

φk = λφk−1 + MT
k ŝk, k = 0, 1, ... (18)

and 0 < λ < 1 is the exponential forgetting factor. Note
that the inverse matrix Φ−1

k can be calculated in advance
since it is deterministic and independent of the location
estimates ŝk. The smoothed location estimates are given
by:

ŝRLS
k = Mkξ̂k. (19)

By making λ small, the tracking refresh rate can be im-
proved at the expense of increased estimation variance.
The final bearing angle is calculated from location coordi-
nates given by (19).

6. EXPERIMENTAL RESULTS

The array used for experiments is composed of 4 omnidi-
rectional microphones arranged in the Y geometry. Three
microphones are placed on the vertices of equilateral
triangle having side length a = 0.6 m, and the fourth
microphone is placed at the orthocenter of the triangle.
The microphone array is placed on a Pioneer 2DX robot
as shown on Fig. 13. Audio interface is composed of low-
cost microphones, pre-amplifiers and external USB sound-
card (whole equipment costing ∼ 150 euro). Sampling
frequency was Fs = 48 kHz, 16-bit precision, block length
L = 1024 samples, and rectangular window was used with
zero-padding approach.
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Fig. 11. Experiment results of azimuth estimation (speaker
making a full circle)

Two tests were performed. In first experiment speaker
walked around the robot making a full circle, uttering
”Test, one, two, three” continuously. The results of the
experiment are shown in Fig. 11, from which can be
seen that the algorithm successfully localizes and tracks
the speaker. Raw data has few outliers, but the tracking
resolved with RLS solves that problem.

In the second experiment, speaker uttered ”Test, one,
two, three” while moving from 0◦-45◦, changed the
angle while keeping quiet, then continued repeating the
sentence while moving from 315◦-270◦ approximately. The
situation in the second experiment is more likely to occur
in real-life settings, since it is a reasonable assumption
that speakers will have pauses while walking around
the robot. As it can be seen from Fig. 12, in this case
the algorithm also manages to track the speaker and
eliminate outliers successfuly. The RLS estimates have a
mild overshoot at the beginning of a new angle value, due
to the rapid change.

7. CONCLUSION

We have implemented an audio interface for a mobile
robot that accurately localizes and tracks speaker in 2-D
over the full range around the robot.

The TDOA estimation used is shown to be robust to
both reverberation and noise. Furthermore, PL estimation
algorithm along with the RLS tracking approach proved to
be an efficient tool in precise localization. However, our
system is not yet capable of tracking multiple speakers
and estimating the speaker range. Still, we find this to
be the first step towards developing a functional audio
interface, with final step being the full integration with
other mobile robot systems.
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