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 AbstractThe design procedure of low-sensitivity active resistance-capacitance (RC) allpole 
filters, using impedance tapering, has already been published. The low-sensitivity filter sections 
already described in publication are class 4 (TT-SABB) Sallen and Key sections. In this paper class 
3 (SAB) sections for low pole-Q realization are considered. Impedance tapering is applied on L-
sections, which are situated in negative-feedback of operational amplifier in open-loop mode. L- 
sections are impedance scaled upwards, from the driving source to the negative amplifier input. 
Second-order band-pass filter is considered. Pole-Q factors for low-Q building blocks take their 
values up to, say, 5. The sensitivity to component tolerances of the circuit is shown to be small for 
any type of impedance tapering regardless of the gain-sensitivity product (GSP) value. 
 
 Index TermsAllpole filters, biquadratic active filters, class 3 active filters for low-Q 
realization, low-sensitivity active filters. 

1. INTRODUCTION 
 A procedure for design of low-sensitive allpole filters has already been presented in [1] 
and [2]. The filter circuits in [1] and [2] are class 4 Sallen and Key [3] and the design 
presented is based on “impedance tapering”. 
 In this paper we apply impedance tapering to class 3 allpole active-RC filters for low 
pole-Q factor realization. To choose “low-Q” circuit, there is only one criteria, i.e. the value 
of Q-pole factor, qp (see [5]) which has to be smaller than say 5. 
 Based on the class 3 filter circuits shown in [4] and [5], having an RC ladder network in 
the negative feedback of an operational amplifier, impedance tapering is applied. The 
adequate L-sections of an RC ladder in a feedback loop are thus successively ipedance scaled 
upwards, from the driving source to the negative amplifier input. Second-order band-pass 
filter is considered. Impedance tapering is applied on “low-Q” SAB filter blocks. On one 
example Monte Carlo analysis was performed with simulation program PSPICE to examine 
the sensitivity of the filter’s transfer function to component tolerances. Simple Voltage-
Controlled-Voltage-Source (VCVS) has been used as a substitution for ideal operational 
amplifier. Sensitivity to active elements in the filter circuit is represented by the gain-
sensitivity product (GSP). It is shown that the sensitivity of the filter’s characteristics on 
component tolerances is small for any type of impedance tapering regardless of the GSP 
value. 

2. DEFINITION OF SENSITIVITY 
 Relative sensitivity of a function F(x) to variations of variable x is defined as 
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 Consider the transfer function T(s) of the second-order, allpole band-pass filter given 
with eq. (3.1). Filter coefficients ai of the polynomial D(s) are available from any filter 
handbook. 
Relative change of T(s) to the variation of its coefficients ai is 
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where )(sT
ai

S  is sensitivity to coefficient variations and is dependent only on a value of 
coefficients ai and frequency ω. Coefficient variation is represented with 
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On the other hand coefficient-to-component sensitivities ia
xS , where x represent each of the 

component types, are dependent on the realisation of the filter circuits and can be reduced 
with non-standard filter design as shown in [1]. The sensitivity reduction is achieved 
applying “impedance tapering” instead of standard filter design techniques. 

3. SECOND-ORDER LOW-Q BAND-PASS FILTER CLASS 3 
 As representative example we consider the second-order band-pass (R) filter shown in 
Fig. 1 as in [5]. It has a ladder-circuit in negative feedback of an operational amplifier in 
open-loop mode and is known as class 3 “low-Q” band-pass filter. Note that the operational 
amplifier has its positive pin grounded. 

 
Fig. 1 Second-order Band-pass Filter Class 3 (Low-Q Realisation) 

 The voltage transfer T(s) function for this circuit expressed in terms of the coefficients ai 
is given by: 
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and in terms of the pole frequency ωp and pole Q, qp by 

 
22

'
)(

p
p

p

p

s
q

s

sK
sT

ω+
ω

+

ω
= , (3.2) 

where 
11

22'
CR
CRqKqK pp ⋅µ⋅==  and 

 
2121

2
0

1
CCRR

a p =ω= , 

 
212

21
1 CCR

CC
q

a
p

p +
=

ω
= , 

 
)( 211

2121

CCR
CCRR

q p +
= . (3.3) 

To achieve gain K in pass band, where K is gain factor specified by the filter designer, a 
value of µ must be given: 
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If the desired value µ is less than unity, then the specified gain K can be tuned with a resistive 
voltage divider at the input of the network, consisting of R11 and R12, as shown in Fig. 1. For 
a value of µ>1 it is possible to make output voltage-level transformation, which is not 
presented in this paper (see [1] and [4]). 
 The sensitivity of a0 to all RC components is –1, thus ∆a0/a0 can be decreased only 
technologically. For the sensitivity of a1 to tolerances of passive components, we readily 
obtain expressions given in the first column of Table 1. Note that the coefficient a1 
sensitivities to R1 and R2 are 0 and –1, respectively. The only improvement can be done with 
the sensitivites to capacitors. They are all proportional to the pole Q, qp. Thus, one does well 
when select the filter type with the lowest pole Q’s, for a given application. 
 Reffering to Fig. 1, the second L-section in the feedback loop comprising R2 and C2 
(inside the rectangle) can be impedance scaled upwards in order to minimize the loading on 
the first, i.e. R1 and C1. Letting 
 R1=R;   C1=C;   R2=rR;   C2=C/ρ (3.5) 
we obtain the sensitivity relations given in second column of Table 1. Observing those 
sensitivities, one can see that some of the sensitivities are proportional to ρ and some to ρ-1, 
and setting ρ=1 provides an optimum compromise. 

Table 1 Sensitivity of a1 to Component Variations of “Low-Q” Second-Order Band-pass Filter Class 3 

x 1a
xS  

  R1=R; C1=C 
R2=rR; C2=C/ρ 

R1 0 0 

R2 -1 -1 

C1 
12

21

CR
CRq p−  

ρ
−

r
q p

1
 

C2 
22

11

CR
CRq p−  

r
q p

ρ
−  

 Design equations for tapered second-order band-pass filter follow. Its transfer function is 
given by (3.1) to (3.3). With the tapering factors in (3.5) and with 
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we obtain for the coefficients of T(s) 
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From K, a0 and a1, which are given by filter specifications, we must determine ω0, ρ, r and µ. 
Therefore we use the following expressions: 
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Since r and ρ must both be positive, the denominator of (3.8) must be larger than zero, 
resulting in the following constraint 

 ppq
a
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0 . (3.9) 

Example: Consider the following practical example. Suppose that 
 pF.        kHz; 500;5862 ==⋅π=ω Cq pp  (3.10) 
During the design process, various ways of impedance tapering has been applied and the 
resulting component values are presented in Table 2. On the resulting filters Monte Carlo 
runs with 5% gauss-distribution, zero-mean resistors and capacitors were carried out and 
presented in Fig. 3. 

Table 2 Component Values of Impedance Tapered “low-Q” circuits with ρ=0.1, 1, 3, 10, 25 and qp=1, 3, 5. 
(Resistors in [kΩ], Capacitors in [pF]) 

Nr. qp Impedance Tapered Filter R1 R2 r C1 C2 ρ GSP 
1.  ρ=0.1 0.336 4.071 12.1 500 5000 0.1 11 
2.  ρ= 1 1.85 7.402 4 500 500 1 2 
3. 1 ρ= 3 2.775 14.81 5.33 500 166.7 3 1.33 
4.  ρ=10 3.365 40.71 12.1 500 50 10 1.1 
5.  ρ=25 3.558 96.23 27.4 500 20 25 1.04 
6.  ρ=0.1 0.113 12.21 108.9 500 5000 0.1 99 
7.  ρ= 1 0.617 22.21 36 500 500 1 18 
8. 3 ρ= 3 0.925 44.42 48 500 166.7 3 12 
9.  ρ=10 1.122 122.1 108.9 500 50 10 9.9 
10.  ρ=25 1.186 288.7 243.4 500 20 25 9.36 
11.  ρ=0.1 0.067 20.36 302.5 500 5000 0.1 275 
12.  ρ= 1 0.370 37.01 100 500 500 1 50 
13. 5 ρ= 3 0.555 74.03 133.3 500 166.7 3 33.33 
14.  ρ=10 0.673 203.6 302.5 500 50 10 27.5 
15.  ρ=25 0.712 481.2 676 500 20 25 26 

 For a given value of capacitive scaling factor ρ and pole Q’s value qp, resistive scaling 
factor r can be calculated using 

 
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and the GSP using 
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Plots of r and GSP versus ρ with varying pole-Q factors are shown in Fig. 2. Note that GSP is 
proportional to the squared value of qp and has no minimal value. Value of r is also 
proportional to the squared value of qp, but has minimum when ρ=1, i.e. 
 2

)1(min 4 pqrr ==
=ρ

. (3.13) 
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Fig. 2 Plot of r and GSP versus ρ with pole Q’s varying from 1 to 5. 
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Fig. 3 Monte Carlo response plots of impedance-tapered 2nd-Order “Low-Q” BP filters given in Table 2 

 Observing Monte Carlo runs in Fig. 3 it can be concluded that by tapering only resistors 
with equal capacitor values (ρ=1), the filter’s characteristic shows somewhat lower sensitivity 
to component tolerances of the circuit, when compared with ρ>1-tapered circuits. As stated 
before, this can also be concluded observing the sensitivities in Table 1. Although circuits 
with ρ>1 and r>rmin have lower GSP, they do not have significant decrease in components’ 
variations sensitivity. From the technological realizability point, a big value of r is not 
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preferable, thus taking ρ=1 seem to be a good choice. The problem arises for greater values 
of qp, for example qp=5 yields minimium value of rmin=100. 
 Thus, in summary, for the general second-order allpole band-pass low-Q filter Class 3, 
resistive impedance tapering with equal capacitors (ρ=1), provide circuits with minimum 
sensitivity to the component tolerances and technologically realisable resistor values. 

3.1 Impedance Tapering of Resistors with ρ=1 
 As discussed above, the design referring to the circuit in Fig. 1, can be done by the 
following step-by-step design procedure, for given filter specifications, i.e. K, ωp and qp: 

i) For given ρ from (3.11) calculate r: Let ρ=1, thus from (3.13) 
100544 22 =⋅=⋅=ρ pq . 

ii) Calculate ω0: rad/skHz 6
0 104.5862100 ⋅=⋅π⋅=ω⋅=ω pr . 

iii) Select C1 and compute R11, R12 and R2: 
Let C=500pF thus C1=C2=C=500pF, ( ) ( ) Ω13.37010500104.5 11261

0 =⋅⋅⋅=ω=
−−−CR . For 

given pass-band gain K=5 the value ( ) ( ) 11.010015/5/ <=⋅⋅=β=µ − rqK p . Instead of 
R1=R=370.13Ω there is voltage attenuator at signal input consisting of R11=R1/µ= 
370.13Ω/0.1= 3.7kΩ and R12=R1/(1-µ)=370.13Ω/0.9=411.25Ω. Then R2=rR=37.01kΩ. 

iv) Compute GSP: 5052)11( 22 =⋅=+= pqGSP . 
The resulting circuit values are given in the row 12) of Table 2. 

4. CONCLUSIONS 
 A procedure for the design of low-sensitive active resistance-capacitance (RC) allpole 
filters of second- and third-order has already been published [1]. In this paper a procedure for 
design of band-pass 2nd-order “low-Q” SAB circuit as one in [5] is presented. In our example, 
because there are not very much degrees of freedom available, “impedance tapering” of 
“low-Q” SAB circuit is in calculating resistive scaling factor r for given value of capacitive 
scaling factor ρ. It was shown that for ρ=1 value of r is minimal, but still very large for 
greater values of pole-Q factor, qp. Also value of GSP does not play important role in the 
filter’s sensitivity. Resistive impedance tapering with equal capacitors (ρ=1) provide 
technologically realisable circuits with minimum sensitivity to the component tolerances. 
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