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Abstract: - Image enhancement methods can be divided in two groups: the ones that use only one single image and the 

ones that rely on specific training set or use multiple images. In this paper it is introduced an iterative algorithm based 

on the quasi-Newton methods, with the objective to enhance resolution only by one single image. In the paper there 

will be compared results gained depending on the objective histogram: spline histogram and one augmented with 

Empirical Mode Decomposition. 
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1   Introduction 
Image-based models for computer graphics lack 

resolution independence. They cannot be zoomed much 

beyond the pixel resolution they were sampled at 

without a degradation of quality. Interpolating images 

usually results in a blurring of edges and image details. 

A method to achieve higher resolution views of pixel-

based image representations is called super-resolution 

which aim is to take a set of one or more low-resolution 

input images of a scene, and estimate a higher-resolution 

image [1].  

Image enhancement methods can be divided in two 

groups: the ones that use only one single image and the 

ones that rely on specific training set or use multiple 

images [3].  

The method proposed in this paper belongs to the first 

group. Up to now, the single image super-resolutions 

have been achieved in a variety of ways.  

Paper [2] focuses on the issue of how to increase the 

resolution of a single image using only prior information 

about images in general.  

Freeman in [1] follows a supervised approach, learning a 

low to high resolution patch model (or rather storing 

examples of such maps), and utilizing a Markov random 

field for combining them and loopy propagation for 

inference. Dynamic structure super-resolution [2] 

provides a technique for resolution enhancement, and 

provides an interesting starting model which is different 

from the Markov random field approaches [1], while 

method proposed in [1] preserve fine details, such as 

edges, generate believable textures, and can give good 

results even after zooming multiple octaves, thanks to 

the overlapping  predicted patches at their borders. 

Irani-Peleg [3] use the iterative algorithm. The main 

feature of the Irani and Peleg method is that it iteratively 

uses the current best guess for the SR image to create LR 

images and then compare the simulated LR images to the 

original LR images.  These difference images (found by 

subtracting real LR - simulated LR) are then used to 

improve the initial guess by "back projecting" each value 

in the difference image onto the SR image.  This results 

in an improved SR image [3], [4], [5], [6]. In [3] an 

iterative algorithm to increase image resolution, together 

with sub pixel accuracy is presented in the paper, and the 

super resolution algorithm for color images. The 

theorems in [3] shows that the iterative super resolution 

scheme is an effective deblurring operator. In [6] an MRI 

reconstruction using Irani–Peleg super resolution 

algorithm is shown. An extension of the Irani–Peleg 

algorithm from 2D to 3D is conceptually 

straightforward. The paper presents and demonstrates 

MRI inter–slice reconstruction using super resolution. 

According to Pickup at all the aim of super-resolution is 

in taking a set of one or more low-resolution input 

images of a scene, and estimate a higher-resolution 

image [7], [8], [9], [10], [11]. If there are several low 

resolution images available with sub-pixel 

displacements, then the high frequency information of 

the super resolution image can be increased [7]. A novel 

method for combining super-resolution with image 

registration and the learning of a Huber edge-preserving 

image prior has been presented in [11]. Introducing an 

algorithm to estimate a super-resolution image at the 

same time as finding the low-resolution image 

registrations, this simultaneous approach offers visible 

benefits on results obtained from real data sequences. An 



algorithm also incorporates a photometric model to 

handle brightness changes often present in images 

captured in a temporal sequence. 

In [12] the observed low resolution images are regarded 

as degraded observations of a real, high-resolution 

image. These degradations include geometric warping, 

optical blur, spatial sampling and noise. Given several 

such low resolution image observations the objective is 

to determine the super-resolution image from the 

measured low resolution images given the image 

formation model. The paper proposes two solutions to 

this problem. In the first, the determinations of the 

Maximum Likelihood (ML) estimate of the super-

resolution image such that, when reprojected the 

imaging model, it minimizes the difference between the 

actual and “predicted” observations. In the second, the 

determinations of the Maximum a posteriori (MAP) 

estimate of the super-resolution image including prior 

information.  

The problem of single image super resolution in this 

paper is treated as nonlinear optimization problem, 

similar as in Iran-Peleg algorithm. The "Broyden-like" 

methods for nonlinear optimization are suitable when the 

large number of unknown parameters have to be 

estimated, which is the case in super resolution image 

where the unknown parameters are image pixel values of 

the sub-pixel level. Some of the Broyden-like methods 

are very robust to noise which is regularly present in 

images. Also, such approach threat the system as the 

whole which differ it from existed approaches that 

usually treat small patches stitching it together to form 

super-resolution image. 

The rest of paper consists as follows. In Section 2 the  

applied iterative procedure is presented as well as a 

typical procedure for image enhancement (EMD) gained 

depending on the objective histogram, which is the same 

objective we achieve. The methods implementation are 

described in Section 3. In Section 4 we have compared 

the visual plausibility of the described methods, whereas 

Section 5 concludes the paper. 

 

 

2   Iterative algorithms 

 

 
2.1. Broyden algorithm  
In this section purely iterative algorithm which was used 

in uncalibrated visual servoing [13] and which has never 

been applied to an image enhancement is described.  

Let 
nn

T ℜ→ℜ: be a continuously differentiable 

function and a fixed point problem is in finding 
n

x ℜ∈  

such that xxT =)( . For the problem of nonlinear 

systems of equations the solution can be characterized as 

finding the 
n

x ℜ∈  that   

 

0)( =xF  (1) 

 

such that 
nn

F ℜ→ℜ:  is continuously differentiable 

function.  

The most efficient approaches to solve nonlinear systems 

of equations are based on Newton’s idea to replace the 

nonlinear function by its first order approximation. If the 

function is too expensive to compute or the first order 

derivatives are even more expensive or not available, 

Newton’s idea can not be directly used. Therefore Quasi 

– Newton method consider at each iteration the linear 

model 
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approximating )( kxF  in the neighborhood of kx  and 

computes 1+kx  as a solution of the linear system 

0);( =kk BxL . The solution exists and is unique if  kB  

is nonsingular. In this case, an iteration of Quasi – 

Newton method is described by solving 

 

)( kkk xFpB −=  (3) 

 

and determining 

 

kkk pxx +=
+1   (4) 

 

followed by the computation of 1+kB . Various Quasi – 

Newton methods differentiates the way of updating kB . 

If )( 11 ++
= kk xJB , Newton method is obtained, what 

implies that 1+kB  is the Jacobian of F , evaluated at 

1+kx . Jacobian is a mn ×  matrix which entries ),( ji  

are ji xF ∂∂ /  [14].  
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Secant methods avoid computation of derivatives 

capturing variational information from the following 

secant equation 
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where kkk xxs −=
+1  and kkk FFy −=

+1 . Equation (6) 

ensures that  (3) interpolates )(xF  at kx  and 1+kx .  



Broyden proposed [15] the most successful class of 

quasi – Newton methods based on the secant equations, 

imposing the linear model 1+kL  to exactly match the 

nonlinear function at iterations kx  and 1+kx , that is 
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Subtracting the equations in (7) and taking notice that 

kkk xxs −=
+1  and kkk FFy −=

+1 , the classical secant 

equation can be obtained (8), 

 

kkk ysB =
+1   (8) 

 

which is identical to (6). If the dimension of n  is strictly 

greater than one, there are an infinite number of matrices 

1+kB  satisfying (8). Hence additional criteria must be 

given to gain one unique solution.  

The Broyden algorithm can be described in steps: 

1. minimization of kk BB −
+1 ; 

2. using (8) results with “least – change secant 

update” formula: 
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2.1 Empirical mode decomposition 
The EMD of images relies on proper spline interpolation 

in two dimensions, and the sifting process extended to 

two dimensions is presented in [16]. To find the first 

IMF it is necessary to start with the input image itself as 

the input signal ),(),(11 nmxnmin = . The first index is 

the IMF number, Ll ...1= , and the second index is the 

iteration number, Kk ...1= , in the sifting process. 

m and n represent two spatial dimensions. To find the 

next IMF, the residue corresponding to the previously 

found IMF is then used as input signal 

),(),( 121 nmrnmin = . The sifting process to find the 

IMFs of a signal ),( nmx fallows the next steps: 

(a) Find the positions and amplitudes of all local 

maxima and all local minima in the input signal 

),( nminlk . 

(b) Create the upper and the lower envelope by spline 

interpolation of the local maxima and the local 

minima, respectively. Denote the envelopes 

),(max nme  and ),(min nme , respectively. 

(c) For each position ),( nm  calculate the mean of the 

upper envelope and the lower envelope: 

2

),(),(
),( minmax nmenme

nmemlk

+
=  (10) 

The signal ),( nmemlk is referred to as the envelope 

mean. 

(d) Subtract the envelope mean signal from the input 

signal: 

),(),(),( nmemnminnmh lklklk −=  (11) 

This is one iteration of the sifting process. The next 

step is to check if the signal ),( nmhlk is the IMF or 

not. The process stops when the envelope mean 

signal is close enough to zero: 

),(,),( nmnmemlk ∀< ε  (12) 

 Forcing the envelope mean to zero will give the 

wanted symmetry of the envelope and the correct 

relation between the number of zero crossings and 

the number of extremes that define the IMF.  

(e) Check if the mean signal is close enough to zero, 

based upon the stop criterion. If not, repeat the 

process from step 1 with the resulting signal from 

step (d) as the input signal, sufficient number of 

times. 

),(),()1( nmhnmin
lkkl =

+
                    (13) 

When the stop criterion is met, Kk = , the IMF is 

defined as the last result of (d).  

 

),(),( nmhnmc lKl =                                  (14) 

After the IMF ),( nmcl is found, define the residue 

),( nmrl  as 

 

),(),(),( 1 nmcnminnmr lll −=        (15) 

 

(f) The next IMF is found by starting over from step 1, 

now with the residue as the input signal 

 

),(),(1)1( nmrnmin ll =
+

                    (16) 

 

Steps from (a) to (f) can be repeated for all the 

subsequent jr . The EMD is completed when the 

residue, ideally, does not contain any extrema points. 

This means that it is either a constant or a monotonic 

function. The signal can be expressed as the sum of 

IMFs and the last residue [16]: 
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3 Application of iterative algorithms 
When image enhancement is based only one image, the 

target histogram has to be set from the original image as 

the objective histogram. As the number of pixels has to 

be increased, the desired histogram has to be augmented. 

The iterative algorithm proposed in this paper is first 

applied on objective histogram augmented only by cubic 

spline interpolation, and afterwards on the objective 

histogram augmented by Empirical Mode 

Decomposition and cubic spline interpolation. 

 

 

3.1  Broyden algorithm applied on image 
After performing the cubic spline data interpolation on 

the original image histogram (HVORG) the signal has to 

be filtered with zero – phase forward and reverse digital 

filtering (HV). In this way the desired image histogram 

is reached. From the original image m, sized )( nn × , it is 

essential to create a smaller one, )11( −×− nn  and 

preserve the changes of the pixels in a matrix of changed 

pixels ( ks ). On the histogram of the smaller image (HM) 

cubic spline interpolation and filtration has to be 

performed as well. The difference of the desired and the 

small histogram ky  is then reached: 

 

HMHVyk −=                                               (18) 

 

where the minimum value of the difference ky  should 

not be smaller than zero, what is obvious from the 

equation (18). If  0<ky  that would mean that the 

smaller image histogram has more pixels of certain value 

than the original image histogram, what would be 

unreasonable. The initial guess of the Jacobian 0J  is 

obtained from the matrix of changed pixels ks , what is 

the difference between the pixels of the original and the 

smaller image. Furthermore the Jacobian is replaced by 

its model kJ (19), which is continuously adapting during 

the iterations, and the matrix of changed pixels, ks  

changes as well. 
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From the equations:  
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It is possible to update a new pixel value: 

 

isnnmNNM ∆+= ),(),(                                  (21) 

 

Before updating new pixel value, it is preferable to 

multiply the change in pixels s∆  with the scaled 

percentage of the wished maximum change (ZMP). If 

the ZMP is close to one, the change will be maximal. 

The smaller the value ZMP the smaller the change will 

be. The histogram of the new (bigger) image becomes 

new HV. The iterations stop when the error value comes 

close to threshold, which must be set close to zero. The 

error function is given by (22): 
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3.2  EMD applied on image 
The EMD has to be performed first on the original input 

image. The first IMF extracts the locally highest spatial 

empiquencies in the image, while the second IMF holds 

the locally next highest spatial empiquencies, etc. The 

EMD in two dimensions provides a tool for image 

processing by its special ability to locally separate 

spatial frequencies that build texture [16]. The EMD 

sorts the spatial frequency components into a set of IMFs 

where the highest spatial frequency component of each 

spatial position is in the first IMF and the next highest 

spatial frequency component of each spatial position is 

in the second IMF, etc. The stop criterion is based on the 

condition that the IMF envelope mean must be close 

enough to zero. In our tests we set the stop criterion on 

the value of 08.0=ε . Like in [17], we also decomposed 

an input image into low and high frequency information 

by 2D EMD. Then expand the high frequency part, 

multiplying it with factor k, which must be set in 

between 31 << k . For k too big the highest frequency, 

which is the border, augments too much hence the 

borders become too ridge. Also, for k smaller than one 

the loss of borders is eminent. For 1=k  nothing 

changes. The histogram of the image stays the same.  

Linderhed [16] proposed a trick to solve the border 

problem by adding extra data points at the borders to the 

set of extrema points. The only way we solved the 

border problem was with the correct choosing of factor 

k.  

 



 

4   Results 
Application of the method was performed in MatLab. 

Input image sized 1616 ×  was cut out from Lena’s 

original image and turned to grey using traditional grey 

transformation method. The image can be seen on figure 

1 with the proper original image histogram.  

 
Fig.1. The original input image, Lena’s eye (16x16), with 

proper histogram. 

 

After applying the Broyden algorithm, the difference is 

obvious, figure 2. The number of pixels is doubled in a 

congruous way, what is obvious from the image 

histogram. 

 
Fig.2. The enhanced original image with her histogram 

(30x30). The objective histogram is augmented by cubic 

spline interpolation. 

 

The results of applying objective histogram augmented 

with EMD method is presented on figure 3.  

 
Fig.3. The enhanced original image with her histogram 

(30x30). The objective histogram is augmented by EMD. 

 
Fig.4. The original input image (16x16) after performing only 

EMD without augmentation by Broyden algorithm.  

 

From the results obtained from our algorithm we can say 

with certainty that Broyden iterative method augments 

the number of pixels in congruous way. The result of the 

method depends mostly on the objective histogram we 

wish to attain. It is known from the previous research [1] 

that cubic spline interpolation suffers from blurring of 

edges and image details, though is a very common image 

interpolation function. We also tried to solve the border 

problem applying EMD like in [17], by multiplying the 

highest empiquencies with factor k. On figure 4 can be 

seen the result attained after applying EMD on original 

image sized (16x16), (the original image is shown in 

figure 1), without performing Broyden algorithm. The 

EMD can increase the differences between the pixels and 

in that way ameliorate borders, but it can not enhance the 

image quality without Broyden iterative algorithm. 

Combination of the two methods, Broyden algorithm 

and EMD, gives the result, but not in perfect way. The 

resulting picture is altered from the original, what is the 

result of the sifting process.  

 

 

5   Conclusion 

Image enhancement method proposed in this paper relies 

on histogram manipulation. As shown from the multiple 

image analysis, manipulation of the image histogram 

results in image manipulation. Hence, if it is possible to 

manipulate an image in any way, it is possible to 

manipulate it in a ‘making it bigger way’. The main 

question is how to make augmentation of the number of 

pixels in congruous way? Our experiments showed that 

the Broyden iterative method has potential. It does not 

even call for much iteration. The Jacobian matrix 1+kJ , 

which upgrades in every iteration, draws us fast enough 

to the objective histogram. As the result of the method 

depends mostly on the objective histogram we wish to 

attain, the future work will, hence, be focused in finding 

better interpolation method for gaining the objective 

histogram.  
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