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Abstract: - The main goal of this paper is to present the way we implement the method for automated quantification of 

sympathetic nerve activity. The implemented method belongs to the techniques based on the objective detection criteria 

and has user friendly application interface through which it is possible to eliminate artifacts and preserve a beat-by-beat 

SNA signal for a variety of subsequent analyses. 
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1   Introduction 
The accurate assessment of autonomic sympathetic 

function is important in the diagnosis and study of 

various autonomic and cardiovascular disorders. 

Sympathetic function in humans can be assessed by 

recording the muscle sympathetic nerve activity, which 

is characterized by synchronous neuronal discharges 

separated by periods of neural silence dominated by 

colored Gaussian noise. The raw nerve activity is 

generally rectified, integrated, and quantified using the 

integrated burst rate or area. There are several techniques 

to identify bursts, such as a technique based on the 

objective decision criteria [1], gamma distribution model 

[2], or quantification involving spike detection using a 

two-stage stationary wavelet transform (SWT) de-

noising method [3].The main goal of this paper is to 

present the way we implement the method for automated 

quantification of sympathetic nerve activity which also 

belongs to the techniques based on the objective 

detection criteria together with the user friendly 

application interface through which it is possible to 

eliminate artifacts and preserve a beat-by-beat SNA 

signal for a variety of subsequent analyses. 

 

 

1   Sympathetic Nerve Activity 
The Sympathetic Nervous System (SNS) is a branch of 

the autonomic nervous system along with the enteric 

nervous system and parasympathetic nervous system. It 

is always active at a basal level (called sympathetic tone) 

and becomes more active during times of stress [4]. Its 

actions during the stress response comprise the fight-or-

flight response. The sympathetic nervous system is 

responsible for up- and down-regulating many 

homeostatic mechanisms in living organisms. Fibers 

from the SNS innervate tissues in almost every organ 

system, providing at least some regulatory function to 

things as diverse as pupil diameter, gut motility, and 

urinary output. Science typically looks at the SNS as an 

automatic regulation system, that is, one that operates 

without the intervention of conscious thought. Some 

evolutionary theorists suggest that the sympathetic 

nervous system operated in early organisms to maintain 

survival as the sympathetic nervous system is 

responsible for priming the body for action [4].One 

example of this priming is in the moments before 

waking, in which sympathetic outflow spontaneously 

increases in preparation for action [4]. 

The general appearance of the human SNA has been 

described as heartbeat synchronous discharges from a 

group of sympathetic neurons, separated by periods of 

neural silence [5] (Fig.1.). These bursts of activity are 

coupled to changes in the blood pressure and cardiac 

output through the baroreceptor reflex [6,7,8]. Accurate 

quantification of sympathetic nerve activity during 

steady-state conditions or dynamic changes can provide 

critical information related to numerous physiological 

systems. Direct recordings of electrical activity emitted 

by peroneal, tibial, or radial muscle sympathetic nerves 

and visual identification of sympathetic bursts by a 

trained microneurographer are the only direct measures 

available in human research. Bursts have a characteristic 

shape consisting of a gradual rise and fall that is usually 

constrained by the cardiac cycle and at least twice the 

amplitude of random fluctuations. 

 

 

2 SNA identification baclground 
Visual identification requires a trained observer to scan 

the entire raw-voltage neurogram and decide, based on 

experience, whether the waveform during each heartbeat 

is the appropriate size and shapes to differentiate it from 

background noise and be called a sympathetic burst. As 

one might expect, the inherent subjectivity of this 

analysis results in significant interobserver variability 

with variances as high as 9% being reported [10]. This 

has spurred development of numerous automated 



techniques to quantify sympathetic activity 

[2,9,10,11,12,13].  

 

 
 

Fig 1. Integrated neurogram 
 

The most widely used SNA processing method involves 

using an R–C circuit to rectifying and integrate the 

neurogram to achieve its envelope [14, 15], a signal 

known as the integrated- SNA [16]. At that point, bursts 

are identified and sympathetic activity can be quantified 

in terms of burst frequency (bursts/min), burst incidence 

(bursts/100 heart beats) or burst area rate (arbitrary 

units
2
/min) [15]. 

Quantification of the SNA using bursts in the integrated 

neurogram has its limitations. For instance, none of the 

burst parameters are capable of conveying whether a 

large burst is generated by a few large amplitude 

sympathetic spikes (or artifacts) or many small 

amplitude spikes firing in rapid succession. Also, the 

amount of pass band noise integrated into each burst is 

dependent on the signal-to-noise ratio (SNR) of each 

recording, making it difficult to compare the arbitrary 

unit burst amplitudes and areas across subjects.     

An alternative solution to the integrated SNA 

quantification problem is to implement a spike detection 

algorithm in the raw neurogram which allows for the 

possibility of subsequent, automated sorting of spikes 

into classes derived from individual single unit neurons 

[16]. Single-unit recordings have identified important 

differences in diseases such as congestive heart failure 

and hypertension which were not demonstrated in the 

multiunit burst rate [17]. Since these single unit 

recordings are extremely difficult to achieve and sustain 

manually [18], automated spike detection and 

classification methods shown to be useful in this area. 

It is also possible to identify the SNA using gamma 

distribution model [2], which effectively deals with the 

common noise artifacts and transients, but simple burst 

counting to index sympathetic activity precludes 

examination of beat-by-beat relations to other variable. 

Our goal was to identify SNA in healthy people who 

were exposed to specific psychophysical stress such as 

activity during apnea diving. Consequently, our method 

belongs to the group of objective decision criteria, which 

is based primarily on the morphology of the measured 

integrated neurograph and described minutely in the next 

subsection. 

 

 

3 SNA identification baclground 
Apnea is a state of activity during which SNA results 

with a specific (dynamic) shape bursts which areas under 

the bursts curve and bursts amplitude become larger 

along the time line. Consequently, standard 

identification measures for identifying the bursts activity 

which are related to the area rate and/or amplitude are 

not appropriate for this specific physiological state. In 

other words, it is difficult to compare the arbitrary unit 

burst amplitudes and areas across the whole time line 

due the shape and magnitude of bursts differs 

significantly among themselves. To avoid mentioned 

particularity, the whole experiments have been divided 

into several stages: baseline period, apnea period and the 

period in which the normal arterial pressure has been 

reached again.  
 

 
Fig 2. Decision parameters for burst identification 

 

Only in the first period, up to apnea stage, the shapes of 

bursts could be identified based on the common decision 

criteria based on the following facts: 

• The slopes of the burst's rise and fall are 

approximately equal and less than 85°, 

which means relatively gradual rise followed 

by a similarly sloped fall (Fig.2). 

• The bursts are constrained by the cardiac 

cycle (timing relative to QRS complex, 

width relative to cardiac cycle and relation 

to diastolic pressure) (Fig.3.). 

• The bursts have at least twice the amplitude 

of a random fluctuations 

 



Transient noise spikes and muscle twitches are identified 

as rapid shifts in the neurogram that are unassociated 

with cardiovascular variables 

 

 

4 The application for automated 

quantification 
The mentioned facts have been implemented in the 

application for automated identification described in 

more detail in the next section. 

Automated detection of sympathetic activity was written 

in Matlab software (version 7.1, The Mathworks). The 

emphasis has been put on the graphical user interface 

through which it is possible to intuitively collect all the 

relevant neurogram data. Our intention was to make it as 

simple as possible for two reasons: it has to be easy for 

use and it also has to serve as an educational tool for the 

students or future nurographer. The main window of the 

user interface is shown in Fig.3. It is divided in several 

part, each representing appropriate group of activities: 

the main menu, through which it is possible to reach all 

possible program abilities, panel part for signal review, 

and the two group of buttons: the upper one which 

enables loading of the various signals from previously 

prepared file, and the group of buttons on the right side 

which enable appropriate signal analysis, which are, as 

Fig.3. (the right side) specifies: the filter button and the 

automatic analysis group of buttons. There are also three 

different indicators marked with small squares in red, 

green or grey colors. They clearly indicate when the 

appropriate options from the user interface are available. 

For example, it is not possible to analyze anything 

before the file with signals has been uploading. 
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Fig 3. The bursts (above) are constrained by the cardiac 

cycle 

 

Consequently, the automatic analysis has been disabled 

(grayed), until the file had been loaded, and also number 

of detected burst calculation has been disabled, until the 

automatic analysis had been performed, as well. When 

appropriate operation has been applied, available options 

have been automatically set to on (green square 

indicator), making possible to turn it off, which is then 

indicated with red box (Fig.5). 

 

Automatic analysis could be performed on the filtered 

data and on the raw integrated neurogram aswell. For 

easier decision related to burst identification, the 

filtering is recommended. We found the most 

appropriate use of zero-phase filtering in which the 

signal is averaged and scaled appropriately with the 

predefined constants depending on the baseline shift and 

the introduced noise level. To be sure that the automatic 

identification of bursts is done well, the comparison 

button is available. Enabling it, the identified bursts are 

overlapped with the raw integrated neurogram (Fig.6). 

Consequently, the final decision is always on the side of 

the experienced neurographer, while others, with less 

experience, have been suggested with objective decision 

criteria algorithm. Fig.7. also presents an enlarged detail 

on which different color circles mark the burst 

characteristic point: the point of rise start (blue), burst 

amplitude peak (red), and the point of fall stop (green). 

These points are responsible for rise and fall slope angles 

determination as it is described in the Section 4. 

 

 
 

Fig 4. User interface for automated sympathetic neurogram 

analysis 

 

 
Fig 5. Various options for neurogram analysis have to be 

performed in the meaningful order. Intuitive sequence of 



activities is indicated with square markers in red, gray and 

green color. 

 
 

Fig.6. Overlapped signals: identified filtered bursts (red) 

and raw integrated neurogram (blue), with enlarged 

detail indicates characteristic point for rise and fall slope 

angle determination. 

 

 
Fig.7. Enlarged detail indicates characteristic point for 

rise and fall slope angle determination. 

 

Finally, the most useful information is always related to 

the number of detected bursts which can be obtained by 

using the appropriate button. In the next version of the 

program we plan to ensure final decision of detected 

burst by introducing the possibility of subjective 

decision correction of the automated objective decision 

criteria. Therefore, the neurographer will be able to 

include and/or exclude some of the analyzed bursts by 

simple mouse click in the surrounding of the signal peak, 

making the final decision more precise. Similar as in [1], 

we set out to develop a technique for rapid and objective 

analysis of sympathetic nerve tracings that was not 

confounded by transient noise spikes, muscle twitches, 

and baseline shifts. We wanted to maintain the 

neurogram’s time-domain relationship to other 

physiological variables and provide maximum flexibility 

for analysis. To accomplish this, we modeled a burst-

detection algorithm on standard methods for visual 

detection. Using parameters determined from the 

morphology of visually identified bursts of sympathetic 

activity, we have successfully developed a flexible, and 

objective technique for the analysis of sympathetic 

neurograms. 

An objective technique for analysis is clearly an 

attractive alternative in comparison to issues regarding 

the inherent subjectivity of visual analysis, and the 

method, using modern computing techniques, can reduce 

analysis time on particularly difficult tracings from hours 

to minutes.  

Of course, there is still enough free space for algorithm 

enhancement, primarily regarding the possibility to 

maintain the signals which include errors due to baseline 

shifts and to cope with the sympathetic activity which is 

not related with cardiac cycle. 
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