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1. Introduction

We study the renormalization of QCD in the Coulomb gauge Hamiltonian formalism. By Hamilto-
nian form, we mean that the Lagrangian contains only first order terms in time derivatives, and
depends upon the conjugate momentum field E{ as well as the (transverse) gluon field A? (here a is
the colour index and i = 1,2, 3 is a 3-vector index). This form has a number of attractive features:

(i) As a Hamiltonian exists, the theory is explicitly unitary, without the necessity to cancel unphys-
ical degrees of freedom with ghosts.

(ii) The Lagrangian form of the Coulomb gauge has “energy divergences” in some of its Feynman
integrals, that is integrals of the form (we use K for the spatial part of the 4-vector k)
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/ d*Kdkof (K, ko) (1)

where f does not decrease as ko — oo (for fixed K). These divergences cancel between different
Feynman graphs [1], but this cancellation has to be organized “by hand”. In the Hamiltonian
form, each individual Feynman graph is free of such divergence. Formally ‘energy divergent’
integrals such as

d’P [ dp, Do 1
/ )’ / @mp P rig (P-K) @

are assigned the value zero.

(iii) It has been argued [2] that the Coulomb gauge throws light on confinement. Certainly it is
known [3] that, in the Coulomb gauge, the source of asymptotic freedom lies in the Coulomb
potential.

In spite of (i) above, to 2-loop order, mild energy-divergences remain [4-6] which result in ambi-
guities which have to be resolved by a prescription. This is connected with questions of operator
ordering [7].

For other applications of the Coulomb gauge, for example to lattice QCD, see [8,9].

The question addressed here is the following. Ultra-violet divergences exist which seem to require
the existence of counter-terms containing second order terms in time derivatives, (0A?/t)?. Do these
take us out of the Hamiltonian form? We argue that this does not happen because the divergences
concerned can be cancelled by a redefinition of the E;, field.

We do not use quite the strict Hamiltonian formalism. We retain the auxiliary field A}, which con-
tains no time derivatives and should be integrated out to give a nonlocal Coulomb potential term in
the real Hamiltonian. It seems to be convenient, for the purposes of renormalization, to retain A; in
the Lagrangian. Because of this, there is a ghost field, but it has an instantaneous propagator, and
so is not relevant to unitarity. Its purpose is only to cancel out closed loops in the Aj field.

2. The Feynman rules

The Lagrangian for the Coulomb gauge is

’ 1 2
L=L- o (BA7) 3)
(where « will eventually tend to zero to go to the Coulomb gauge),
1 1 v
L=——F; Fj— i(E,»)2 +E; - Foi + 0,C°0,C + g0;C" - (A; A €) + 1; - [0i€ + g(A; A ©)]

4
+ U - [0o€ + g(Ag A C) —%gl(- (enc)+gv;-(Einc)
where we use a colour vector notation, and
Fi = 0iA] — 0A] + gf " ALAS
and
(A A €)= At (5)

Here c, ¢ are the ghost fields, and the sources u;, v, and K are inserted for future use in formulating the
BRST identities. The conjugate momentum (electric) field E, could be integrated out to obtain the
ordinary Lagrangian formalism, but for the Hamiltonian formalism it must be retained.

We will use indices m,n,... = 1,2, 3 to denote the (spatial) components of E, so the seven fields are
(A{,Aj,E). We will use indices I,],.. to denote the seven indices (i,0,n). The bilinear part of the
Lagrangian in momentum space is a 7 x 7 matrix
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—K*(Tj+Lij/o) 0  —ikodin

Sydap = 0 0 iK,
l.’(o(smj _iKm —0mn
where
Tj=0;—Lj, Lj=KK/K* K =k —K. (6)

For the propagators, we need the inverse

T/l —ali/K*  akoKi/(K*)?  —ikoTin/K
Sp'om = | akeKi/(K*)?  1/K*+akl/(K?)?  iK./K® |- (7)
iko T /K —iKn/K? Tonk? /K

We can now let o — 0, to obtain the Coulomb gauge. From this, and the interaction terms in the
Lagrangian (4), we can read off the Feynman rules. We represent the A; field by dashed lines, the E,
field by continuous lines, and the A, field by dotted lines. With this notation, we now list the rules
( (2m)*i for each vertex) If we
choose the propagators in Fig. 1 to be the negative of the matrix (7), the extra factors of 5 for
the propagator and (27)*i for the vertices cancel (see Figs. 1-3).

3. The ultra-violet divergences

The divergent graphs with 2 and with 3 external lines are shown in Figs. 4-31. Examples of the
method of evaluation of divergent parts are given in Appendices A and B.

The ultra-violet divergent parts of these graphs are, in terms of the divergent constant (using
dimensional regularization in 4 — € dimensions)

‘ ! ! ( Kin)
******** k2+ip Y K?
0 0 1
’’’’’’’’’’’’’’’’’’’’’’’’ T K2
Ein A/ 1K ( K,,, KJ )
— k21 177 mj K2
Ai Em 1k0 (6 K7 A’m)
- T~ E24+inp " K?
m o K ( B KmKn)
> k2 + ”7 mn K2
Em AO le
e ememeeas -
K?
Aﬂ En iKn
""""""" —_—— - o
Kz.

Fig. 1. Feynman rules for the propagators in the Coulomb gauge.
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Fig. 2. Feynman rules for the vertices in the Coulomb gauge. The arrows denote the directions of the momenta.
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Fig. 3. Feynman rules for ghosts and sources in the Coulomb gauge. Doubled lines denote ghosts. The black arrows distinguish
between ghosts and anti-ghosts. Momenta flow into the vertex.
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g2
¢ =16 Cal'(€/2), (8)

(where the superfix (4) and (5) etc. refers to the corresponding figure and Iy, Ily; . . . IT, denote self-
energies, Vi, Voin . .. Voin vertices and A stands for diagrams with external ghost lines), are:

o = ic %k(z)é,j + K?5i — KiK; | 0ap (9)
T = — LickoK o (10)
iy = %id{zaab (11)
I, =0 (12)
n®® — —%ic[il(,—éab] (13)
T = X icomon (14)
VO™ (p..1) = — 5 &F™((Q ~ Py + (R~ Qe + (P~ R (15)
VA (p..1) = 2 caf*™[(Q ~ Py + (R~ Qe + (P~ Ry (16)
VD™ (p.q.r) = - §qgf“"”[(Q — P)dj + (R — Q)dj + (P — R);04] (17)
V™ (p,q,1) = —cgf““[(Q — P), 3y + (R— Q) + (P — R);u (18)
Vi (p.q.1) = l cgf ™R~ Q); (19)
Vo ™ (p.q.1) = —Cgf”b“(R -Q); (20)
Ve ™ (p,q,1) = ; cgf™“(R-Q), 21)
Vioa ™ (p.q,1) = cgf”b‘(R - Q) (22)
Vi (., 1) = (23)
VD™ (p,q.1) = —cgf“‘”(R ~Q)o (24)
Vi (p,q.1) = ;cgf“bc(R - Q) (25)
Vi (p.q.r) =0. (26)
Graphs involving external E,, line are
Vi (p,q.1) = icgf“’”&im 27)
Vi (p,q,1) = —1icgf“‘”5im (28)
Voo (p,q.1) = 0. (29)
— L - S oo
\ /
= -~

Fig. 4. The transverse gluon self-energy graphs.
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Fig. 5. The A;A, two-point function.

Fig. 6. The time-time component of the gluon self-energy.

Fig. 7. The transition between the transverse gluon field and its conjugate field E;.

Fig. 8. The transition between the Coulomb field A, and the conjugate field E;.

Fig. 9. The conjugate field self-energy.

All other graphs involving external E,,-lines are convergent. The divergent parts of graphs with
open ghost line are
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\l__<__

Fig. 10. Graph contributing to the three-gluon vertex function.

Fig. 11. There are three graphs in this class with permutations of the vertices.

L —- -

Fig. 12. Graph representing a class of six diagrams.
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N _ 7 N
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/

Fig. 15. There are two graphs in this class.

AR0(q) =~ 2icQsq
API(q) =~ 5 Qo
A(24)abc(p7 q) -0
A)((ZS)abc(I:Lq7 T') -0
AC™(p.q) =0
AE27)abc(p7 q) -0
A (p.q) = 0.
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Fig. 18. Graphs contributing to the (A;A;A,) three-point function.

4. Counter-terms
Let
Io= / d*xL(x) (37)

be the original action, I" be the complete effective action, and let I'; be the effective action to one-loop
order. The complete BRST identities are
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Fig. 20. The (A;A;A,) graph with a three-gluon vertex.

Fig. 21. The (A;A;Ao) graph with a four-gluon vertex.

Fig. 22. The ghost self-energy.
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Fig. 23. Ghost and the u; source graph.

Fig. 24. The ghost vertex graph with a K source.

Fig. 25. Graph with external A;, ghost and anti-ghost lines.

Fig. 26. Graph with u, source, E; and c lines.

2189
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Fig. 27. Graph with u; source, A; and c lines.

Fig. 30. Graph with external gluon, Coulomb and E-field.

F*Fzg £+6F or or oI oI o' _

oA, ou; oA, du, T oc oK OB ov .

So to one-loop order
Fi#To+Tox1=A =0 (39)
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Fig. 31. Graph in the (A;E;A,) vertex function.
where
_or o of o of o oF o of 0 o o o 0 o 0 0
B 0A; du; Ou; O0A; 0Ap Odug Oug 0Ap oc oK OK oc OE; ov; ov; OE;
and
A? =0. (41)
One class of solutions to this equation is of the form
' = AG, (42)
where the allowed form of G is, in terms of constants as,...a;,
G =asA; - (u; + 0;C*) + agAo - Up + a7€ - K+ agE; - Vi + agV; - 3;A¢ + a10V;i - DoAi + a11V; - (Ao
AA)). (43)
Other solutions of Eq. (39) are the explicitly gauge-invariant terms
'Y = a;(Fy)* + aE; - Foi + a3 (Foi)* + aa(E;)*. (44)

Finally, by differentiating (38) with respect to the coupling constant g and specialising to one-loop or-
der, we see that

AT =0 (45)
where (ao being another divergent constant)

I — qogor, g (46)
Combining these three contributions, we obtain

Iy=T04r® 4 rio - / d*xLC; (x) (47)
where

L1 = a;(Fj)® + (a2 + ag + ao)E; - Foi + (a3 — ag)(Foi)* + (a4 — ag) (E:)* + asFy; - 0;A; — (as

1
+ EUO)gFij - (Ai AAj) — (ao + as + as)8E; - (A; AAg) + E; - (a500A; — ag0iAo) — a5 (W;
+ 0;C*) - ;€ + apg0ic” - (Ai A €) — dgUg - Vo€ + ApgUy - (Ag A €) — ay(u; + 8;¢*) - {0;¢
1

+8(Ai A )} + aogui - (Ai A €) — a7ty - {Q0€ + (Ao A €)} +58(a7 — Ao)K - (€ A €)
+ (ao — a7)gv,- . (E1 A C). (48)
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The conditions coming from the vanishing ghost graphs Figs. 24-28 are particularly simple. They fix

Qg = —0io
11 = —8dq
g = a7 = —0g. (49)

In order for the counter-terms to cancel the divergences in the other graphs, we require the conditions
4ay — 2a5 = —

4a, — 3as — ap :%c

a3—a9:—lc
6
s — ds :ﬂC
3
a5+a7:—ilc
3
as — ag :%C
3
a, +as +ag +ag = 0. (50)

These equations do not fix the constants uniquely. We are free to make some choices. The term (Fgi)?
in I’(l”) Eq. (44) is not present in the original Hamiltonian form of the Lagrangian (4), so we choose

as =0. (51)
We can also arrange for the combination
1
—5 (E))* +E; - Fo (52)
to appear in £§ﬁ> as it does in L. This requires (from (50))
a =-— 1c: + 1a
1= 4 2 5
a, = C— 2as
ag = — lC +a
4 — 2 5
ag = ﬂC +a
6 — 3 5
a fﬂcfa
7 = 3 5
a —Zc+a
8 — 6 5
a 1C
°76
4
aof—gc—as (53)
and so
i 1 1
£ = ~4a |~ 7 (Fy)* - 5 (E)* + E; - Fo (34)

proportional to the non-ghost part of the original Lagrangian (3).

Eq. (54) does not come from the BRST identities, it just emerges from the numerical values of the
divergent integrals. It may be a consequence of some hidden Lorentz invariance.

The constants ao, ay, ... are still not uniquely fixed. There are two particularly simple choices.
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(i) Choose ag = 0 with as = —%c. Then we find
11
(11 :7ﬁc
ar :EC
3
(14:—2(:
6
s = ay =0
dg :—§C
2
dg :1(,'.
6

(ii) The second choice is a; = 0 with as = }c. Then

do =7EC
6
(12:0
(14:0
dgs :EC
6
a; :—EC
6
dg :—EC
3
dg :1(:.
6

Note that ao has the expected value for coupling constant renormalization.

The counter-terms in either case are

1 4 4 1
L1 =~ 35 C(Fy)" — 5 cFy - OA; + 5 cgFy - (A A Ay) — £ (Fo)
+ g c(u; + 9;c*) - d;C.

The counter-terms in as, dg, d;,ag and ag are involved in a rescaling of the fields. Defining

Al = (1 +as)A;
Ay = (1 +as)Ao
E, = (1+ ag)En — asFon
u; = (1—as)u;
uy = (1 —as)ug

¢=(1-a;c
K =(1+a)K
g=(0+ao)g

¢ =(1-as)c

VvV =(1-ag)v,
we have from (48) that

Co -+ C] = (1 — 4a1)£o(g’,l-\:-,l-\6, E',C’,C’*,u'

i

u) K).

(55)
(56)
4 2o - Segk oo
(57)
(58)
(59)
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Note that ag which determines the renormalization of the Coulomb field Aj has the same numerical
value as ao.

We have not calculated the divergences in graphs with four external lines. We assume they will be
cancelled by the same counter-terms.

5. Comments

We conclude that there is no difficulty to one-loop order in renormalizing the Hamiltonian form of
the Coulomb gauge. We guess that the renormalization would formally go through to higher orders,
but then there is the problem mentioned in [4-6] of combining the renormalization of ultra-violet
divergences with the resolution of energy-divergence ambiguities.

It is not quite obvious how the renormalization would be formulated if the Aj field had been elim-
inated to give the non-local colour Coulomb potential (note the non-zero value of the Aj field renor-
malization constant ag in (56)).

Acknowledgments
A.A. thank the Royal Society for a grant and DAMTP for hospitality. We are grateful to Dr. G. Du-

plancic¢ for drawing the figures. The work was supported by the Ministry of Science and Technology
of the Republic of Croatia under Contract No. 098-0000000-2865.

Appendix A.  Here we give as an example the evaluation of the ultra-violet divergent part of the
graph in Fig. 20.

. P 1
V™ (0.-0.0) = ig’Ca™ [ d'p ( T Tre(P) T2 (P)T(Q + P)

p+in? (qrpliin
x [(=2Q = P), 6y + (Q = P), djv + (2P + Q);0w]- (A1)

Applying the integral

Do 1
dp - ;
/ *(p2+in)? (q+p) +in

_ m%p® % / "dyy(1 - V{(P+yQ? +y(1-y)(-¢* - in)}’% (A2)
and power counting to (A.1)
Vaq. 0.0 = 42 C > Viaor (3) [ a1 -y)
x / d* PP (P+yQ) +y(1 - y) (- - in)}% (A3)
leading to
Vg’(())abc(q’ —q,0) = —%Cgf”bcqoéjk. (A4)

Appendix B.  Example of self-energy evaluation ngfg“b in Eq. (11). Let p, q be internal and k external
momentum, p — q = k. The sum of two graphs is

A T(P)TH(Q) 1

(2m) 2 3

(P* +Q?) — (ipo)(ido) | 0ap (B.1)
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where we have symmetrized the first term in P, Q. the minus sign in the second term comes from the
opposite order of the f%¢ factors at the two vertices. Doing the p, integration by Cauchy, we get
T;iTji 1
2m)*2mi) Ll (P4 Q)[P* + Q* — 2PQ|u. B.2
The last factor (P — Q)? is approximately (P - K)?/P?. With this factor, the integral is only logarithmi-
cally divergent, and to get the divergent part we can put Q = P everywhere. We use T;;(P)T;;(P) = 2.
Then we get

4 2mi 3— P;P;
(2m) * KK, / d fpm. (B.3)
So the divergent part is'
%ic](zéab. (B.4)
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