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ABSTRACT

This paper is an overview of the pedal surfaces P n+2
n for

first order line congruences. We describe their construc-

tion, prove their algebraic properties, derive parametric

and implicit equations and visualize these new resulting

surfaces with the program Mathematicain five examples.
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Nožǐsne plohe kongruencija prvog reda

SAŽETAK

U radu je dan pregled nožǐsnih ploha P n+2
n za kongruencije

prvog reda. Opisana je njihova konstrukcija, dokazana su

njihova algebarska svojstva, izvedene su parametarske i im-

licitne jednadžbe za opći slučaj, a za pet primjera, pomoću

programa Mathematica, vizualizirani su njihovi oblici.

Ključne riječi: kongruencija, nožǐsna ploha kongruencije,

kuspidalna točka, singularna točka

1 Introduction

CongruenceC is a set of lines in a three-dimensional space
(projective, affine or Euclidean) depending on two param-
eters [3]. The linel ∈ C is said to be aray of the congru-
ence. Theorder of an algebraic congruence is the number
of its rays passing through an arbitrary point; theclassof
a congruence is the number of its rays lying in an arbitrary
plane. C m

n denotes anmth order nth classcongruence. A
point is asingular pointof a congruence if∞1 rays pass
through it. A plane is asingular planeof a congruence if
it contains∞1 rays.
In Euclidean spaceE3, thepedal surfaceof a congruence
C m

n with respect to a poleP is the locus of the foot points
of perpendiculars from the pointP to the rays of the con-
gruenceC m

n . The order of the pedal surface ofC m
n for the

poleP is 2m+n [11].

2 First order line congruences

According to [16, p. 64], [22, pp. 1184-1185], [19, p. 32],
there are only two types of first order line congruences di-
rected by loci of points. Their rays intersect two curves or
the same curve twice.
Thefirst typeis the type ofnth class congruencesC 1

n , their
rays are transversals of one straight lined and onenth or-
der curvecn which cuts this straight line atn−1 points.
These curves are called thedirecting linesof C 1

n . The in-

tersection points ofd andcn can be multiple points ofcn

with the highest multiplicityn− 2 for a space curve and
n− 1 for a plane curve. Some of these points can coin-
cide, and there are cases whend is the tangent line ofcn,
the tangent at inflection, etc. Ifcn is a plane curve, it must
contain an(n−1)-ple point which is the intersection point
of d and the plane ofcn. All singular points ofC 1

n lie on its
directing linescn andd, and all singular planes ofC 1

n are
the planes of the pencil[d] (see Fig. 1).

a b c

Figure 1:The directing lines ofC 1
n are shown in figure a.

For a point C∈ cn, the rays ofC 1
n form a pencil of lines in

the plane through d (figure b) and for N∈ d they form an
nth degree cone with the vertex N (figure c).
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The second typeof first order line congruences consists
only of 3rd class congruences and their rays are bisectors
of a twisted cubick3. Unlike the first type congruenceC 1

3 ,
this type will be denoted byK 1

3 .

The properties of the first order congruences (the construc-
tion of their rays, singular points and planes, focal proper-
ties, etc.) can be found in [2].

3 Pedal surfaces ofC 1
n

In [1] the authors define one transformation of three-
dimensional projective space where corresponding points
lie on the rays of the 1st order,nth class congruenceC 1

n
and are conjugate with respect to a proper quadricΨ. This
transformation, called(n + 2)-degree inversion, maps a
straight line to an(n+2)-order space curve, and a plane to
an (n+ 2)-order surface which contains ann-ple straight
line.

Proposition 1 The pedal surface of the first type congru-
enceC 1

n with respect to a pole P is an(n+2)-order surface
with n-ple straight line d containing the curve cn and the
absolute conic ofE3.

PROOF: Orthogonality in Euclidean spaceE3 means con-
jugacy with respect to the absolute conic. The plane
through a pointA is orthogonal to a linel iff it is the polar
plane of the point at infinity on the linel with respect to
any sphere with the centerA. Thus, the pedal surface of a
congruenceC 1

n with respect to a poleP is the image of the
plane at infinity given by the(n+2)-degree inversion with
respect toC 1

n and any sphere with the centerP. According
to [1], it is an(n+ 2)-order surface with ann-ple straight
line d containing the curvecn and the absolute conic ofE

3.
�

In the following,P n+2
n denotes the pedal surface ofC 1

n .

Proposition 2 If the directing line d lies in the plane at in-
finity, the pedal surfaceP n+2

n splits into an(n+ 1)-order
surface with the(n−1)-ple line d and the plane at infinity.

PROOF: This proposition follows from the property of the
(n+ 2)-degree inversion which is given in theorem 4 [1]
(see examples 4.5.). �

Proposition 3 If the directing curve cn lies in the plane
at infinity, the pedal surfaceP n+2

n splits into an(n+ 1)-
degree ruled surface with the n-ple line d and the plane at
infinity.

PROOF: This proposition follows from the property of the
(n+ 2)-degree inversion which is given in theorem 3 [1]
(see examples 4.6.). �

3.1 Construction of the pedal surfaceP n+2
n

It is clear that any plane through then-ple line of an(n+2)-
order surface intersects this surface at itsn-ple line and one
conic. If the surface contains the absolute conic, this inter-
section conic is a circle.

In any planeδ through the directing straight lined, the rays
of C 1

n form the pencil of lines(C), where the pointC /∈ d is
the intersection of the planeδ and the directing curvecn. If
a poleP is in the general position with respect to the direct-
ing lines of the congruenceC 1

n , the feet of perpendiculars
from P to the rays of the pencil(C) form a circlec with
the diameterCP′, whereP′ is the orthogonal projection of
P onto δ. For a given poleP, the path of the pointP′ is
the circlek lying in the plane throughP perpendicular to
d. The diameter ofk is PPd, wherePd is the orthogonal
projection ofP ontod.

Thus, we can regard the pedal surfaceP n+2
n as the system

of circles in the planes through then-ple line d with the
end points of diameters on the curvecn and the circlek
(see Fig. 2). The diameters of the circlesc lie on the rul-
ings of one(n+2)-degree ruled surface with the directing
linescn, d andk [14, p. 186], [16, p. 90].

Figure 2: One system of the curves onP n+2
n can be con-

structed as circles in the planes through d with the end
points of the diameters on cn and k.

3.2 Singularities ofP n+2
n

The highest singularity which a properP n+2
n can possess is

an(n+1)-ple point. If such a point exists, it must lie on its
n-ple line. Namely, ifP n+2

n had an(n+1)-ple pointA out
of d, every line throughA which cutsd would cutP n+2

n at
2n+ 1 points. This is possible only in the case if this line
lies entirely onP n+2

n , but then the surface must break up
into the plane throughA andd and one ruled surface of the
degreen+1.
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Proposition 4 An (n+ 1)-ple point exists onP n+2
n iff a

pole P lies on d. The highest number of such points on
P n+2

n is two only if cn lies in the plane perpendicular to d.

PROOF: If a poleP lies ond, then every circlec passing
throughP, and it is the(n+ 1)-ple point ofP n+2

n because
every straight line throughP (exceptd) intersectsP n+2

n at
P and only one additional point onc. Inversely, ifNn+1 ∈ d
is an(n+1)-ple point, every circlec must pass through it.
Namely, if some circlec did not pass throughNn+1, every
line in the plane ofc passing throughNn+1 would cutP n+2

n
at n+ 3 points, which is impossible. It is possible only if
Nn+1 = P, because the circlek must break up into a pair of
isotropic lines with the double pointP. If there exists one
more(n+1)-ple pointO ond, it must lie oncn because all
circlesc pass throughP andO. It is possible only ifcn is a
planar curve with an(n−1)-ple pointO. It is elementary
that in such a casecn lies in the plane perpendicular tod
(Thales’ theorem). �

Any other pointN ∈ d is ann-planarpoint – the tangent
cone atN splits inton planes throughd. Namely,n cir-
clesc pass throughN ∈ d and the planes of these circles
form the splitting tangent coneST

n
N of P n+2

n atN. If some
of these tangent planes coincide, the touching point is the
pinch-pointof P n+2

n . The tangent planes at ann-planar
point can be real or imaginary. Depending on the number
of real and imaginary tangent planes, as well as the num-
ber of coinciding planes, we distinguish different types of
n-planar points. To calculate the number of these types we
use thepartition function1 p : N∪{0}→ N [21].

Proposition 5 The number of types of the splitting tangent
conesST

n at n-planar points is

s=b n
2c

∑
s=0

p(s) · p(n−2s).

PROOF: Any coneST
n consists ofs (0 ≤ s≤ bn

2c) pairs
of imaginary planes andn− 2s real planes. The number
of different multiplicities of these planes equals the sum of
the corresponding partitions. �

Proposition 6 The number of types of pinch-points on
P n+2

n is

−1−bn
2
c+

s=b n
2c

∑
s=0

p(s) · p(n−2s).

PROOF: The number of possibilities that no planes ofST
n

coincide is 1+ bn
2c. In all other cases, at least two tangent

planes coincide and the touching point is the pinch-point
of P n+2

n . �

Proposition 7 On the pedal surfaceP n+2
n exist 4(n−1)

pinch-points.

PROOF: Every planeδ of the pencil[d] cutsP n+2
n at the

n-ple line d and one circlec. The intersection pointsN1,
N2 of d andc are the touching points ofδ andP n+2

n . But,
through each of the pointsN1 andN2 othern− 1 tangent
planes pass. The correspondence between the planes of
the pencil[d], where corresponding planes have the same
touching point, is an involution of the order 2(n−1). This
involution has 4(n−1) double elements [13, p. 48] which
are the coinciding tangent planes through the points on the
n-ple line, and their touching points are the pinch-points of
P n+2

n [18, p. 317]. These points can be real or imaginary.
�

Except for the points on then-ple lined, the highest singu-
larity whichP n+2

n can possess is a double point.

Proposition 8 The maximal number of real double points
on P n+2

n is:

n, if cn is a space curve,

n+1, if cn is a planar curve.

PROOF: If D is the double point ofP n+2
n , it is a double

point for every section ofP n+2
n throughD. Thus, the circle

c in the plane throughD and the lined splits into a pair of
isotropic lines throughD. This is the case when the end
points of the diameterCP′ coincide, i.e. circlek intersects
the curvecn at the pointD. Therefore, ifcn is a space curve,
P n+2

n can possess at mostn double points in the plane of
the circlek. But if cn is a plane curve in the plane ofk, then
cn andk can possessn+1 intersection points which do not
lie ond. �

3.3 Parametric equations ofP n+2
n

Let the directing lines ofC 1
n be the axisz and the curvecn

given by the following parametrization:

r cn(ϕ) = (xcn(ϕ),ycn(ϕ),zcn(ϕ)), xcn,ycn,zcn : [0,π) → R.

(1)

Let (px, py, pz) be the coordinates of the poleP.
1A partition of a positive integern is a way of writingn as a sum of positive integers. The number of partitions ofn is given by the partition function

p(n) wherep(0) = 1 by convention. The partition function is implemented inMathematicaasPartitionP[n] or NumberOfPartitions[n] in the
MathematicapackageCombinatorica’.
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Let (r,z), where|r| =
√

x2 +y2, be the coordinates in the
planeδ(ϕ) given by the equationy = xtanϕ if ϕ ∈ [0,π),
ϕ 6= π/2, andx = 0 if ϕ = π/2 (see Fig. 2).

The coordinates of the pointsC,P′ ∈ δ(ϕ) are

rC(ϕ) =
√

xcn(ϕ)2 +ycn(ϕ)2, zC(ϕ) = zcn(ϕ)

rP′(ϕ) = pxcosϕ+ pysinϕ, zP′(ϕ) = pz. (2)

R(ϕ) is the radius andS(rS(ϕ),zS(ϕ)) is the center of the
circlec in the planeδ(ϕ):

R(ϕ) =

√

(rC(ϕ)− rP′(ϕ))2 +(zC(ϕ)− pz)2

2

rS(ϕ) =
rC(ϕ)+ rP′(ϕ)

2

zS(ϕ) =
zC(ϕ)+ pz

2
(3)

Since the parametric equations of the circlec in the plane
δ(ϕ) are

r(θ) = R(ϕ)sinθ+ rS(ϕ)

z(θ) = R(ϕ)cosθ+zS(ϕ), θ ∈ [0,2π), (4)

the parametric equations of the surfaceP n+2
n are the fol-

lowing:

x(θ,ϕ) = cosϕ(R(ϕ)sinθ+ rS(ϕ))

y(θ,ϕ) = sinϕ(R(ϕ)sinθ+ rS(ϕ))

z(θ,ϕ) = R(ϕ)cosθ+zS(ϕ), (5)

ϕ ∈ [0,π), θ ∈ [0,2π).

3.4 Implicit equation of P n+2
n

According to [1], the plane at infinity cutsP n+2
n at the ab-

solute conic andn rays ofC 1
n . These rays pass through the

point at infinity of the directing lined and can be real or
imaginary. Therefore, the polynomial of the highest degree
in the implicit equation ofP n+2

n can be written in the form
(x2 +y2 +z2)Hn(x,y), whereHn(x,y) is the homogeneous
polynomial of degreen.

Theorem 1 If an nth order surface inE3 which passes
through the origin is given by the equation

F(x,z,y) = fm(x,y,z)+ fm+1(x,y,z)+ · · ·+ fn(x,y,z) = 0,

where fk(x,y,z) (1≤ k≤ n) are homogeneous polynomials
of degree k, then the tangent cone at the origin is given by
the equation fm(x,y,z) = 0.

The proof of this theorem is given in [9, p. 251].

Thus, since the axisz is then-ple line ofP n+2
n , the implicit

equation ofP n+2
n takes the following form:

(x2 +y2 +z2)Hn
1(x,y)+Hn+1(x,y,z)+Hn

2(x,y) = 0, (6)

whereH i
j are homogeneous polynomials of degreei.

From eq. (4), by using the standard coordinate transfor-
mation formulas for Cartesian and cylindrical coordinates,
it is possible to determine the polynomialsH i

j for every

P n+2
n .

4 Examples ofP n+2
n

4.1 P 3
1 – pedal surfaces of linear congruences

The pedal surfaces of linear congruencesC 1
1 are cubics

which contain the absolute conic. It was shown in [11]
that in the general case ifC 1

1 is a hyperbolic linear con-
gruence, seven real straight lines exist on the pedal surface
P 3

1 ; if C 1
1 is elliptic, three real straight lines exist onP 3

1 ;
if C 1

1 is parabolic, thenP 3
1 contains one double point and

five real straight lines and two of them are counted twice.
Figure 3 shows three types of parabolic cyclides obtained
as the pedal surfaces of the hyperbolic linear congruence.

4.2 P 4
2 – pedal surfaces of 1st order 2nd class congru-

ences

A complete classification of the pedal surfaces ofC 1
2 is

given in [6]. If there are no directing lines ofC 1
2 in the

plane at infinity, the pedal surfaceP 4
2 is a quartic with a

double straight line. These surfaces are classified in five
types depending on the number of real straight lines on
them. According to propositions 4 and 8, there are at most
two triple points (see Fig. 4) and at most three real double
points (see Fig. 5c) on the pedal surfacesP 4

2 .

The points on the double lined are bi-planar points – tan-
gent cones split into two planes throughd. These points
can be isolated (two tangent planes are imaginary), binodal
(the tangent planes are real and different) or pinch-points
(coinciding tangent planes). The pinch-points ofP 4

2 sepa-
rate the intervals with isolated and binodal points ond and
there are at most four real pinch-pints ond (see Fig. 5a).

If one directing lined or c2 lies in the plane at infinity, the
pedal surfaceP 4

2 splits into the plane at infinity and into a
cubic surface.
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a b c

Figure 3:The directing orthogonal lines ofC 1
1 are the axis z, placed in the horizontal plane, and the line parallel to the

axis y in the plane x= 1. For three different positions of the pole P on the axis x (xP = 1
2, 1, 2), the pedal surface is the

ring, spindle and horn parabolic cyclide [4, pp. 371-373] inthe case a, b and c, respectively.

a b c

Figure 4:P 4
2 with triple points and 3rd order tangent cones. The directing elements are: figure a – c2(x2+4y2−2x+4y= 0,

z= 0), P(0,0,2); figure b – c2(x2−y2−2x= 0, z= 0), P(0,0,2); figure c – c2(x2+y2+2x+4y= 0, x−y+z= 0), P(0,0,8).
Except the triple points, all points on the double line are isolated in the case a, and binodal in the case b. In the case c, two
pinch-points separate the segments with isolated and binodal points on the double line.

a b c

Figure 5: P 4
2 with four real pinch-points is shown in figure a. The directing elements are c2 (x2 + 0.5y2 + x+ y = 0,

x+ y+ z = 0) and P(1,1,5). The pedal surface in figure b has no real pinch-points and itsdirecting elements are c2

(yz= 1, x = 1) and P(2.5,2.− 0.3). The directing elements forP 4
2 in figure c are c2 (x2 + 6y2− x− 4y = 0, z= 0) and

P(1,1,0). Three conical points of this surface are the intersection points (different from the origin) of c2 and the circle k.
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4.3 SpecialP 6
4 directed by Viviani’s curve

Special sextics with a quadruple lineP 6
4 are elaborated in

detail in [5]. They are obtained as the pedal surfaces of
one special first order fourth class congruenceC 1

4 directed
by the axisz and Viviani’s curve – the intersection of the
sphere(x+

√
2)2 + y2 + (z+

√
2)2 = 4 and the cylinder

(x+ z+
√

2)2 + 2y2 = 2 (see Fig. 6). Viviani’s curve is
given by the following parametrization:

r(ϕ) = 4
√

2
1+3cos2ϕ
(3+cos2ϕ)2

(

−2(cosϕ)2,−sin2ϕ,(sinϕ)2
)

,

ϕ ∈ [0,π). (7)

Figure 6:The origin is the double point of Viviani’s curve
c4 (the intersection of a sphere and cylinder) and the axis
z cuts c4 at one more regular point z0 = −2

√
2.

The highest singularity whichP 6
4 can possess is a quintuple

point. According to the type of its 5th degree tangent cone,

we distinguish six types of quintuple points onP 6
4 [5].

Three of them are shown in Figure 7. The points on the axis
z are quadri-planar points ofP 6

4 , their tangent cones split
into four planes throughz. These tangent planes can be real
and different, real and coinciding or imaginary. According
to proposition 5, we distinguish nine types of quadri-planar
points: type1 – four real and different tangent planes;
type2 – two real and different planes and a pair of imag-
inary planes;type3 – two different pairs of imaginary
planes;type4 – one double plane and two different single
real planes;type5 – one double plane and a pair of imagi-
nary planes;type6 – a pair of double real planes;type7 – a
double pair of imaginary planes;type8 – one triple plane
and one single plane;type9 – one quadruple plane. On
the axisz the intervals with quadri-planar points of types
1–3 are bounded by the points of the types 4–9 which are
the pinch-points ofP 6

4 . Since four rays ofC 1
4 in the plane

at infinity are given by the equation(2x2 + y2)2 = 0, the
point at infinity on the axisz is the pinch-point of type 7.
The type of a quadri-planar point depends on the factoriza-
tion of the homogeneous 4th degree polynomial inx andy
which represents its cone. Based on the conditions given in
[20], we made a program inMathematica 6(available on-
line: www.grad.hr/sgorjanc/pinchpoints.nb) which calcu-
lates the coordinatesz0 of the pinch-points ofP 6

4 for every
choice of poleP. According to proposition 7, the highest
number of real pinch-points ofP 6

4 is twelve. Three exam-
ples are shown in Fig. 8.
The following is shown in [5]: iff a poleP lies on the part
of one parabola,P 6

4 has two real conical points; iffP lies
on one 5th degree ruled surface,P 6

4 has at least one real
conical point.

a b c

Figure 7: If P = O, the tangent cone at P splits into two planes and one 3rd degree cone (a). If P= (0,0,−2
√

2), the
tangent cone at P splits into a 4th degree cone and one plane (b). For all other positions of a pole P∈ z, the tangent cones
at P are proper 5th degree cones with a quadruple line z. Such acone with an isolated quadruple line is shown in figure c.
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a b c

Figure 8: The surfacesP 6
4 with 12, 10 and 8 real pinch-points are shown in figures a, b andc, respectively. The pinch-

points counted twice (types 6 and 7) are indicated by red color. Other pinch-points (types 4 and 5) are black. Besides
the highlighted pinch-points, every surfaceP 6

4 has a pinch-point of type 7 at infinity. The segments on the axis z contain
quadruple points of type 1 (black), type 2 (red) and type 3 (dashed red).

4.4 SpecialP 2k+2
2k directed by roses

Rosesor rhodoneaare curves which can be expressed by
the following polar equations:

r(ϕ) = cosnϕ or r(ϕ) = sinnϕ, n∈ R. (8)

If n = 2k− 1, k ∈ N, the curves close at a polar angleπ
and haven petals. They are algebraic curves of the or-
dern+ 1, with only one singular point – ann-ple point in
the origin [12, pp. 358-369]. According to the multiple-

angle formula cosnϕ = ∑
b n

2c
i=0(−1)i

(n
2i

)

(cosϕ)n−2i(sinϕ)2i

and the standard coordinate transformation formulas, their
implicit equation is

(x2 +y2)k− τ2k−1 = 0, where (9)

τ2k−1 =
k

∑
i=0

(−1)i
(

2k−1
2i

)

x2k−1−2iy2i . (10)

It is clear ([9, p. 251], [17, p. 27]) that 2k−1 tangent lines
at the origin are given by

τ2k−1 = 0. (11)

Some examples are shown in Fig. 9.

Let the axiszand the curvec2k given by equations

(x2 +y2)k− τ2k−1 = 0, ax+by+z= 0, (12)

be the directing lines of a congruenceC 1
2k. The curvec2k

is the intersection of one 2k-order cylinder and a plane
through the origin (see Fig. 10a). The singular points of
C 1

2k lie on its directing linesc2k and z (see Fig. 10b and
Fig. 10c). The rays ofC 1

2k through the originO form the
pencil of lines(O) in the planeax+ by+ z = 0, and the
other lines throughO are not regarded as the rays ofC 1

2k.
The pedal surfaceP 2k+2

2k of C 1
2k with respect to a poleP is

a (2k+2)-order surface with 2k-ple linez (see Fig. 10d).

a b c d

Figure 9:The curves r(ϕ) = cosnϕ for n equal to 1, 3, 5 and 7 are shown in figures a, b, c and d, respectively.

33



KoG•13–2009 S. Gorjanc: Pedal Surfaces of First Order Congruences

a b c d

Figure 10:c2k is the intersection of one2k-degree cylinder with a(2k−1)-ple line z and a plane through the origin (a).
The rays ofC 1

2k through a point on z form a2k-degree cone with a(2k−1)-ple line z (b). The rays ofC 1
2k through a point

C ∈ c2k form the pencil of lines(C) in the plane though z and C (c). The pedal surfaceP 2k+2
2k is a system of circles in the

planes through z, with the end points of its diameters on c2k and k. These diameters lie on the rulings of one(2k+2)-degree
ruled surface (d).

In every plane throughz, the coordinates ofC ∈ c2k are
given by

(rC(ϕ),zC(ϕ)) = cosnϕ(1,−acosϕ−bsinϕ). (13)

From (13) and eqs. (2) – (5), we obtain the parametric
equations ofP 2k+2

2k which enable them to be visualized us-
ing the programMathematica. Some examples are shown
in Fig. 11.

Since every plane through the axisz cutsP 2k+2
2k at the cir-

cle c and the 2k-ple line z, the equation ofP 2k+2
2k in the

cylindrical coordinates(r,ϕ,z) is

r2k · ((r − rS(ϕ))2 +(z−zS(ϕ))2−R2(ϕ)) = 0. (14)

From (14), by using eqs. (13), (2), (3) and the standard co-
ordinate transformation formulas, we obtain the following
implicit equation ofP 2k+2

2k :

(x2 +y2+z2)(x2 +y2)k +H2k+1(x,y,z)+H2k(x,y) = 0,

(15)

where

H2k+1(x,y,z) = −(pxx+ pyy+ pzz)(x
2 +y2)k

− (x2 +y2−axz−byz)τ2k−1

H2k(x,y) = (pxx+ pyy−apzx−bpzy)τ2k−1. (16)

The plane at infinity cutsP 2k+2
2k at the absolute conic and

the pair of isotropic lines countedk times. These isotropic
lines are the rays ofC 1

2k and also the rulings of the rose-
cylinder given by the first equation in (12). Thus, the point
at infinity on the axisz is the pinch-point ofP 2k+2

2k .

If we translate the origin intoZ0(0,0,z0), then (from
eq. (15) and according to theorem 1) we obtain the fol-
lowing equation of the splitting tangent cone atZ0:

(z2
0− pzz0)(x

2 +y2)k +(x(px +az0−apz)

+y(py +bz0−bpz))τ2k−1 = 0. (17)

The surfaceP 2k+2
2k has a(2k+1)-ple point iff P lies on the

axisz. In this case, all coefficients in eq. (17) are equal to
zero, and the tangent cone atP, in the coordinate system
with the originP, is given by the following equation:

pzz(x
2 +y2)k− (x2+y2−axz−byz)τ2k−1 = 0. (18)

If P = O, the tangent cone atP splits into one 2nd degree
cone and(2k−1) planes through the axisz

(x2 +y2−axz−byz)τ2k−1 = 0. (19)

Three examples are shown in Fig 12.
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a b c

Figure 11:The pedal surfacesP 2k+2
2k for the poles P(−1,1,−2), P(−1,1,1) and k= 2,3,4 are shown in figures a, b and c,

respectively.

a b c

Figure 12:The surfaceP 8
6 , directed by the 5-petalled curve in the plane x+ y+ z= 0 and the pole P(0,0,2), and its 7th

degree tangent cone at P, are shown in figure a. The pedal surfaces, directed by the 5-petalled and 7-petalled curves in the
plane x+y+z= 0 and P= O, are shown in figures b and c, respectively.

According to proposition 8,P 2k+2
2k possesses the highest

number of real double points if the directing curvec2k

and the circlek lie in the same plane. It is the case that
a = b = pz = 0 whenc2k andk have 4k intersection points.
But 2k−1 points coincide withO, two points are the abso-
lute points of the planez= 0, thus only 2k−1 intersection
points can lie besides the axisz and be real. Since 2k−1

is an odd number, at least one real double point exists on

P 2k+2
2k if a = b = pz=0.

The pedal surfaces directed by the roses in the planez= 0

are elaborated in detail in [7]. Some examples are shown

in Fig. 13.

In this case (a = b = 0), if a poleP lies on the axisz, the
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equation (15) takes the form

(x2 +y2)P2k(x,y,z) = 0, (20)

where

P2k(x,y,z) = (x2+y2)k−1(x2+y2+z2− pzz)−τ2k−1. (21)

Thus, the pedal surface splits into a pair of isotropic planes
through the axisz and one 2k-order surface given by
P2k(x,y,z) = 0. The linez is a (2k− 2)-ple line of these
surfaces with two(2k−1)-ple points, the originO and the
poleP (see Fig. 14).

Especially, ifP= O, the tangent cone atP splits into 2k−1
planes given by equationτ2k−1 = 0 (see Fig. 15).

a b c

Figure 13:The pedal surfaces for the pole P(1,0,2) and 3, 5 and 7-petalled roses in the plane z= 0 are shown in figures a,
b and c, respectively.

a b c

Figure 14:The pedal surfaces for the pole P(0,0,2) and 3, 5 and 7-petalled roses in the plane z= 0 with 3, 5 and 7-degree
tangent cones at P and O are shown in figures a, b and c, respectively.

a b c

Figure 15:The pedal surfaces for the pole P= O and 3, 5 and 7-petalled roses in the plane z= 0 are shown in figures a, b
and c, respectively.
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4.5 P n+2
n of C 1

n (cn,d) with d at infinity

If the directing lined lies in the plane at infinity (α∞),
thenα∞ is the singular plane ofC 1

n (cn,d∞). Thus, its im-
age given by the(n+ 2)-degree inversion with respect to
C 1

n (cn,d∞) and any sphere with the centerP splits intoα∞

and the imageDn+1
n−1 of the singular lined∞ which is an

(n+1)-order surface with the(n−1)-ple lined∞ (see theo-
rem 4 [1]). In this case the circlek splits into a line through
P perpendicular to the pencil of planes[d∞] and one line at
infinity. The planes throughd∞ cut Dn+1

n−1 into the circles
with the end points of diameters onk andcn. Three exam-
ples are shown in Fig. 16.

4.6 P n+2
n of C 1

n (cn,d) with cn at infinity

If the directing curvecn lies in the planeα∞, the intersec-
tion pointD∞ = α∞∩d must be the(n−1)-ple point ofcn∞.
In this caseα∞ is the singular plane ofC 1

n (cn∞,d) and its
image given by the(n+ 2)-degree inversion with respect
to C 1

n (cn∞,d) and any sphere with the centerP splits into
α∞ and the imageR n+1

n of cn∞ which is one(n+1)-degree
ruled surface with then-ple lined (see theorem 3 [1]). In
the planeδ ∈ [d] the ruling ofR n+1

n is perpendicular to the
rays ofC 1

n and passes throughP′, i. e. the circlec splits
into this ruling and the line at infinity. Three examples are
shown in Fig. 17.

a b c

Figure 16:a− D3
1 defined by d∞ in the plane y= 0, c2 given by equations x= 0 and z= y2

2 and P(2,1.5,1).
b− D3

1 defined by d∞ in the plane y= 0, c2 given by equations x= 0 and y2−yz+1= 0 and P(3,−4,1).

c− D4
2 defined by d∞ in the plane x= 0, c3 given by equations y= x2

5 and z= x3

10 and P(3,−4,2).

a b c

Figure 17:The pedal ruled surfaces for the pole P(2,0,0), axis z and 1, 3 and 5-petalled roses in the plane at infinity are
shown in figures a, b and c, respectively. These directing roses are the curves at infinity of the highlighted red cones.
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5 Pedal surfaces ofK 1
3

5.1 CongruenceK 1
3

Twisted cubicsk3 may be divided into four types accord-
ing to the different sections of the curve by the plane at
infinity. These are thecubical parabola, cubical hyper-
bolic parabola, cubical ellipseandcubical hyperbolaif the
plane at infinity meets the curve at three coincident points,
at two coincident points and one real point, at one real and
two imaginary points and at three real and different points,
respectively [15, p. 353].

Below we will use the following canonical form of a
twisted cubick3 = (k1(t),k2(t),k3(t))

k(t) = (
a1t
k

,
a2t +b2t2

k
,
a3t +b3t2 +c3t3

k
), t ∈ R, (22)

wherek equals 1, 1− t, 1+ t2 or 1− t2 which specify a
cubical parabola, cubical parabolic hyperbola, cubical el-
lipse or cubical hyperbola, respectively [4, pp. 69-76], [8,
p. 928]. Specially, fork = 1+ t2, a1 = b2, a2 = b3 = 0,
a3 = c3, eq. (22) represents a cubical circle.

These curves fora1 = b2 = c3 = 1 anda2 = a3 = b3 = 0,
lying on the corresponding 2nd degree cones, are shown in
Fig. 18.

The union of the tangent and secant lines of a twisted cubic
k3 fill up the projective spaceP3 and the lines are pairwise
disjoint, except at the points of the curve itself [10, p. 90].
Thus, the system of lines meeting a twisted cubic twice is
the 1st order 3rd class congruenceK 1

3 with the singular
points on the directing curvek3. The rays ofK 1

3 can be

expressed by the following equations:

x−k1(u)

k1(v)−k1(u)
=

y−k2(u)

k2(v)−k2(u)
=

z−k3(u)

k3(v)−k3(u)
, (23)

(u,v) ∈ R
2.

5.2 Pedal surfaceP K 5
2

Let P be any finite point inE3 andk3 the directing curve
of K 1

3 . The pedal surface ofK 1
3 with respect to the poleP

is denotedP K 5
2. The rays ofK 1

3 through any pointK ∈ k3

form a 2nd degree coneζK with the vertexK (see Fig. 19a).
The feet of the perpendiculars fromP on the rulings ofζK

lie on the sphereσK with the diameterPK. Thus, we can
regard the pedal surfacesP K 5

2 as the system of the 1st
kind of quartic curves – the intersection curves ofζK and
σK (see Fig. 19b).

a b

Figure 19:The rays ofK 1
3 through K∈ k3 form a 2nd de-

gree coneζK with the vertex K (a).σK is a sphere with the
diameterPK. The intersection curve ofζK andσK lies on
the pedal surfaceP K 5

3 (b).

a b c d

Figure 18:The cubical parabola, parabolic hyperbola, ellipse and hyperbola are shown in figures a, b, c and d, respectively.
Their points at infinity are:(0:0:1 :0) counted three times in case a,(1:1:1 :0) and(0:0:1 :0) counted twice in case b,
(0:0:1 :0) and the pair of imaginary points(±i :−1:∓i :0) in case c and(±1 :1 :±1 :0), (0 :0 :1 :0) in case d, where the
points are expressed in standard homogeneous Cartesian coordinates.
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Proposition 9 The pedal surfaceP K 5
2 is a 5th order sur-

face passing through the pole P and the absolute conic.

PROOF: The proof of this proposition is given in [11].�

Proposition 10 The twisted cubic k3 is the double curve
of P K 5

2 and ten pinch-points exist on it.

PROOF: For every pointK ∈ k3, the intersection curve of
ζK andσK is a 4th order space curve with the double point
K. The tangent lines of this curve atK are the intersection
rulings of the coneζK and the plane throughK perpendic-
ular toPK. Thus, there are two tangent planes ofP K 5

2 at
K ∈ k3, determined by the tangent line ofk3 at K and two
tangent lines of the curveζK ∩σK at K. If the two tangent
lines ofζK ∩σK at K are real and different, coinciding or
imaginary,K is the binodal point, pinch-point or isolated
point ofP K 5

2, respectively (see Fig. 20). The proof that on
a 5th order surface with a double twisted cubic ten pinch-
points can exist is given in [18, p. 312]. These points can
be real or imaginary. �

a b c

Figure 20:On the twisted cubic the intersection curve ofσ
andζ has a node, cusp or isolated double point shown in
figure a, b and c, respectively.

Proposition 11 If the pole P lies on the directing curve k3,
P is the triple point ofP K 5

2.

PROOF: It is clear that ifP∈ k3, then every curveζK ∩σK ,
K ∈ k3 passes throughP. The tangent lines ofζK ∩σK atP
are the result of an(1,1) correspondence between one sec-
ond degree envelope cone with the vertexP and one pencil
of planes through the line passing throughP. Thus, accord-
ing to the Chasles formula [13, p. 40], these tangent lines
form a third degree cone with a vertexP. Namely, every
tangent line ofζK ∩σK atP is the intersection of the plane
throughP perpendicular toPK (the tangent plane ofσK at
P), and the tangent plane ofζK at P. The planes through
P perpendicular toPK, K ∈ k3 form a second degree enve-
lope cone with a vertexP. Since the tangent planes ofζK
at P are determined by the linesPK andtP, wheretP is the
tangent line ofk3 at P, they form the pencil of planes[tP].
�

Proposition 12 The ray at infinity ofK 1
3 lies on the pedal

surfaceP K 5
3.

PROOF: Orthogonality in Euclidean space means polarity
with respect to the absolute conic – a linel with the point at
infinity L∞ is perpendicular to a planeπ with the line at in-
finity p∞ iff L∞ is the pole ofp∞ with respect to the absolute
conic. Every ray ofK 1

3 cutsP K 5
3 at two double points on

k3 and the intersection point with the corresponding plane
throughP perpendicular to this ray. Since the ray at infin-
ity corresponds with the pencil of planes, every point on it
lies onP K 5

3. �

According to the straight lines at infinity, we divide the
pedal surfacesP K 5

3 into the following four types:

Type I P K 5
3 has one real straight line counted three times at

infinity. The directing curvek3 is a cubical parabola.

Type II P K 5
3 has two real straight lines at infinity, and one

of them is counted twice. The directing curvek3 is a
cubical hyperbolic parabola.

Type III P K 5
3 has one real and a pair of imaginary straight

lines at infinity. The directing curvek3 is a cubical
ellipse.

Type IV P K 5
3 has three real and different straight lines at in-

finity. The directing curvek3 is a cubical hyperbola.

5.3 Parametric and implicit equations ofP K 5
2

Let the poleP be given by the vectorp = (px, py, pz), and
let the directing linek3 of K 1

3 be the twisted cubic given
by the vector function (22). The ray ofK 1

3 passing through
the pointsK(u), K(v) ∈ k3 can be expressed by the follow-
ing equation:

r1(u,v) = k(u)+sd(u,v), s∈ R, (24)

whered(u,v) is the direction vector of the lineK(u)K(v),
i.e. d(u,v) = k(v)−k(u).

The plane through the poleP, perpendicular to the ray
K(u)K(v), is given by the following vector equation:

(r2(u,v)−p) ·d(u,v) = 0. (25)

Since the point on the pedal surfaceP K 5
2 is the intersec-

tion of the ray (24) and the plane (25), for this point the
parameterssatisfies the following equation:

s(u,v) =
(p−k(u)) ·d(u,v)

‖d(u,v)‖2 . (26)

Thus, the parametric equations ofP K 5
2 are:

x(u,v) = k1(u)+d1(u,v) ·s(u,v)

y(u,v) = k2(u)+d2(u,v) ·s(u,v)

z(u,v) = k3(u)+d3(u,v) ·s(u,v), (u,v) ∈ R
2. (27)
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This parametrization does not yield satisfactoryMathemat-
ica visualizations ofP K 5

2. Therefore, to draw figures 21
and 22 we used the implicit equations ofP K 5

2 which can
be derived from the equations of corresponding spheresσ
and conesζ.

For any pointK(t) ∈ k3, t ∈ R, the implicit equation of the
sphereσK(t) is the following:

(

x− px +k1(t)
2

)2
+

(

y− py +k2(t)

2

)2
+

(

z− pz+k3(t)
2

)2
=

1
4

(

(px−k1(t))
2 +(py−k2(t))

2 +(pz−k3(t))
2). (28)

The implicit equation of the coneζK(t) can be derived by
eliminating parametersu andv from the following para-
metric equations:

x = k1(t)+u ·d1(t,v)

y = k2(t)+u ·d2(t,v)

z= k3(t)+u ·d3(t,v) (u,v) ∈ R
2. (29)

Now, if we eliminate the parametert from the correspond-
ing implicit equations ofζK(t) andσK(t), we obtain the im-

plicit equation ofP K 5
3. According to propositions 9, 12

and theorem 1 this equation takes the following form:

(x2 +y2+z2)H3
1(x,y,z)+H4(x,y,z)

+H3
2(x,y,z)+H2(x,y,z) = 0, (30)

whereH i(x,y,z) are homogeneous polynomials of degree
i. The equationH3

1(x,y,z) = 0 represents three rays ofK 1
3

at infinity andH2(x,y,z) = 0 represents the tangent cone
of P K 5

3 at the origin.

Equation (30) depends on nine parameters (a1,a2,a3,
b2,b3,c3, px, py, pz) and it is incongruously to write them

here even for the special cases. As an appendix to
this paper, the reader can download oneMathematica
notebook available on-line:http://www.grad.hr/sgorjanc/
pedalsKP53.nb.

5.4 Examples ofP K 5
2

We considerP K 5
2 where the directing twisted cubic is

given by eq. (22) for

a1 = b2 = c3 = 1, a2 = a3 = b3 = 0. (31)

Type I – the directing curvek3 is a cubical parabola given
by eqs. (22) and (31) fork = 1. The pedal surface has a
real line at infinity counted three times. In the standard
Cartesian coordinates(x:y:z:w), this line is given by the
equationsx3 = 0, w = 0. See Fig. 21a and Fig. 22a.

Type II – the directing curvek3 is a cubical hyperbolic
parabola given by eqs. (22) and (31) fork = 1− t. The
pedal surface has two real lines, one of them counted twice,
at infinity. They are given by the equationsx(x− y)2 =
0, w = 0. See Fig. 21b and Fig. 22b.

Type III – the directing curvek3 is a cubical ellipse given
by eqs. (22) and (31) fork = 1+ t2. The pedal surface has
one real and a pair of imaginary lines at infinity. They are
given by the equations(x2 + y2)(x+ z) = 0, w = 0. See
Fig. 21c and Fig. 22c.

Type IV – the directing curvek3 is a cubical hyperbola
given by eqs. (22) and (31) fork = 1− t2. The pedal sur-
face has three real lines at infinity. They are given by the
equations(x− y)(x+ y)(x− z) = 0, w = 0. See Fig. 21d
and Fig. 22d.

a b c d

Figure 19:P K 5
3 of types I, II, III and IV, for P(0,0,0), are shown in figures a, b, c and d, respectively. The 3rd degree

tangent cone at P has a cuspidal edge.
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a b c d

Figure 22:Figure a –P K 5
3 type I for P(4,4,0); figure b –P K 5

3 type II for P(2,−1,3); figure c –P K 5
3 type III for P(1,2,0);

figure d –P K 5
3 type IV for P(5,−1,3).
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