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In this paper, we study the deformed statistics and oscillator algebras of quantum fields defined in

�-Minkowski spacetime. The twisted flip operator obtained from the twist associated with the star product

requires an enlargement of the Poincaré algebra to include the dilatation generators. Here we propose a

novel notion of a fully covariant flip operator and show that to the first order in the deformation parameter

it can be expressed completely in terms of the Poincaré generators alone. The R matrices corresponding to

the twisted and the covariant flip operators are compared up to first order in the deformation parameter and

they are shown to be different. We also construct the deformed algebra of the creation and annihilation

operators that arise in the mode expansion of a scalar field in �-Minkowski spacetime. We obtain a large

class of such new deformed algebras which, for certain choice of realizations, reduce to results known in

the literature.
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I. INTRODUCTION

Noncommutative geometry as well as formulation and
study of physical theories on noncommutative spaces have
been attracting wide attention for quite some time now [1–
10]. Unique features of the theories on such spaces and also
the fact that noncommutative geometry provides one of the
possible approaches for describing Planck scale physics,
notably, quantum gravity are some of the motivations for
the renewed interest in these studies [11–13]. A simple and
by now reasonably well studied model of noncommutative
space is the Moyal space. One of the interesting aspects
brought out by these studies is the role of Hopf algebra
(quantum group) [14] in analyzing the symmetries of field
theories on Moyal space. Though, in the conventional
sense, the Lorentz symmetry is lost in these theories, it is
now well understood that using Hopf algebra approach,
Lorentz invariance can be retained in these noncommuta-
tive models, enabling the conventional interpretation of
field quanta [15].

In the Hopf algebra approach, the underlying symmetry
algebra of the noncommutative theory acts on multiparticle
states through the twisted coproducts of the symmetry

generators. Alternate attempts to construct gravity theories
on noncommutative spaces, where a compatibility between
the so-called � product and the action of diffeomorphism
symmetry generators also led to the introduction of twisted
Leibniz rule (i.e., coproducts) for these generators [13].
Noncommutative spaces which are more general than

Moyal space are also possible [11], �-deformed space
being one such example, where the coordinates satisfy a
Lie algebra type commutation relation [16–20]. Such a
�-deformed space has emerged in the attempts to construct
special theory of relativity compatible with the existence of
a dimensionful constant (Planck length) apart from the
velocity of light in doubly special relativity [21–23].
Apart from the studies to understand the algebraic structure
and symmetries, recently, field theory models have also
been investigated on such spaces [24–28].
One of the notable features of field theories on non-

commutative spaces with generalized symmetry is the
notion of twisted statistics [29–34]. The twisted coproduct
arising from the requirement of compatibility between the
algebraic structures of the noncommutative geometry and
the actions of symmetry generators lead to a notion of
deformed statistics. This comes about when the compati-
bility between the action of flip operator on multiparticle
states and the twisted action of symmetry generators is
demanded, leading to a twisted flip operator [31,32]. It is
this twisted flip operator that gives the definition of statis-
tics which is invariant under the action of twisted symme-
try generators. Most of these discussions reported are for
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the field theory models on the Moyal plane, though re-
cently, some studies have been initiated, investigating the
issue of statistics for theories on �-deformed spaces [35–
40]. Unlike the Moyal case, the twist operator in the
�-deformed space does not belong to the universal enve-
lope of the underlying Poincaré algebra. Rather, the pres-
ence of the dilatation generator in the expression of the
twist operator indicates that it belongs to the universal
envelope of the corresponding general linear algebra [41–
45]. The twisted flip operator associated with such a
twisted coproduct for the �-deformed space was con-
structed in [38]. In this paper, we present a different
proposal for a covariant flip operator for the
�-Minkowski spacetime. For this, we consider the de-
formed coproduct for a fully covariant realization of the
�-Minkowski algebra [6,8]. This deformed coproduct is an
element of the corresponding Hopf algebra and it is differ-
ent from the twisted coproduct arising from the action of
the twist operator. A covariant flip operator has to be
compatible with the action of this deformed coproduct.
We find an expression of such a covariant flip operator to
first order in the deformation parameter, which is con-
structed from the generators of the Poincaré algebra alone.
We show that the corresponding R matrix also shares the
same property up to first order in the deformation
parameter.

In quantum field theory (QFT), the action of the twisted
flip-operator leads to a deformed algebra of the creation
and annihilation operators. For the Moyal case, this first
arose in the context of integrable models [46] and the
consequences of such a deformed oscillator algebra in
QFT are well studied [29–34]. For the �-Minkowski
case, there exists several proposals for such a deformed
oscillator algebra [37,47,48]. In this paper, we construct a
class of such deformed oscillator algebras corresponding to
a family of realizations of the �-Minkowski space. For
particular choice of realizations, we recover the deformed
oscillator algebra obtained in [37], although our construc-
tion leads to a much wider class of such oscillator algebras.

This paper is organized in the following way. In Sec. II,
we briefly review the essential details of �-Minkowski
spacetime and present a particular class of realization of
the associated coordinates in terms of commuting ones and
corresponding derivatives. We also present the deformed
coproducts of Poincaré generators in terms of the functions
characterizing the realization [6,8,9,38]. In Sec. III, we
discuss the � product and the twist element and obtain
the explicit expressions for the particular class of realiza-
tion [6]. Our main results are discussed in Sec. IV. Here, we
first briefly review the twisted flip operator for the
�-Minkowski spacetime [38]. We then discuss the con-
struction of a novel, covariant flip operator and discuss its
properties. We apply the twisted flip operator to multi-
particle sector and obtain the novel, modified commutation
relations between the creation and annihilation operators.

We also show how to define a new product rule between the
oscillator operators so as to express their commutation
relations in the familiar form. We obtain a large class of
novel deformed oscillator algebras which reduce to the one
discussed in [37] for a special choice of the realization. We
finally end in Sec. V with discussions. In the Appendix, we
start with the � product corresponding to the � spacetime
that can be defined using the commuting vectors fields
and derive the twisted coproduct. Here, using this � prod-
uct, we first identify the twist element and using this we
derive the twisted coproducts. We show that these twisted
coproducts-products, for a specific realization, are exactly
the same as the ones we derive in Sec. II.

II. �-SPACE, ITS REALIZATIONS AND TWISTED
COPRODUCTS

In this section, we review the results of earlier papers by
some of the authors[6,8,9,38], which are used later. Similar
results have been obtained in general Lie algebra type
noncommutative spaces and, in particular, for � space
and quantum field theories on such spaces in [19,22,24–
26,35,37,47,48]. Here we start with the generic Lie algebra
type noncommutative spaces and then specialize to the
case of �-Minkowski space, for which we obtain a special
class of realization of the noncommutative coordinates in
terms of the coordinates and derivatives of the commuting
space.
The coordinates of the generic Lie algebra type non-

commutative space obey the commutation relations

½x̂�; x̂�� ¼ iC���x̂
�; x̂� ¼ ���x̂� (1)

with the choice C��� ¼ a���� � a���� and ��� ¼
diagð�1; 1; 1; . . . 1Þ and summation over repeated indices
is understood. Here a�ð� ¼ 0; 1; 2; ::n� 1Þ are real, di-

mensionful constants parametrizing the deformation of the
Minkowski space. The � space is defined by the choice
ai ¼ 0, i ¼ 1; 2; . . .n� 1; a0 ¼ a ¼ 1

� . Thus we get the

commutation relations between the coordinates of � space
as

½x̂i; x̂j� ¼ 0; ½x̂0; x̂i� ¼ iax̂i: (2)

In terms of the Minkowski metric ��� ¼
diagð�1; 1; 1; 1 . . . . . . ; 1Þ, we can define x� ¼ ���x�
and @� ¼ @

@x�
¼ ���@�, which satisfy the relations

½x�; x�� ¼ 0; ½@�; @�� ¼ 0;

½@�; x�� ¼ ��
� ; ½@�; x�� ¼ ���:

(3)

For later use, we also define p� ¼ �i@� so that ½p�; x�� ¼
�i���.

We seek realizations of the noncommutative coordinates
in terms of the commuting coordinates x� and correspond-

ing derivatives @� as a power series. A class of such

realizations is given by
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x̂ � ¼ x����ð@Þ: (4)

It is easy to see that these coordinates obey ½@�; x̂�� ¼
���ð@Þ. Such a realization defines a unique mapping be-

tween the functions on noncommutative space to functions
on commutative space. This can be seen first by defining
the vacuum j0i � 1 annihilated by @ and defining

Fðx̂’Þj0i ¼ F’ðxÞ; (5)

where the subscript ’ specify the realization we work
with. The functions of noncommutative coordinates are
expanded as a power series in x̂�. Though there can be

many monomials where x̂0; x̂1; . . . ; x̂n�1 appear
m0; m1; . . . ; mn�1 times, respectively, all of them are re-
lated by the commutation relations given by Eqs. (2).
Furthermore, to each ’ realization there exists a corre-
sponding ordering among noncommutative coordinates,
such that

:Fðx̂’Þ:’j0i ¼ FðxÞ
(and vice versa). Thus we can define left, right, totally
symmetric (Weyl) ordering, respectively, as

:eik�x̂
�
:L � e�ik0x̂0þikix̂i’sð�ak0Þe�iak0 ¼ e�ik0x̂0eikix̂i ;

:eik�x̂
�
:R � e�ik0x̂0þikix̂i’sð�ak0Þ ¼ eikix̂ie�ik0x̂0 ;

:eik�x̂
�
:S � eik�x̂

�

(6)

here ’sðAÞ ¼ A
eA�1 , A ¼ ia@0 ¼ �ia@0.

In this paper, we work with a specific class of realization
satisfying ½@�; x̂�� ¼ ���ð@Þ given by

½@i; x̂j� ¼ �ij’ðAÞ; ½@i; x̂0� ¼ ia@i�ðAÞ; (7)

½@0; x̂i� ¼ 0; ½@0; x̂0� ¼ �00 ¼ �1; (8)

where A ¼ �ia@0. An explicit solution of this realization
is

x̂ i ¼ xi’ðAÞ x̂0 ¼ x0c ðAÞ þ iaxi@i�ðAÞ: (9)

Using the above realization in Eq. (2) we get

’0

’
c ¼ �� 1; (10)

where ’0 is the derivative of ’ with respect to its argument
ia@0 and these functions satisfy the boundary conditions
’ð0Þ ¼ 1, c ð0Þ ¼ 1, and �ð0Þ ¼ ’0ð0Þ þ 1 is finite and all
are positive functions. Further demanding that the commu-
tators of the Lorentz generators with the �-space coordi-
nates be linear in x̂� as well as in the generators and have

smooth commutative limit as the deformation parameter
a! 0, imposes further requirements on these functions
and one can easily see that there are only two class of
realizations possible, viz., one where c ¼ 1 and a second
one where c ¼ 1þ 2A. We restrict ourselves to the case
c ¼ 1.

It may be noted that for ’SðAÞ ¼ A
eA�1 there exists a

covariant realization corresponding to Weyl-symmetric
ordering. This realization is given by

x̂� ¼ x�’SðAÞ þ ia�x�@
��SðAÞ;

x�@
� ¼ ��	x�@	;

(11)

where A ¼ ia0@
0 ¼ �ia@0. Here we choose a� ¼

ða; 0; . . . ; 0Þ to be timelike, which can be chosen to be
spacelike or lightlike as well.

For the realization given in Eq. (9) defined by ’ðAÞ ¼
e��A=2, there also exists a one-parameter family of order-
ing prescriptions

: eik�x̂
�
:� ¼ e�i�k0x̂0eikix̂ie�ið1��Þk0x̂0 ; (12)

which interpolate between right, time symmetric, and left
corresponding to � ¼ 0, 1

2 , and 1, respectively. Note that

what we call here as totally symmetric ordering [6,8,9]
corresponding to the realization ’SðAÞ ¼ A

eA�1 is com-

pletely different from the time-symmetric ordering corre-
sponding to � ¼ 1

2 [49].

The coproducts �’ of the derivative operators in the

realization given in Eq. (9) are

�’ð@0Þ ¼ @0 � I þ I � @0 � @x0 þ @y0; (13)

�’ð@iÞ ¼ ’ðA � Iþ I � AÞ
�

@i
’ðAÞ � I þ eA � @i

’ðAÞ
�
:

(14)

A. �-Poincaré algebra and Casimir

Let M�� denote the rotation and boost generators sat-

isfying the undeformed soðn� 1; 1Þ algebra. We require
that their commutators with the �-space coordinates be
linear functions of x̂� and M��. In addition, the require-

ment that these commutators have a smooth commutative
limit leads to

½Mi0; x̂0� ¼ �x̂i þ iaMi0 (15)

½Mi0; x̂j� ¼ ��ijx̂0 þ iaMij: (16)

We note here that @0, @i defined in Eq. (7) along withM��

given above generates the �-deformed Poincaré algebra
[6,8,9]. Note that the Lorentz algebra is undeformed and
the commutator ½M��; @�� is deformed and depends on the

realization. We also note that the twisted coproducts of
M�� can also be obtained from Eqs. (15) and (16) [6,8,9].

They are

�’ðMijÞ ¼ Mij � Iþ I �Mij � �0ðMijÞ (17)
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�’ðMi0Þ ¼ Mi0 � I þ eA �Mi0 þ ia@j
1

’ðAÞ �Mij:

(18)

For c ¼ 1 class of realizations we are interested in, the
explicit form of M�� are

Mij ¼ xi@j � xj@i; (19)

Mi0 ¼ xi@0’
e2A � 1

2A
� x0@i

1

’
þ iaxi�

1

2’

� iaxk@k@i
�

’
; (20)

where � ¼ @k@k. Note here that M0i involves xi@i and so
does �’ðMi0Þ. The �ðMi0Þ is expressed in terms of envel-

oping algebra of �-deformed Poincaré algebra generated
by @�, M��.

We can also define

~M�� ¼ x�@� � x�@� ¼ iðx�p� � x�p�Þ; (21)

which generate an undeformed Poincaré algebra.
The generalized Klein-Gordon equation, which is invari-

ant under the action of the undeformed Poincaré algebra
generated by @0, @i, ~M��, is given as

ð@�@� �m2Þ�ðxÞ ¼ 0: (22)

Here we note that the above field equation is not invariant
under the �-deformed Poincaré transformations generated
by @0, @i, ~M�� defined above. This can be seen easily by

noticing that the derivatives do not transform like a vector
under the transformations generated by M��. A possible

way to avoid this is to introduce the (Dirac) derivativesD�,

for which there exists coordinates X� satisfying the con-

ditions

½D�; X�� ¼ �
�
� ¼ �

�
� ; ½D�; X�� ¼ ���: (23)

Then, we have

x̂� ¼ X�Z
�1 þ iðX�a

�ÞD�;

M�� ¼ X�D� � X�D� ¼ iðX�P� � X�P�Þ
¼ ðx̂�D� � x̂�D�ÞZ;

P� ¼ �iD�:

(24)

Generators M��, D� generate the undeformed Poincaré

algebra.
The Dirac derivatives transform like a vector underM��.

The undeformed Poincaré algebra is defined through the
relations

½M��;D�� ¼ ���D� � ���D�; (25)

½D�;D�� ¼ 0; ½M��;h� ¼ 0; ½h; x̂�� ¼ 2D�;

(26)

½M��;M�
� ¼ ��
M�� þ ���M�
 � ��
M��

� ���M�
; (27)

which were obtained in [6,8]. Note thatD� andM�� given

above generate undeformed Poincaré algebra. These Dirac
derivatives are different from usual derivatives as can be
seen easily from their action on x̂�, i.e.,

½D�; x̂�� ¼ ���Z
�1 þ ia�D�; (28)

where Z�1 ¼ iaD0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2D�D

�
p

. Using Eq. (28), we
get the twisted Leibniz rule for D� as

�ðD�Þ ¼ D� � Z�1 þ I �D� þ ia�ðD�ZÞ �D�

� ia�
2

hZ � ia�D
�: (29)

Similarly, we also get the covariant form of the twisted
Leibniz rule for M�� as

�ðM��Þ ¼ M�� � I þ I �M�� þ ia�

�
D� � ia�

2
h

�
Z

�M�� � ia�

�
D� � ia�

2
h

�
Z �M��; (30)

where M�� is as given in Eq. (24).

B. Dispersion relations

For arbitrary realizations characterized by’, these Dirac
derivatives and the h operator are

Di ¼ @i
e�A

’
; (31)

D0 ¼ @0
sinhA

A
� ia0�

e�A

2’2
; (32)

h ¼ �
e�A

’2
þ 2@20

ð1� coshAÞ
A2

¼ 2

a2
ðcoshðap0Þ � 1Þ � pipi

e�ap0

’2ðap0Þ
: (33)

The relation between Dirac D� and @� derivatives corre-

sponding to ’SðAÞ (Weyl-symmetric ordering) is given by

D� ¼ @�
Z�1

’SðAÞ þ
ia�
2

h (34)

and h ¼ @0@
0 e�A
ð’SðAÞÞ2 . It is clear that the coalgebra of the

undeformed Poincaré algebra generated by D�, M�� is

closed in the enveloping algebra of Poincaré generators
and it is a Hopf algebra.
It is also clear that the Casimir, D�D

� has a vanishing

commutator with M�� and has the correct commutative

limit. The Casimir can be expressed in terms of the h
operator [6,8,9,20,24] as

D�D
� ¼ h

�
1þ a2

4
h

�
: (35)
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Here note that the h operator is quadratic in space deriva-
tives and thus the Casimir has quartic terms in space
derivatives.

Generalizing the notions from commutative space, it is
natural to write the equation of motion for the scalar
particle, i.e., the generalized Klein-Gordon equation using
the Casimir. Thus the generalized Klein-Gordon equation
on � space is�

h

�
1þ a4

4
h

�
�m2

�
�ðxÞ ¼ 0 (36)

and has the correct commutative limit. But since the
Casimir as well as the h operator have the same commu-
tative limit, the requirement of the correct Klein-Gordon
equation in the commutative limit does not rule out other
possible generalizations in the � space. Thus, one can
equally well start with

ðh�m2Þ�ðxÞ ¼ 0 (37)

as the equation for scalar theory on � space. Other choices
were also considered [16,50] for effective scalar
Lagrangians in � space.

For the above choices of equations, we get the deformed
dispersion relations as

4

a2
sinh2

�
ap0

2

�
� pipi

e�ap0

’2ðap0Þ
�m2

þ a2

4

�
4

a2
sinh2

�
ap0

2

�
� pipi

e�ap0

’2ðap0Þ
�
2 ¼ 0 (38)

4

a2
sinh2

�
ap0

2

�
� pipi

e�ap0

’2ðap0Þ
�m2 ¼ 0; (39)

respectively, and here ’ characterizes the realizations.
Thus with ’ ¼ e�A, 1, A

eA�1 one gets left, right, and

Weyl-symmetric orderings, respectively.

III. � PRODUCT

The mapping between the functions on � space to that of
commutative space [see Eq. (5)] also defines a � product,
which naturally depends on the realization ’. Thus the �
product is defined as

F’ðx̂’ÞG’ðx̂’Þj0i ¼ F’ �’ G’: (40)

For the realizations we are interested in, i.e., the one given
in Eq. (9), this implies the following �-product rules
xi �’ fðxÞ ¼ ðx̂’Þifðx̂’Þj0i ¼ xi’ðAÞfðxÞ
x0 �’ fðxÞ ¼ ðx̂’Þ0fðx̂’Þj0i ¼ ½x0c ðAÞ þ iaxi@i�ðAÞ�fðxÞ

(41)

and similarly

fðxÞ �’ xi ¼ xi’ðAÞeAfðxÞ
fðxÞ �’ x0 ¼ ½x0c ðAÞ þ iaxi@ið�ðAÞ � 1Þ�fðxÞ:

(42)

For any realization ’, the � product can be expressed in
terms of the twist element F ’ as

f �’ g ¼ m0ðF ’f � gÞ ¼ m’ðf � gÞ; (43)

where f and g are functions of the commutative coordi-
nates and m0 is the usual pointwise multiplication map in
the commutative algebra of smooth functions. This can be
reexpressed as

ðf �’ gÞðxÞ ¼ m0ðexið�’��0Þ@ifðuÞgðtÞÞju¼t¼xi ; (44)

where�’ is the twisted coproduct given in Eq. (14) and the

undeformed coproducts is given by �0 ¼ @ � I þ I � @.
Comparing Eqs. (43) and (44), we find the twist element as

F ’ ¼ exið�’��0Þ@i (45)

and then it is easy to find

�’ ¼ F�1’ �0F ’: (46)

Thus we find that by applying the twist element obtained in
Eq. (45) to the undeformed coproduct of @0 and @i, we get
the twisted coproducts which are exactly the same as the
one obtained in Eqs. (13) and (14). But F�1’ �0ð ~M��ÞF ’

do not give the twisted coproducts of the deformed
Poincaré algebra obtained in Eqs. (17) and (18), which
can be easily checked using Eq. (48) below. Also we note
that the ~M�� along with p� generate undeformed Poincaré

algebra. The corresponding coalgebra does not close in
enveloping Poincaré algebra, but in enveloping algebra of
iglðnÞ � iglðnÞ.
Using Eqs. (14) and (44), we find that the � product can

be written as [9,51]

ðf �’ gÞðxÞ ¼ exi@
u
i ððð’ðAuþAtÞÞ=ð’ðAuÞÞÞ�1Þþxi@tiððð’ðAuþAtÞÞ=ð’ðAtÞÞÞeAu�1ÞfðuÞgðtÞju¼t¼xi : (47)

The explicit form of the corresponding twist element is
now given by

F ’ ¼ eNx lnðð’ðAxþAyÞÞ=ð’ðAxÞÞÞþNyðAxþlnððð’ðAxþAyÞÞ=ð’ðAyÞÞÞÞ;
(48)

where Nx ¼ xi
@
@xi

[6,8,9].

Since the � product depends on the ordering (or equiv-
alently on realization) as has been seen from Eqs. (41) and
(42), it is natural to have different twist elements depend-
ing on the ordering. Indeed, we get the twist element for
left ordering as

F L ¼ e�NxAy ¼ eN�A (49)
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and corresponding to right ordering we get

F R ¼ eAxNy ¼ eA�N; (50)

with Ax ¼ �ia@x0 and Nx ¼ xi@
x
i . One can combine the

above two to write down an interpolating twist element

F � ¼ e��N�Aþð1��ÞA�N; (51)

which reduces to F L and F R when � ¼ 1 and � ¼ 0,
respectively. This twist element satisfies the cocycle con-
dition

ðF � � IÞð� � IÞF � ¼ ðI �F �ÞðI ��ÞF �: (52)

One can now get the modified momentum addition rules
for � space from the coproducts given in Eqs. (13) and (14)
also. Thus going to momentum space we find

½K’ðp; qÞ�� ¼ �i�’ð@�Þ;
K’ðp; qÞx ¼ �ðp0 þ q0Þx0 þ ’ð�ap0 � aq0Þ

�
�

pixi
’ð�ap0Þ þ

e�ap0

’ð�aq0Þqixi
�
:

(53)

Similarly, we can also obtain the twist element in the
momentum space, denoted by F , which tells how the �
product acts on the momentum space [by expressing the
operators A and N in the momentum space in Eqs. (49)–
(51), we get the explicit form forF , for different ordering].
Starting from

F fðxÞgðyÞ � F
Z

d4kd4qeikx ~fðkÞeiqy~gðqÞ (54)

and using the action ofF on plane waves, we can easily get

F ~fðkÞ � ~gðqÞ ¼ F
�
i
@

@k
; k; i

@

@q
; q

�
~fðkÞ~gðqÞ: (55)

The above result will be of use to obtain the twisted
commutation relations between the Fourier coefficients,
necessary to discuss the twisted oscillators.

IV. DEFORMED STATISTICS AND OSCILLATORS
IN �-MINKOWSKI SPACE

It is known that for the QFT’s defined on the Moyal
plane, the twisted coproduct rules affect the statistics [29–
34,38]. This is natural as the physical theory has to be
invariant under the action of the underlying symmetry
group of the space (or spacetime) and the definition of
statistics should also be invariant under this group action.
This ensures that the statistics are superselected. Such a
superselection rule is implemented by demanding that the
flip operator commutes with the coproduct. As the copro-
duct rule is now changed, we do expect a corresponding
change in the definition of flip operator also. Such a twisted
flip operator for the �-deformed space was constructed in
[38]. In the first part of this section, we briefly review that
construction which requires us to consider a larger general

linear algebra. Next we introduce the concept of a cova-
riant flip operator, which preserves the algebraic structure
of the �-Minkowski space, which is a new result. We give
an explicit expression of this covariant flip operator to the
first order in the deformation parameter in terms of the
generators of the Poincaré algebra alone. We also obtain an
expression of the corresponding R matrix to the first order.
We find that up to first order in the deformation parameter,
the expression for the R matrix obtained using the cova-
riant flip operator is different from that obtained using the
twisted flip operator.
Our main results are given in the second part of this

section, where we obtain novel twisted commutation rela-
tions between the creation and annihilation operators ap-
pearing in the mode decomposition of the scalar field
satisfying the generalized Klein-Gordon equation. This
leads to a large class of such deformed algebras depending
on the family of realizations of the �-Minkowski space.
For a certain choice of realization, we explicitly obtain the
deformed algebra obtained in [37]. Our analysis however
indicates the possibility of a much wider class of deformed
oscillator algebras.

A. Twisted flip operators

In this subsection, we discuss the twisted flip operators
compatible with the coproducts of the deformed Poincaré
algebra defined by the generators in Eqs. (7), (15), and (16)
and for the undeformed Poincaré algebra generated by D�

and M��, respectively.

In the commutative case, the flip operator is defined
through its action on multiparticle states. Without loss of
generality, let us consider a two-particle state f � g 2
A0 �A0. The action of the flip operator on this
(tensor-product) state is given by

�0ðf � gÞ ¼ g � f: (56)

It is easy to see that ð�0Þ2 ¼ I. Symmetric and antisym-
metric states of the physical Hilbert space are projected
from the tensor-product state as

1
2 ð1� �0Þðf � gÞ ¼ 1

2ðf � g� g � fÞ; (57)

respectively. Since this definition of (anti)symmetric states
should remain invariant under the action of the underlying
symmetry, its clear that the flip operator must commute
with the symmetry generator. Since�, a typical element of
the symmetry group acts on the tensor-product state
through some representation D as

�: f � g ¼ ðD �DÞ�ð�Þf � g; (58)

this requirement implies that the coproduct �ð�Þ com-
mutes with the flip operator �0. Thus in the commutative
space the flip operator �0 is superselected so as to have
vanishing commutators with all observables. In this case of
noncommutative theories, as we have seen, the coproducts
get twisted and the twisted coproducts do not satisfy
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½�’; �0� � 0: (59)

Thus, the meaning of (anti)symmetric states defined using
�0 are no longer invariant. We are, thus forced to define a
new twisted flip operator which commutes with the cop-
roduct action. Since �’ ¼ F�1’ �0F ’, where �0 is the

coproducts of the undeformed Poincaré algebra, we are
immediately led to the twisted flip-operator

�’ ¼ F�1’ �0F ’ (60)

which satisfies

½�’; �’� ¼ 0: (61)

Using this twisted flip operator, we can define an invariant
definition of symmetric and antisymmetric states as 1

2 �ð1� �’Þðf � gÞ, respectively. The twisted flip operator

for a generic ’ realization can be easily obtained using
Eq. (48) in Eq. (60) as

�’ ¼ eiðxipi�A�A�xipiÞ�0; (62)

where A ¼ �ia@0. In the limit a! 0, we get back the
familiar commutative flip operator, smoothly. It is interest-
ing to note that the �’ given above is independent of ’. It

may be noted that the twisted flip operator �’ is not

covariant and involves operators belonging to the universal
enveloping algebra of GLðd� 1; 1Þ. The R matrix corre-
sponding to the flip operator �’, denoted by R�, is defined

as

R� ¼ I � Iþ iN ^ A ¼ I � I � aðxi@iÞ ^ @0 (63)

and it satisfies the classical Yang-Baxter equation since

½N;A� ¼ 0. Note that in the above axi@
i ^ @0 ¼

aðxi@i
 ���

@0
! �@0

 
xi@

i
���!
Þ.

Alternately, we can define another deformed flip opera-
tor �c which is covariant. This new covariant flip operator
is compatible with the symmetries implemented by the
covariant twisted coproducts of D� and M�� given in

Eqs. (29) and (30). It is defined by the conditions

½�ðD�Þ; �c� ¼ 0; ½�ðM��Þ; �c� ¼ 0; (64)

where �c ¼ Rc�0. Expanding the Rc matrix in powers of
the deformation parameters a� as Rc ¼ I � I þP

�ða;�Þ, where � stands for the generators of the
�-Poincaré algebra and using the twisted coproducts [see
Eqs. (29) and (30)] in the above condition, we get the Rc

matrix (to the first order in the deformation parameter) as

Rc ¼ I � Iþ I½M�� � a�D� � a�D� �M���: (65)

The explicit form of M�� appearing above is given in

Eq. (24). We note here that the above R matrix, up to first
order in the parameter, involves only the generators of the
�-Poincaré algebra, namely M�� and D�. This has to be

contrasted with the one in Eq. (63) for the noncovariant,

twisted flip operator, which involves the (space) dilation
operator which is not in the k-Poincaré algebra (R matrix,
as an expansion in inverse powers of �, was studied in [52]
for the case of � deformed spaces). It may also be noted
that the R� and Rc matrices would in general lead to
different physics. The calculation of the covariant Rmatrix
to all orders in the deformation parameter is presently
under investigation. This covariant R matrix to first order
in the deformation parameter given in Eq. (65) is a new
result.

B. Twisted oscillator algebra

In this section, we derive a novel class of twisted prod-
ucts between the creation and annihilation operators ap-
pearing in the mode expansion of the scalar field theory in
� space.
Having defined the twisted flip operator �’, we are now

in a position to define (anti)symmetric states of a theory
defined in the �-Minkowski space. We start by defining the
deformed bosonic state as

f ?’ g ¼ m’ðf � gÞ ¼ m’�’ðf � gÞ: (66)

Using the definitions ofm’ and �’ [see Eqs. (43) and (60)]

in the above, we get

f � g ¼ �’ðf � gÞ (67)

or equivalently, we can write

F ’ðf � gÞ ¼ ~F ’ðf � gÞ; (68)

where we have used the mirror twist operator ~F ’ ¼
�0F ’�0. Now defining the twisted tensor product f �’ g

as F ’ðf � gÞ, from the above, we get

f �’ g ¼ �0ðf �’ gÞ: (69)

For the product of two bosonic fields �ðxÞ and �ðyÞ
under interchange, now we pick up an additional factor
compared to the commutative case. This can be calculated
using Eq. (67) and one gets

�ðxÞ ��ðyÞ � e�ðA�N�N�AÞ�ðyÞ ��ðxÞ ¼ 0: (70)

Expressing � in the above equation using Fourier trans-
forms and using the twisted flip operator in momentum
space, we are led to the deformed commutation relations
between the annihilation operators as

~�ðkÞ ~�ðpÞ ¼ e�ia½k0ð@pipiÞ�p0ð@ki kiÞ� ~�ðpÞ ~�ðkÞ: (71)

The �ðxÞ appearing in the generalized Klein-Gordon
equation (22) can be expressed as

�ðxÞ ¼
Z

d4p�ðp2
0 �!2Þ �AðpÞe�ip�x; (72)

where ! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
i þm2

q
. Using the mode decomposition
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�ðxÞ ¼
Z d3pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
i þm2

q ½Að!; ~pÞe�ip�x þ Ayð!; ~pÞeip�x�;

(73)

from Eq. (71) we get

Ayðp0; ~pÞAðq0; ~qÞ � e�aðq0@pipiþ@qiqip0ÞAðq0; ~qÞAyðp0; ~pÞ
¼ ��3ðp� qÞ; (74)

Ayðp0; ~pÞAyðq0; ~qÞ � e�að�q0@pipiþ@qi qip0ÞAyðq0; ~qÞ
� Ayðp0; ~pÞ ¼ 0; (75)

Aðp0; ~pÞAðq0; ~qÞ � e�aðq0@pipi�@qi qip0ÞAðq0; ~qÞAðp0; ~pÞ ¼ 0:

(76)

For the choice ’ ¼ e�ðA=2Þ ¼ e�ððia@0Þ=2Þ, the general-
ized Klein-Gordon equation (37) is�

@2i þ
4

a2
sinh2

�
ia@0
2

�
�m2

�
� ¼ 0: (77)

We can decompose this field in positive and negative
frequency modes and thus,

�ðxÞ ¼
Z d4p

2�kðpÞ ½Að!k; ~pÞe�ip�x þ Ayð!k; ~pÞeip�x�;
(78)

where Ayð�!k; ~pÞ ¼ Ayð	!k; ~pÞ. In the above, we have
used

p�0 ¼ �!kðpÞ ¼ � 2

a
sinh�1

�
a

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
i þm2

q �
; (79)

�kðpÞ ¼ 1

a
sinhða!kðpÞÞ: (80)

Using this in Eq. (71), for the field satisfying the de-
formed generalized Klein-Gordon equation given above
[Eq. (77)], we obtain various twisted commutation rela-
tions between creation and annihilation operators. They are

Ayðp0; ~pÞAðq0; ~qÞ � e�aðq0@pipiþ@qiqip0ÞAðq0; ~qÞAyðp0; ~pÞ
¼ ��3ðp� qÞ; (81)

Ayðp0; ~pÞAyðq0; ~qÞ � e�að�q0@pipiþ@qi qip0ÞAyðq0; ~qÞ
� Ayðp0; ~pÞ ¼ 0; (82)

Aðp0; ~pÞAðq0; ~qÞ � e�aðq0@pipi�@qi qip0ÞAðq0; ~qÞAðp0; ~pÞ ¼ 0:

(83)

Note that p0 and q0 are as given in Eq. (79). From this, one
can easily derive the following relations

Ayðp0; e
�ðaq0Þ=2 ~qÞAyðq0; eðap0Þ=2 ~qÞ

�F ðq; pÞAyðq0; e�ðap0Þ=2 ~qÞAyðp0; e
ðaq0Þ=2 ~qÞ ¼ 0; (84)

Aðp0; e
ðaq0Þ=2 ~pÞAðq0; e�ðap0Þ=2 ~qÞ

�F ð�q;�pÞAðq0; eðap0Þ=2 ~qÞAðp0; e
�ðaq0Þ=2 ~pÞ ¼ 0; (85)

Ayðp0; e
ðaq0Þ=2 ~pÞAðq0; eðap0Þ=2 ~qÞ

�F ð�q; pÞAðq0; e�ðap0Þ=2 ~qÞAyðp0; e
�ðaq0Þ=2 ~pÞ

¼ ��3ðp� qÞ; (86)

where F ðq; pÞ ¼ e3aðq0�p0Þ. These relations were obtained
in [37,48] using a different approach. Using these relations,
a new product (the 
 product) between the creation and
annihilation operators is defined as follows:

AðpÞ 
 AðqÞ ¼ e�ðð3aÞ=2Þðp0�q0ÞAðp0; e
ðaq0Þ=2 ~pÞ

� Aðq0; e�ðap0Þ=2 ~qÞ (87)

AyðpÞ 
 AyðqÞ ¼ eðð3aÞ=2Þðp0�q0ÞAyðp0; e
�ðaq0Þ=2 ~pÞ

� Aðq0; eðap0Þ=2 ~qÞ (88)

AyðpÞ 
 AðqÞ ¼ eðð3aÞ=2Þðp0þq0ÞAyðp0; e
ðaq0Þ=2 ~pÞ


 Aðq0; eðap0Þ=2 ~qÞ (89)

AðpÞ 
 AyðqÞ ¼ e�ðð3aÞ=2Þðp0þq0ÞAðp0; e
�ðaq0Þ=2 ~pÞ


 Ayðq0; e�ðap0Þ=2 ~qÞ: (90)

Using this new product rule, we can reexpress Eqs. (81)–
(83) as

½Aðp0; ~pÞ; Aðq0; ~qÞ�
 ¼ 0;

½Ayðp0; ~pÞ; Ayðq0; ~qÞ�
 ¼ 0;
(91)

½Aðp0; ~pÞ; Ayðq0; ~qÞ�
 ¼ �3ð ~p� ~qÞ: (92)

Thus, with this modified product rule, the algebra of cre-
ation and annihilation operators can be recast in the same
form as the corresponding commuting operators.
We note here that the creation and annihilation operators

satisfying the specific deformed products given in
Eqs. (87)–(90) [and hence the commutation relations in
Eqs. (91) and (92)] are the ones appearing in the mode
decomposition of the scalar field [see Eq. (78)] satisfying
the generalized Klein-Gordon equation (37) with a particu-

lar choice ’ðAÞ ¼ e�ðA=2Þ [see Eq. (77)]. Thus it is clear
that even for the scalar field obeying the field equa-
tion (37), more general [i.e., for other choices of/arbitrary
’ðAÞ] dispersion relations than those given in Eqs. (79) and
(80) are possible. This will lead to more general twisted
products than those given in Eqs. (74)–(90), leading to
generalized commutation relations in place of those in
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Eqs. (91) and (92). Thus the twisted products [see
Eqs. (87)–(90)] obtained in [37,48] are only a particular
case of more general products between Ay and A that are
possible.

The creation and annihilation operators satisfying the
above given deformed commutation relations are the ones
appearing in the mode decomposition of the scalar field
satisfying the generalized Klein-Gordon equation (37).
This generalized Klein-Gordon equation is invariant under
the �-Poincaré algebra defined in Eqs. (25) and (26), in
addition to the usual soðn� 1; 1Þ commutation relations
betweenM��. This should be contrasted with the approach

taken in [37,48] where the generalized Klein-Gordon equa-
tion was invariant under the action of a deformed
�-Poincaré algebra. Irrespective of this, we have obtained
the deformed commutation relations between Ay and A
given in [37,48], as a special case.

V. CONCLUSION

In this paper, we have studied the construction of scalar
theory on �-Minkowski spacetime. It is known that this
noncommutativity of the coordinates leads to twisted cop-
roducts for the generators of the �-Poincaré algebra. These
twisted coproducts are necessary for the implementation of
the symmetry algebra on multiparticle states. We have
summarized briefly, the explicit form of the twisted cop-
roducts for a class of realization of deformed �-spacetime
coordinates in terms of commuting coordinates and deriva-
tives. Here, the momenta do not transform like a vector
unlike in the case of undeformed �-Poincaré algebra. This
results in the noninvariance of the naive generalization of
the generalized Klein-Gordon equation [see Eq. (22) under
the action of the deformed �-Poincaré algebra. We then
introduced Dirac derivatives which transform as a vector
under the deformed �-Poincaré algebra. After obtaining
the coproducts of the generators of this deformed Poincaré
algebra and the Casimir, generalized Klein-Gordon equa-
tions which are invariant under this algebra are introduced.
The requirement of invariance alone does not lead to a
unique generalized Klein-Gordon equation. These gener-
alized Klein-Gordon equations do have higher derivative
terms with respect to time while one of them has quartic
space derivatives [see Eq. (36)] while the second has
quadratic space derivatives [see Eq. (37)]. We have then
discussed the � product naturally induced by the realization
of �-spacetime coordinates in terms of the commuting
ones and derivatives. From this � product, one can read
off the twist element and we showed that it can be ex-
pressed in terms of a space dilation operator and time
derivative. It is clear that the twisted coproducts obtained
using this twist element are different from those of de-
formed �-Poincaré algebra as well as those of the unde-
formed �-Poincaré algebra defined using Dirac derivatives.

Our main results are discussed in Sec. IV. Here we have
derived the flip operators compatible with the algebraic

structure of the system. First, we have obtained the twisted
flip operator, which is compatible with the twisted copro-
ducts of the deformed �-Poincaré algebra and then we
derive the covariant flip operator, which is compatible
with the coproducts of the undeformed �-Poincaré algebra
defined using Dirac derivatives. In both cases, we have
obtained the Rmatrices corresponding to the deformed flip
operators (up to first order in the deformation parameter). It
is shown that in the first case, the twisted flip operator
contains elements that do not belong to the set of the
generators of the symmetry algebra. In contrast, the cova-
riant flip operator up to the first order in the deformation
parameter involves only the generators of the symmetry
algebra. The calculation of the covariant R matrix to all
orders in the deformation parameter is being investigated
now. Whether the two different Rmatrices we obtained for
the �-Minkoswksi space are equivalent or not is under
investigation.
We have then studied implications of the twisted flip

operator on the statistics of the scalar field quanta, satisfy-
ing the generalized Klein-Gordon equation defined in the �
spacetime. We have shown that the algebra of creation and
annihilation operators is deformed and we obtain this
deformed algebra explicitly. We have also shown that
this deformed algebra reproduces a known result for a
specific choice of the realization of the �-spacetime coor-
dinates [37]. Our analysis however leads to a much wider
and novel class of deformed oscillator algebras.
Finally, in the Appendix, we have discussed the � prod-

uct for the � spacetime defined using vector fields and
obtain the twisted coproducts of the symmetry algebra
induced by this � product. We show that this twisted
coproduct is the same as that of the undeformed
�-Poincaré algebra generated by @�, and ~M��.
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APPENDIX: THE � PRODUCTAND COPRODUCTS
FROM VECTOR FIELDS

Here we discuss the � product and the twist element for
the �-spacetime using the commuting vector field. Using
this twist element, we then derive the twisted coproducts
and show that they are the same as the ones we obtained in
Eqs. (13), (14), (17), and (18), with a specific choice ’ðaÞ.
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In Sec. III, we have obtained the � product induced on
the commutative space by the mapping of the function
from deformed k spacetime. The explicit form of this �
product is given in Eq. (47). The � product was first
introduced in quantum mechanics as a way to handle the
ordering problems encountered in the passage from clas-
sical phase space to the quantum one (or in obtaining a map
between functions on classical phase space to the corre-
sponding quantum mechanical operators). The approach
later lead to the development of deformation quantization.
In the studies of noncommutative field theories on the
Moyal plane, it was realized that the product of functions
on the Moyal plane can be replaced with the � product of
function on commutative space. Later, it was shown that
the compatibility requirement of the � product and the
action of symmetry generators introduces the twisted cop-
roducts into the discussions of symmetries [15].

The � product in the Moyal plane is constructed using
the commuting generators of the symmetry algebra
(namely Poincaré algebra). Later � products were con-
structed for quantum spaces like Mðsoqð3ÞÞ,
Mðsoqð1; 3ÞÞ, etc. using commutative vector fields (which

are not the generators of the symmetry algebra of the
underlying space) [53]. For a pair of vector fields X and
Y, this � product is given a series. An asymmetric � product
is defined by

f � g ¼ X1
n¼0

hn

n!
ðXnfÞðYngÞ (A1)

and a symmetric one is defined as

f � g ¼ X1
n¼0

hn

2nn!

Xn
i¼0
ð�1ÞnnCiðXn�iYifÞðXiYn�igÞ:

(A2)

Using this approach, one can define a � product between
the coordinates leading to the commutation relations defin-
ing the � spacetime given in Eq. (2). This product is
defined in terms of the commuting vector fields xi@i and
@0 as

f � g ¼ fe�iða=2Þðxi@i�@0�@0�xi@iÞg: (A3)

Here we have summed the series in Eq. (A2) to get the
phase factor in the above equation. It is easy to verify that
the above � product gives Eq. (2) for commuting coordi-
nates x0, xi.
As in the Moyal case, here too we can define the twisted

coproduct in terms of the twist element F . Noting
m�ðfgÞ ¼ f � g ¼ mðF fgÞ and using Eq. (A3), we find

F ¼ e�iða=2Þðxi@i�@0�@0�xi@iÞ. Using �tðgÞ ¼ F�1�ðgÞF ,
we find the twisted coproducts of the generators of the
undeformed Poincaré algebra @0, @i, ~M0i, and ~Mij. We find

�tð@0Þ ¼ �ð@0Þ; �tð ~MijÞ ¼ �ð ~MijÞ (A4)

�tð@iÞ ¼ @i � e�ððia@0Þ=2Þ þ eðia@0Þ=2 � @i (A5)

�tð ~Mi0Þ ¼ �i½xi@0 � eðia@0Þ=2 þ e�ððia@0Þ=2Þ � xi@0�
� i½x0@i � e�ððia@0Þ=2Þ þ eðia@0Þ=2 � x0@i�
þ a

2
½@i � xj@je

�ððia@0Þ=2Þ � xj@je
ðia@0Þ=2 � @i�:

(A6)

Exactly the same twisted coproducts result from
F�1’ �0ð@�ÞF ’;F�1’ �0ðM��ÞF ’, where �0 is the copro-

duct of the undeformed Poincaré generators with the

choice ’ðaÞ ¼ e�ððia@0Þ=2Þ [for the derivative operators
these are the same as the ones given in Eqs. (13) and
(14)]. We note that the � product defined using the com-
mutating vector fields in Eq. (A3) is same as the one we
obtained in Eq. (47) and the twist element is exactly the

same as that in Eq. (48) with the choice ’ðaÞ ¼ e�ððia@0Þ=2Þ.
Thus it should not be surprising that these two different
approaches lead to the same twisted coproducts. But it is
clear the � product defined in Eq. (47) is more general as it

reduces to Eq. (A3) only for the choice ’ðaÞ ¼ e�ððia@0Þ=2Þ.
We also note that the twisted coproducts derived above are
given in terms of operators that are not in �-Poincaré
algebra.
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