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Abstract

Quantum field theory allows more general symmetries than groups
and Lie algebras. For instance quantum groups, that is Hopf alge-
bras, have been familiar to theoretical physicists for a while now.
Nowdays many examples of symmetries of categorical flavor – cate-
gorical groups, groupoids, Lie algebroids and their higher analogues
– appear in physically motivated constructions and faciliate construc-
tions of geometrically sound models and quantization of field theories.
Here we consider two flavours of categorified symmetries: one coming
from noncommutative algebraic geometry where varieties themselves
are replaced by suitable categories of sheaves; another in which the
gauge groups are categorified to higher groupoids. Together with
their gauge groups, also the fiber bundles themselves become cate-
gorified, and their gluing (or descent data) is given by nonabelian
cocycles, generalizing group cohomology, where ∞-groupoids appear
in the role both of the domain and the coefficient object. Such cocy-
cles in particular represent higher principal bundles, gerbes, – possibly
equivariant, possibly with connection – as well as the corresponding
associated higher vector bundles. We show how the Hopf algebra
known as the Drinfeld double arises in this context.
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1. Introduction

The first part of this article is an overview for a general audience of mathe-
matical physicists of (some appearances of) categorified symmetries of geo-
metrical spaces and symmetries of constructions related to physical theories
on spaces. Our main emphasis is on geometric and physical motivation, and
the kind of mathematical structures involved. Sections 2-4 treat examples
in noncommutative geometry, while 5-6 introduce nonabelian cocycles mo-
tivated in physics.

In sections 6-9 we discuss some technical details concerning differential
cocycles and their quantization; part of these sections can be understood
as a research anouncement.

Warning on versions: The original version of this article has been sub-
mitted in December 2008, and appeared in 5th Summer School of Modern
Mathematical Physics, SFIN, XXII Series A: Conferences, No A1, (2009),
397-424 (Editors: Branko Dragovich, Zoran Rakić). In this arXiv version
we have slightly updated some introductory points, and in particular the
subsections 2.5. and 7.2. are entirely new. Section 7.1. on connections on
principal ∞-bundles is also new and serves to provide some more back-
ground for the examples in section 9, where for instance the discussion of
the electromagnetically charged quantum particle from a categorical per-
spective is new and the whole subsection 9.7. on Chern-Simons theory. We
have also appended the list of additional (mainly new) references alpha-
betically just below the original references [1-48]. One should especially
mention the important reference arXiv:0905.0731 [FHLT] which touches
on similar issues of categorical foundations of quantum physics as the the
work sketched here and in the larger manuscript [36], also from December
2008. We should also note that since publication many aspects of this and

http://arxiv.org/abs/0905.0731
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related work were discussed or presented in the online project nlab [66] in
which we are participating.

1.1. Categories and generalizations

We assume the reader is familiar with basics of the theory of categories,
functors and sheaves, as the mathematical physics community has adopted
these by now. At a few places for instance we use (co)limits in categories.
Readers familiar with enriched and higher category theory ([3, 24, 65, 72])
can skip this subsection.

The concept of a category C is often extended in several directions
[2, 4, 24], leading to the internal categories, internal groupoids, monoidal
categories, enriched categories, strict n-categories, and various flavours of
weak higher categories. We will just sketch the terminology for orientation.

Instead of a set C1 = ObC of objects and set C0 = MorC of morphisms,
with the usual operations (assignment of identity i : X 7→ idX to X; do-
main (source) and codomain (target) maps s, t : C1 → C0; composition of
composable pairs of morphism ◦ : C1 ×C0 C1 → C1) one defines an inter-
nal category in some ambient category A by specifying object of objects
C0 and object of morphism C1 which are both objects in A, together with
morphisms i, s, t, ◦ as above, and satisfying analogous relations. An inter-
nal groupoid is an internal category equipped with an inverse-assigning
morphism (·)−1 : C1 → C1 satisfying the usual properties. For instance
smooth groupoids (Lie groupoids) are internal groupoids in the category of
manifolds [2, 14, 23, 40]). A category may be given additional structure,
e.g. a monoidal category is equipped with tensor (monoidal) products
and tensor unit object (cf. [4, 24, 29] and section 3.). Given a monoidal
category D, a D-enriched category C has a set of objects, but each set of
morphisms homC(A,B) is replaced by an object D in D; it is required that
the composition be a monoidal functor. In particular D may be the cat-
egory of small categories, in which case a D-enriched category is precisely
a 2-category: it has morphisms between morphisms. This process may be
iterated and leads to n-categories of various flavour, with n-morphisms or
n-cells as morphisms between (n−1)-morphisms. A strict (n+1)-category
is the same as nCat-enriched category where nCat is the category of strict
n-categories and strict n-functors. If the cells for all n ≥ 0 are allowed we
are dealing with ω-categories.

It is natural to weaken the associativity conditions for compositions of
k-cells for 0 < k < n. This weakening is difficult to deal with, and there
are multiple definitions, but this weakening is often naturally arising in
applications and is more natural from the point of view of category theory
itself. Thus one can talk about weak n-categories [3, 24, 65, 72].

The weakening is much easier if the higher cells are invertible – these are
by definition the (n, 1)-categories in the sense of Baez and Dolan, including
the case of (∞, 1)-categories, which are of central importance in appli-
cations. More generally, we may talk on (n, k)-categories, of (in general,
weak) n-categories only r-cells for r > k are invertible, and in particular of
(∞, k)-categories.

According to Grothendieck’s homotopy hypothesis (from [58], ex-
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plained also in [3, 65, 24, 72]), (∞, 0)-categories, i.e. weak ∞-groupoids
are equivalent to topological spaces; in particular (∞, 1)-categories can be
modelled as categories enriched over a convenient category Top of topolog-
ical spaces. Alternatively, instead of describing combinatorially n-cells and
the algebra of various compositions among them, one can model (∞, 1)-
categories as simplicial sets satisfying the inner Kan conditions which are
certain existence properties which together replace the algebraic structure
of higher compositions. This model is also known under the name of quasi-
categories. Most recently, Thomas Nikolaus ([67]) has found a mixture
of algebraic and simplicial definition, in which the existence is accompanied
with additional choices making the comparison between the topological and
algebraic models of higher categories more transparent.

The language of Quillen model categories helps to compare various mod-
els for ∞-categories, see 6.1.

1.2. Basic idea of descent

Suppose we are given a geometric space and its decomposition in pieces with
some intersections, e.g. an open cover of a manifold. The manifold can be
reconstructed as the disjoint union modulo the identification of points in
the pairwise intersections. For this we need to specify the identifications
explicitly, and they may be considered as additional data. Suppose we now
want to glue not the underlying sets, but some structures above, e.g. vector
bundles. Bundles on each open set Uα of the cover form a category Vecα
and there are restriction functors from Vecα to the ’localized’ category
of bundles on Uαβ := Uα ∩ Uβ. A global bundle F is determined by its
restrictions Fα to each open set Uα of the cover, together with identifications

(Fα)|Uαβ

fαβ
∼= (Fβ)|Uαβ

via some isomorphisms fαβ. These isomorphisms
satisfy the cocycle condition fαβ ◦ fβγ = fαγ and fαα = id. The data
{Fα, fαβ} are called descent data ([19, 9, 47]). Equivalence classes of descent
data are cohomology classes (with values in the automorphism group of the
typical fiber) and they correspond to isomorphism classes bundles over the
base space. There are vast generalizations of this theory, cf. [19, 9, 46, 36,
40, 41]. Gluing categories of quasicoherent sheaves/modules (see section 2.
on their role) over noncommutative (NC) localizations which replace open
sets ([34, 33, 44]) is a standard tool in NC geometry. Localization functors
Qα for different α, usually do not commute, what may be pictured as a
noncommutativity of intersections of ’open sets”. In order to reconstruct
the module from its localizations (restrictions to localized ”regions”) we
need match at both consecutive localizations, QαQβ and QβQα.

2. From noncommutative spaces to categories

2.1. Idea of a space and of a noncommutative space

By a noncommutative (NC) space ([14, 34, 44]) we mean any object for
which geometrical intuition is available and whose description is given by
the data pertaining to some geometrical objects living on the ’space’. Sup-
pose we measure observable corresponding to some property depending on
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a local position in space. If the position changes from one part to another
part of a space, we get different measurements, thus the measurements are
expected to be functions of the local position. If the space is made out
of points and we can make measurements closely about each point, then
we get a function on the underlying set of points. This corresponds to the
observables on phase space in classical physics; the quantum physics and
noncommutative geometry mean that we can not decompose some ’spaces’
to points, hence we can not really construct set-theoretic functions. Still,
one can often localize observables to some geometrical ’parts’ if not points.

2.2. Gel’fand-Naimark

The most standard case is when the ’space’ is represented by a C-valued
algebra A. If A is commutative then the points of the space correspond to
the characters (nonzero homomorphisms χ : A → C), or equivalently, to
maximal ideals I = Kerχ in A. Knowing all functions at all points, physi-
cally means being able to measure all local quantities, and mathematically
expresses theGel’fand-Naimark theorem: from the C∗-algebra of contin-
uous C-valued functions on a compact Hausdorff space we can reconstruct
back the space as the Gel’fand spectrum of A ([14, 23]). The Gel’fand
spectrum can be constructed for NC algebras as well, but in that process
we lose information and get smaller commutative algebras – the spectrum
is roughly extracting the points, together with some topology, and there
are not sufficiently many points to determine the NC space. Instead one
is trying to express the geometrical and physical constructions we need in
terms of algebra A, at least for good A-s of physical interest. This strat-
egy usually works e.g. for small NC deformations of commutative algebras.
Thus such a quantum algebra is by physicists usually called a NC space. We
emphasise that there are more general NC spaces and more general types
of their description.

2.3. Nonaffine schemes and gluing of quasicoherent sheaves

We often know how the local coordinate charts look like and glue them to-
gether. The global ring is in principle sufficient information in C∗-algebraic
framework, but many constructions are difficult as one has to make cor-
rect choices in operator analysis. Thus sometimes one resorts to algebraic
geometry, that is algebras of regular (polynomial) functions; but even com-
mutative algebraic variety/scheme X is not always determined by its ring
of global regular functions O(X). Even if it is, we may find convenient to
glue together more complicated objects (say fiber bundles) over the space
from pieces. One way or another, we need to glue the spaces represented
by algebras of functions to an object which will not loose information as
the global coordinate ring sometimes does. If we have some sort of a cover
of the space by collection of open sets Ui where on each Ui the algebra of
functions determines the space, then having all of them together conserves
all local information; moreover we should be able to pass to other open sets.
Thus one needs a correspondence which to every open set gives an algebra
of observables, that is some sheaf of functions in the case of commutative
space; to do the same for fibre bundles means that we need to do the same
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for sheaves of sections of other bundles. It seems reasonable to take a cate-
gory of all sheaves of suitable kind on the space as a replacement of space.
This point of view in geometry was advocated by A. Grothendieck in
1960-s (geometry of toposes). Gabriel-Rosenberg’s theorem states that
every algebraic scheme X (typical geometrical space in algebraic geometry)
can be reconstructed, up to an isomorphism of schemes, from the abelian
category QcohX of quasicoherent sheaves on X ([34]). For noetherian
schemes a smaller (tensor abelian) subcategory CohX of coherent sheaves
is enough, and in some cases even its derived category Db(CohX) in the
sense of homological algebra ([31]).

2.4. Noncommutative generalizations of QcohX

Examples suggest that instead of small deformations of commutative al-
gebras of functions, we may consider deformations and similarly behaved
analogues of categories QcohX . Principal examples appeared related to
mirror symmetry. Mirror symmetry is a duality involving two Calabi-Yau
3-folds X and Y , saying that N = 2 SCFT-s A-model on X and B-model
on Y and viceversa, A-model on Y and B-model on X are (nontrivially)
equivalent as N = 1 SCFT-s (the difference at N = 2 level is in a ±1
eigenvalue of an additional U(1)-symmetry operator, what is physically not
distinguishable). In 1994, Maxim Kontsevich proposed the homological
mirror symmetry conjecture [27], which is an equivalence of A∞-categories
related to topological A- and B-models. In A-model, the A∞-category in-
volved is the Fukaya category defined in terms of symplectic geometry on X
(Y ), and B-model is the A∞-enhancement of the derived category of coher-
ent sheaves on Y (X). Kontsevich also suggested a definition of a category
of B-branes in N=2 Landau-Ginzburg models ([21, 26]) which have very
similar structure to, but are different from, the derived categories of coher-
ent sheaves on quasiprojective varieties. There are known relations between
Hochschild cohomology (expressed in terms of Db(CohX)) and n-point cor-
relation functions in the corresponding SCFT. Around 2003, Kontsevich
and, independently K. Costello, found a way to go back and reconstruct
SCFT from sufficiently good, but abstract A∞-categories [15, 26], where
’good’ involves generalizations of certain properties of (A∞ enhancement
of) Db(CohX) where X is a Calabi-Yau variety. This shows that indeed
physically relevant generalizations and deformations of varieties of complex
algebraic geometry may come out of generalizations of algebraic geometry
in terms of categories of sheaves and their abstract generalizations.

2.5. Abelian versus ∞-categories

While Abelian categories of quasicoherent sheaves ([68, 34]) contain all the
information on a variety, this is not always true for their derived categories,
or enhanced versions of those ([54, 62, 63]). Recent years have witnessed a
subject of derived algebraic geometry (DAG, cf. [63, 26, 74, 75]), which
helped redefine many constructions in the usual geometry in a fruitful and
natural manner. The geometric spaces are there understood as higher cat-
egorical entities; in the functor of points view on schemes, the commutative
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rings as (opposite to) local models are replaced by commutative dg- or sim-
plicial rings, and presheaves of sets by presheaves of simplicial sets. This
allows for notions of constructions uo to coherent homotopy, and in par-
ticular of derived version of many natural constructions and functors. In
particular many new moduli spaces are constructed in this framework.

While the framework of DAG has extended the commutative algebraic
geometry and can treat the usual schemes as special case of derived schemes,
the passage from the representation of the category of quasicoherent sheaves
to its derived version looses some information in general. There are severals
ways to do a derived category; it is well known that the usual triangulated
version is bad for many reasons (including the nonfunctoriality of cones)
and that one can replace it by an enhanced version. The enhanced versions
are very natural from the categorical point of view but even they do not
contain full information which the abelian category of quasicoherent sheaves
have; all of them are just a derived version of a usual scheme. While the
usual schemes can be embedded into the bigger world of derived schemes,
the replacement of the abelian category of quasicoherent sheaves by the
enhanced triangulated category is not a faithful functor.

There are several versions of enhancements of a triangulated category;
that is their replacements by a pretriangulated differential graded category,
by pretriangulated A∞-category or by a stable ∞-category ([54, 61, 53]).
In characteristics zero all of the three approaches are equivalent. Being
pretriangulated, or stable are properties rather than structures.

Now, coming back to noncommutative geometry. The replacement of
an algebraic variety by a stable∞-category or say A∞ version of it, can also
be fitted into the functor of points point of view. Then there is no difference
in formalism, between the derived algebraic geometry based on simplicial
presheaves on derived affine schemes as with the derived geometry based on
representing spaces by stable infinity categories. Thus there is no signifi-
cant difference between derived commutative and derived noncommutative
geometry; while there is a more serious difference between the commutative
and noncommutative geometry at the level of abelian categories of sheaves,
seen for example in localization theory of noncommutative algebras which
are large in the sense ”close to free algebras”.

3. Monoidal categories as symmetries of NC spaces

3.1. Basic appearances of Hopf algebras

The role of symmetry objects extends to the NC world: they help us sin-
gling out good candidates for the underlying space-time of a theory, and one
employs the covariance properties of the tensors built out of field variables
when constructing model Lagrangeans. In QFT, one wants not only that
the fields form a representation of a symmetry algebra, but also to describe
the second quantized systems, where the Hilbert space H is replaced by its
exponent – the direct sum of n-particle Hilbert spaces, for all n, which are
(in bosonic case, for simplicity) the symmetric powers of 1-particle Hilbert
space H. Thus the symmetry has to be defined on tensor products of rep-
resentation spaces (classical example: addition of angular momenta of sub-
systems). Hopf algebras have the structure sufficient to define the tensor
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product of representations and the dual representations ([28, 29]), and each
finite group gives rise to a Hopf algebra (“group algebra”) with the same
representation theory. Locally compact groups considered in axiomatic
QFT, may also be generalized to Hopf algebra-like structures called locally
compact quantum groups. If the underlying space is undeformed and in
4D, the axiomatic QFT actually proves that the full symmetry is decribed
by a locally compact group, but in dimension 2, exotic braiding symmetries
and quantum groups are allowed; in NC case a generic model will have a
nonclassical symmetry. The symmetry algebra is here understood in the
usual sense – consisting of all observables commuting with the Hamilto-
nian. The natural Hamiltonians preserve the symmetries of the underlying
space geometry, but there are often other symmetries which are not the
symmetries of the underlying space; there are also hidden symmetries not
seen at Hamiltonian level, but only in solutions.
Now we want to discuss the geometrical symmetries of “bare” underlying
noncommutative space. For this we need to discuss more carefully a role
of Hopf algebras. Recall ([29]) that a Hopf algebra H is an associative
unital algebra equipped with a counital coassociative coproduct ∆ : H →
H ⊗ H which is a morphism of algebras. Starting with any (say finite)
group one may form its group algebra CG, which is a Hopf algebra whose
representations coincide with the representations of the group. On the other
hand, the group itself may be replaced by a suitable algebra of functions
O(G) on it, and then the corepresentations of O(G) (linear maps ρ : V →
V ⊗O(G) with (ρ⊗ id)ρ = (id⊗∆)ρ) will correspond to the representations
of G. O(G) is commutative, and one may consider noncommutative Hopf
algebras instead; and they are in abundance ([29]), since the discovery of
quantum groups.

3.2. A problem with tensor product

Mathematically, replacing the commutative algebras, by the noncommu-
tative, one should change the tensor product of commutative algebras (a
categorical coproduct in the category of commutative algebras) by the so-
called free product of noncommutative algebras, in all considerations.
This would yield straightforward transfer of many constructions and their
properties. However, examples of Hopf algebras with respect to the categor-
ical coproduct are just few, while usual NC Hopf algebras with respect to ⊗
(e.g. quantum groups) are abundant in physical applications. Many prac-
tioners ignore these facts and simply work with the usual tensor product;
however we suggest a better understanding of this situation ([45]) from the
perspective of categories of modules (quasicoherent sheaves) rather than
algebras.

3.3. Replacing Hopf (co)actions with geometrically admissible
actions of monoidal categories

Recall that in the commutative case, A-Mod is equivalent to QcohSpecA,
and that we took a viewpoint that the categories like QcohX are repre-
senting spaces. H-Mod and H-Comod where H is a Hopf algebra are rigid
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monoidal categories. A monoidal category is a category equipped with
a bifunctor ⊗ (monoidal or tensor product), which is associative up to co-
herent isomorphisms M⊗ (N⊗P ) ∼= (M ⊗N)⊗P , this category has a unit
object 1 (satisfying 1⊗M ∼= M ∼= M ⊗ 1) and this category has dual ob-
jects M∗ with usual properties (rigidity/autonomous category). Not only
QcohX remembers schemeX (Gabriel-Rosenberg theorem), also in favorite
cases H-Mod as a rigid monoidal category remembers the underlying Hopf
algebra (or Hopf algebroids, appearing as symmetries of inclusions of fac-
tors [8], relevant to CFT): this is an aspect of so-called Tannakian duality
used widely in physics, e.g. the Doplicher-Roberts duality dealing with
reconstruction of a QFT in 4d out of knowledge of full symmetry algebra
is also a form of Tannaka reconstruction theorem; some reconstructions in
CFT are as well ([29], Ch.9).

The reason why the usual Hopf algebras geometrically still fit into NC world
is that the Hopf actions H⊗A→ A (i.e. when A is H-module algebra [29])
or Hopf coaction A→ A⊗H (A is H-comodule algebra), induce an action
of the monoidal category of H-comodules (1st case) or H-modules (2nd
case) on A-Mod (cf. [45] for recipes how to induce the categorical actions in
these cases). Hopf coaction is hence replaced by an action bifunctor ♦ : A-
Mod×H-Mod→ A-Mod. The action axiom is the mixed associativity with
product ⊗ in H-Mod, namely M♦(N♦P ) ∼= (M ⊗ N)♦P . Replacing the
Hopf algebra H by its monoidal category of left modules H-Mod, we can
as well, replace the Hopf coaction of H on A by the corresponding action
♦ of H-Mod.
While in these affine cases (co)actions of Hopf algebras, induce for non-
commutative geometry more fundamental categorical actions, in some more
general nonaffine situations the usual (co)actions of Hopf algebras do not
make sense and need to be replaced by a categorical device anyway. For
example, if we want to globalize the action of Hopf algebra to nonaffine
noncommutative varieties, then the latter may not be represented by a
single algebra, but rather by the gluing data for several algebras. As the
(co)action usually does not make the affine pieces invariant, one really needs
to talk about a coaction of Hopf algebra on the entire category of sheaves
glued from pieces. But such coaction has no sense literally, unless we re-
place the Hopf algebra by its monoidal category of modules as well which
can act in the categorical sense.
One should emphasise that not all actions of monoidal categories are good
in this framework. A monoidal category usually has some origin, which is
understood over the ground scheme. For example, the category of mod-
ules over a Hopf algebra H over a commutative ground ring k, knows that
its Hopf algebra structure is made sense of by the tensor product in the
category of k-modules. In particular, the tensor product on the category
of H-modules exists because the coproduct of H is defined using the ten-
sor product of k-modules. The category of H-modules naturally acts on
the category of k-modules just by forgetting the H-module structure and
tensoring over k. Now any action on a category of quasicoherent sheaves
over some noncommutative k-scheme must be compatible with that original
”defining” action in the sense that the direct image functor to the ground
scheme (represented by the category of k-modules) intertwines the actual
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action and the canonical action on the ground scheme. Abstract actions
of monoidal categories, satisfying this property were defined in our earlier
paper [45] as geometrically admissible actions.

3.4. Principal bundles on noncommutative schemes

We now have to answer which geometrically admissible actions are principal
in the noncommutative setup in which the space is replaced by a category
of would-be quasicoherent sheaves; what are locally trivial bundles and how
can they be expressed by the cocycle like data. This is partly understood
in the categorical framework, but not widely known.

Geometrical admissibility of actions of monoidal category in the case
when both the total space and the base ”quotient” space of the action
are affine can be understood as a construction of the action by lifting the
canonical action on the base to the total space. In category theory, such lifts
were studied for (co)monads and lead to the concept of a distributive law.
One of the authors has worked out a slightly more general case when the
monad or comonad is replaced by a monoidal category ([73]). It is interest-
ing that in the construction of examples of noncommutative (”quantum”)
principal bundles T. Brzeziński and S. Majid rediscovered the notion of
mixed distributive laws under the name of entwining structures ([55]).

For principality, a minimal reasonable requirement is that the category
of equivariant sheaves on the total space is canonically equivalent (via a
descent theorem) to the category of usual sheaves on the base space. It
has been shown by V. Lunts and the second author that in the case of
coaction of Hopf algebras, the relative Hopf modules are in very literal sense
(phrased in terms of sheaves on noncommutative analogue of a simplicial
object, namely the Borel construction) equivariant sheaves (a summary of
that interpretation is treated in [45]). And indeed, the Schneider’s theorem
for Hopf-Galois extensions and its various generalizations, including for the
distributive laws are then the descent along torsor theorems. Surely the
natural topology for such theorems in the commutative case is the flat
topology, while Zariski principal bundles are very special.

Flat noncommutative localizations form an analogue of Zariski topology
in the noncommutative case. There are some substantial differences in the
formulation of the descent in that case, in respect to the case of the usual
Grothendieck topologies (see our survey [44]) which we for simplicity ignore
in this article. Still the descent for such a noncommutative topology can
be formulated and effectively used in some favorable cases. But it appears
that the local situation is in such cases usually neither the tensor product,
nor the free product of the base algebra and the fiber. Instead, the most fre-
quent case is a special case of Hopf-Galois extensions which is algebraically
similar to semidirect products of groups, namely the Hopf smash product
of noncommutative algebras, which indeed has many important features of
a ”trivial principal bundle”, though there exist more than one trivial princi-
pal bundle in general. For example, one of the authors has shown ([42]) that
the quantum group analogue of the Gauss decomposition induces a local
trivialization in the sense of noncommutative Ore localizations and smash
products of the q-deformation of the fibration SLn → SLn/B expressed in
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terms of quantized algebras of functions.
More generally, one can consider morphism E → X of noncommutative

schemes ([33]), represented by abelian categories CE, CX , with an action of
a monoidal category M of modules over a Hopf algebra, together with an
atlas of localizations on CX , which are compatible in the sense that there
is an induced action of the monoidal category on the localizations ([45]);
and then if the localizations are affine, then one tests locally if the action
is Hopf-Galois or a distributive law analogue of Hopf-Galois. At least such
cases deserve to be called principal actions, and some slight generalizations
are not difficult to define.

Moreover one can define associated bundles in some of these situations.
In the case of coactions of Hopf algebras, the sections of the associated
bundles locally in affine charts boil down to the cotensor product of the
type E V where E is the total algebra of the principal bundle and V
is a left comodule over the symmetry Hopf algebra ([42, 43]). For some
reason in the literature there is almost no study of the global algebras of
associated bundles but rather most of the spaces of sections in affine case;
we will address this question in detail in another publication.

4. Application to Hopf algebraic coherent states

In the classical case of compact Lie groups (and some other classcial gen-
eralizations), there is a projective operator valued measure on the space of
coherent states (CS) which integrates to a constant operator on the Hilbert
space corresponding to a unitary representation of the compact Lie group
or to a space of sections of certain line bundle over a generalization of the
homogenous space (from the Lie group case): the CS are not mutually or-
thogonal but they still play role in a resolution of unity operator formula.
If the Hilbert space is a playground of some quantum mechanical situation,
the Schrödinger equation can thus be written in CS representation. In ad-
dition CS have a number of special properties. Perelomov CS minimize
generalized (covariant) uncertainty relations and transform in an appropri-
ate covariant manner. Tensor operators of various “spin” may be treated
simultaneously by forming CS operators, what is useful for discussing QFT
on homogeneous spaces. I. Todorov with collaborators ([20, 37]) has been
taking advantage of CS in formulating gauged WZNW models in Hamilto-
nian formalism; but their CS are attached to quantum groups (cf. [28] for
variants of Hopf algebras in 2dCFT context) whose general and, particu-
larly, geometric theory was lacking; the open problem was to extend the
”projective CS measure” to the quantum group case (existing formulas in
simple cases in literature were just formal identities and usually the claimed
invariance is incorrect). But Todorov et al. did not develop an appropriate
geometric theory of coherent states.

Motivated by ([20, 37]), one of us has shown in [43] that using non-
commutative localization and gluing one can study the geometry of line
bundles over the quantum group homogeneous spaces and express the cor-
rect algebraic conditions for the analogues of Perelomov CS and of the in-
variant ”projective” CS measure. Local coordinates on quantum G/B are
described as a nncommutative principal fibration using categorical picture
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with action-compatible noncommutative localizations and a smash-product
picture in charts. In practice the construction of coordinates on the quo-
tient space, boils down to gluing of the algebras of localized coinvariants
(under the localized coaction of quantum Borel subgroup Bq) in coaction-
compatible localized charts on Gq ([42]).

5. Higher gauge theories

An n-groupoid is a n-category in which all k-cells for all 1 ≤ k ≤ n are
invertible (depending on the choice of context, this means strictly invertible
or weakly invertible, i.e. up to higher cells). An n-group is a one-object n-
groupoid. Smooth n-group(oid)s appear as analogues of Lie gauge groups
for parallel transport along higher dimensional surfaces. One can build
a theory of bundles with total space (which is now replaced by smooth
n-category), possesing local trivialization and differential forms which are
analogues of connection forms; two-torsors of [30], principal bigroupoid 2-
bundles of [5] and gerbes [9] are examples. The cocycle data of a gerbe
may be used to twist usual bundles and constructions with bundles, e.g. to
get twisted K-theory. Instead of looking at the total space and differential
forms, one may instead consider the effect of parallel transport to the points
in a typical fiber. Thus an n-bundle with connection gets replaced by trans-
port n-functor from some groupoid corresponding to the path geometry of
the underlying space (fundamental n-groupoid, path n-groupoid) to the
symmetry object of the fiber. The same formalism may incorporate gluing
of (hyper)covers, by replacing the path groupoids with Čech n-groupoids of
hypercovers: corresponding n-functors into symmetry n-group(oid) are the
appropriate cocycles. On the other hand, the fiber bundles may be pulled
back from the universal bundle over the classifying space of the group; the
classifying space BG of an n-group corresponds to regarding the n-group G
as a one-object (n + 1) − groupoid BG. Thus in the next few sections we
view cocycles as some weak maps into BG. In general we find it useful to
employ some abstract homotopy theory of a certain model of ∞-categories
described in section 6. to express what sort of “weak maps” the cocycles re-
ally are (for more details see [36]). We present two collections of definitions,
one encoding the theory of nonabelian cocycles and ∞-bundles in section
7., the other describing aspects of the quantum theory of the corresponding
σ-models in section 8. Some examples and applications are in section 9.

6. ∞-Categories and homotopy theory

While for a long time definitions of ∞-categories were notorious for not
being ready for showtime, recently André Joyal’s several decades-old sug-
gestion that there is good (∞, 1)-category theory with good explicit incar-
nations in terms of simplicial sets and simplicially enriched categories has
been fully realized and now provides a fully-fledged context in which to do
higher category theory. A good deal of the full picture was clarified in [65],
building on previous and ongoing work by many authors. The reader is
referred to this reference for a comprehensive account of most of the tech-
nical concepts that we will invoke in the following sections, notably to the
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appendix for a survey of category theory, simplicially enriched category the-
ory, model category theory and its relation to higher category theory. We
now try to briefly survey some aspects, to provide some kind of indication
of the background for the technical discussion to follow.

6.1. ∞-Categories versus model categories

This subsection is about the technical point of modelling∞-categories, and
may be skipped in the first reading.

A Kan complex is a simplicial set whose k-cells may be thought of
as k-morphisms in an ∞-groupoid: the Kan condition ensures that these
k-morphisms may be composed and have inverses.

An (∞, 1)-category is like an ∞-groupoid, only that the 1-morphisms
are not required to be necessarily invertible. Accordngly there is a slightly
weakened version of the Kan condition, and simplicial sets satisfying that
condition were called weak Kan complexes by Boardman and Vogt. A.
Joyal fully realized that this is a good model for (∞, 1)-categories and
introduced the term quasicategory ([60]) for these simplicial sets. This is a
powerful model in that it allows to use many tools from simplicial homotopy
theory for the study of (∞, 1)-categories.

A closely related and equivalent incarnation of (∞, 1)-categories is given
by ordinary enriched categories, enriched in Kan complexes. This is a
powerful, too, because it allows to apply many tools from enriched category
theory. There is an operation called the homotopy coherent nerve, which
takes a Kan-complex enriched category to a quasi-category. In practice this
is used to pass back and forth between the two incarnations at will. There
are other models, such as Segal categories and complete Segal spaces, too.

A particularly powerful additional toolset for presenting and handling
(∞, 1)-categories is the old language of Quillen model categories, which
deals with ordinary categories some of whose morphisms are marked in a
way that indicates their hidden (∞, 1)-categorical origin: notably a model
category has a singled out class of morphisms called weak equivalences,
which need not be invertible in the category, but are supposed to be equiv-
alences in the (∞, 1)-category presented by the model category.

Not all (∞, 1)-categories arise from model categories, but all (∞, 1)-
categories do arise from categories with just weak equivalences ([51]): every
category with weak equivalences determines, by a procedure called Dwyer-
Kan simplicial localization at these weak equivalences, an (∞, 1)-category,
and all (∞, 1)-categories arise this way. But if the category with weak
equivalences does carry in addition the structure of a simplicial Quillen
model category, then the corresponding (∞, 1)-category may more easily
be expressed as simply the full sSet-subcategory on all those objects that
are marked in the model structure as being fibrant and cofibrant.

The hom-simplicial sets of a simplicial model category are necessarily
Kan complexes, hence∞-groupoids. If moreover the model category is com-
binatorial (meaning that there is particularly good control over its cofibra-
tions), then the (∞, 1)-category obtained this way is (locally) presentable
[65]: it is a reflective sub-(∞, 1)-category (a localization) of an (∞, 1)-
category of (∞, 1)-presheaves. That every presentable (∞, 1)-category does
arise this way from a combinatorial simplical model category is essentially
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the Dugger’s theorem, which says that every combinatorial model category
arises as the left Bousfield localization of the projective model structure on
the category of simplicial presheaves on some site. Precisely if the local-
ization defining a locally presentable (∞, 1)-category is exact in that the
left adjoint to the inclusion of the reflective subcategory preserves finite
∞-limits is the presentable (∞, 1)-category an (∞, 1)-topos: in that case
this left adjoint is ∞-stackification and the reflective subcategory is that
of ∞-stacks/(∞, 1)-sheaves. If the localization is what is called topological,
then these ∞-stacks are precisely those ∞-presheaves that satisfy descent
with respect to Čech-nerves given by some Grothendieck topology on the
underlying category. This is the∞-categorical version of the ordinary sheaf
condition.

The∞-topos of∞-stacks on some site C plays the role of the collection
of ∞-groupoids equipped with geometric structure modeled by C. This is
discussed in the next section.

6.2. Generalized spaces, topoi and (higher) categories

If the object of a category C play the role of test spaces and their mor-
phisms behave as geometric homomorphisms between these test spaces,
then the topos Sh(C) - the category of sheaves on C – may be understood
as the category of generalized spaces modeled on C. This is a rephrase of
Grothendieck’s functor of points point of view on geometric spaces, by now
largely extended by Lurie ([64]) and others.

Some of these generalized spaces are very general: all they provide is
a consistent rule for how to probe them by throwing test spaces in C into
them. If C is a concrete site, the concrete sheaves on C model such spaces
that at least have an underlying topological space of points. Among these
concrete generalized spaces are the tame ones that are locally isomorphic
to objects in C.

For instance for C = CartesianSpaces (CartSp for short), the category
whose objects are the spaces R

n for all n ∈ N and whose morphisms are
smooth (infinitely differentiable) maps between these, we have a sequence
of inclusions

CartesianSpaces →֒ SmoothManifolds →֒ DiffeologicalSpaces →֒ Sh(CartesianSpaces)

representable
sheaves →֒

locally representable
sheaves →֒

sheaves with underlying
topological space →֒ all sheaves ,

where the entire inclusion from left to right is the Yoneda embedding.
Here diffeological spaces are sets equipped with a consistent rule for

which maps of sets from an R
n into them are regarded as being smooth.

Originally defined this way by Souriau and Chen, one sees that more ab-
stractly speaking these are precisely the concrete sheaves on CartSp ([49]),
those shaves which have an underlying topological space of points. For
instance for Σ and X two smooth manifolds, their mapping space [Σ,X] is
naturally a diffeological space, which as a sheaf is given by the assignment
[Σ,X] : U 7→ HomSmoothManifolds(Σ × U,X) that says that a smooth map
from U into [Σ,X] is a smooth U -parameterized family of smooth maps
from Σ to X.



16 Urs Schreiber, Zoran Škoda

From this point of view smooth manifolds are precisely the concrete
sheaves on CartSp that are also locally representable. But there are also
useful generalized spaces modeled on CartSp that are not concrete: an
example is the space given by the rule U 7→ Ωn

cl(U) that sends a Cartesian
space U to the set of closed smooth n-forms on it. This may be thought
of as a model for an Eilenberg-MacLane space K(n,R) in a useful sense,
but it is not a concrete space. In fact, this space only has a single point,
a single curve, a single surface, and generally a single k-dimensional probe
for k < n. But then it has infinitely many n-dimensional probes.

But the theory of sheaves is not enough for a good discussion of general
geometric objects. The fully general geometric objects modeled on test
objects in a site C have not just a set of ways of mapping a test object
U ∈ C into them, but an ∞-groupoid of ways of doing this: there is an
(∞, 1)-topos H := Sh(∞,1)(C) of ∞-groupoid valued sheaves (∞-stacks)
on C. If again C = CartSp, then an ∞-groupoid valued sheaf on C is a
generalized Lie ∞-groupoid. A locally presentable Lie ∞-groupoid is an
orbifold, or a higher generalization of that.

A convenient model for presenting and manipulating the (∞, 1)-category
Sh(∞,1)(C) is as the full sSet-enriched subcategory (sPSh(C)proj,loc)

◦ of the
category sPSh(C) := [Cop, sSet] of simplicial-set valued ordinary presheaves
on C on those objects which are fibrant-cofibrant in what is called the
projective local model structure on simplicial presheaves, with respect to
the given Grothendieck topology on C. This subcategory is Kan-complex-
enriched, hence enriched in ∞-groupoids, hence an (∞, 1)-category. Its
objects can be thought of as rectified ∞-groupoid valued presheaves that
satisfy an ∞-sheaf/∞-stack desccent condition.

The tools for handling∞-toposes this way go back toKenneth Brown’s
work from 1973 ([13]). They have later been promoted by A. Joyal and
developed further by Jardine ([59]), C. Simpson, D. Dugger and oth-
ers. With the results of [74, 75, 65] this toolset has found its intrinsic
interpretation in higher category theory.

The sequence of inclusions of tame generalized spaces into ever more
general generalized spaces mentioned above has been realized in [64] for
the context of (∞, 1)-toposes. In this context a concrete ∞-stack in H is
not one with an underlying topological space, but one, in turn, with an
underlying petit (∞, 1)-topos.

Apart from a hierarchy of geometrically more or less tame sheaves of
∞-groupoids, there is also a hierarchy of categorically more or less tame
∞-groupoids. To this we turn now.

6.3. Strict ω-Groupoid-valued ∞-stacks

The category of strict ∞-groupoids is the limit obtained by recursively
forming groupoids strictly enriched in strict n-groupoids, starting with 0-
groupoids = sets:

StrωGrpd = lim
→

(Grpd →֒ Str2Grpd = Grpd−Grpd →֒ Str3Grpd = 2Grpd−Grpd →֒ · · · ) .
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Ross Street’s ω-nerve functor

N : StrωGrpd →֒ KanCplx →֒ sSet

injects strict ω-groupoids into all ∞-groupoids. One useful aspect of strict
ω-groupoids is that they are half-way in between homological algebra and
topology/full ∞-groupoid theory: there is an equivalence (going back to
Whitehead and amplified by R. Brown, Higgins and others) of strict
ω-groupoids with crossed complexes: these are like complexes of abelian
groups, but may have non-abelian groups in low degree and be groupoidal
in the lowest degree. Accordingly, ordinary chain complexes of abelian
groups in non-negative degree in turn sit inside all crossed complexes as
the models for the strict and abelian ∞-groupoids. Combined with the
ω-nerve this factors the familiar Dold-Kan map

Ch•(Ab)
+ →֒ CrsCpl ≃ StrωGrpds

N
→֒ KanCplx ≃ ∞Grpd .

as a hierarchy of more or less tame ∞-groupoids. Street had also proposed
a notion of descent for strict ω-groupoid-valued presheaves on a site C
in [46]. Following a conjecture by one of the authors, Dominic Verity
has shown ([76]) that under mild conditions this notion is compatible with
the correct notion of descent in [Cop, sSet] (induced by the intrinsic ∞-

categorical theory) under the embedding [Cop,StrωGrpd]
N
→֒ [Cop, sSet].

This allows to handle strict ω-groupoid-valued∞-stacks on C by themselves
as useful special cases of general∞-groupoid valued∞-stacks. For instance
the higher Lie groups known as the String-2-group or the Fivebrane-6-
group have convenient models as strict n-groupoid-valued presheaves on
C = CartSp. Notice that this is no contradiction to the fact that under
the nerve strict ω-groupoids represent only a very restrictive subclass of all
homotopy n-types: as soon as we are speaking about ∞-groupoid valued
presheaves on some site, the geometric realization functor

Π : H→∞Grpd

that we discuss in more detail in section 7.4. will send such an∞-groupoid-
valued sheaf to an ∞-groupoid that combines the geometric homotopy
groups encoded in the sheaves in each categorical degree, with the cate-
gorical homotopy groups themselves. For instance for C = CartSp clearly
every homotopy type X ∈ ∞Grpd is in the image of Π: simply take the
categorically discrete (and hence strict) ∞-groupoid valued presheaf whose
presheaf of objects is that represented by |X|.

7. Nonabelian cohomology, higher vector bundles and back-
ground fields

Fix now some site C of test spaces, and take the ambient context of
∞-groupoids modeled on C to be the (∞, 1)-sheaf (∞, 1)-topos H :=
Sh(∞,1)(C). As mentioned above, this may be presented by the model
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category structure sPSh(C)proj,loc on the functor category Func(Cop, sSet)
defined to be the left Bousfield localization of the global projective model
structure at the set of Čech nerve-projections C({Ui})→ U for {Ui → U}i
a covering family in C.

We shall give several of the following definitions both in their intrinsic
∞-category theoretic formulation in H and also in terms of the model given
by the ordinary category sPSh(C). The latter we shall often refer to just
as “the model”.

Notably for X,A two objects of H, we may think of a morphism g :
X → A as a cocycle on X with values in A – a nonabelian cocycle if A is not

an Eilenberg-MacLane object – ; think of a 2-morphism X

g

&&

g′

88 Aη��

(necessarily an equivalence in the (∞, 1)-category H) as a coboundary, and
think of the set of equivalence classes of morphisms

H(X,A) := π0H(X,A)

as the cohomology set of X with coefficients in A. This is a group if A is a
group object, as discussed further below.

Many notions of cohomology ever considered are special cases of this
simple definition for suitable choices of C. Notably for C = ∗, in which case
H =∞Grpd ≃ Top is the archetypical (∞, 1)-topos, does the above notion
reduce to the familiar definition of (nonabelian) cohomology of topological
spaces in terms of homotopy classes of maps into suitable coefficient objects.
It is useful to think of all constructions here as refinements of this case,
where continuous maps between topological spaces are replaced with richer
structure preserving maps, such as smooth maps between∞-Lie groupoids.

In terms of the model, choosing a fibrant representative for A, a cocycle
X → A is represented by an ∞-anafunctor (this suggestive terminology for
what is of course an old and basic concept in homotopy theory, we find
useful to adopt from [25, 6]) from X to A: a span

(g : X | // A ) :=

X̂

≃
����

g // A

X

whose left leg is an acyclic fibration, which exhibits X̂ as a cover of X (or
rather as something akin to the Čech ∞-groupoid of a cover). Cocycles
are regarded as distinct only up to refinements of their covers. This makes
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their composition by pullbacks

( X |
g // A |

r // A′ ) :=

g∗Â //

≃
����

Â
r //

≃
����

A′

X̂

≃
����

g // A

X

well defined (noticing that acyclic fibrations are stable under pullback) and
associative.

Several other simple notions for cohomology in an (∞, 1)-topos are use-
ful:

• for c : A → B a morphism in H, we can think of it both as a B-
cocycle on A and as a characteristic class on A-cohomology, inducing a
morphism of cohomologies H(X,A)→ H(X,B) natural in X. We will
later on notably be interested in the curvature characteristic classes
of certain coefficient objects.

• given morphisms i : X0 → X and k : A0 → A we may define the
relative cohomology of X with values in A and with respect to i and

k as the corresponding hom-object in the arrow-(∞, 1)-category HI

of our (∞, 1)-topos

H(X;X0, A;A0) := π0H
I(



X0

��
X


 ,



A0

��
A


) .

A cocycle in this cohomology is a square

X0

��

// A0

��
X // A

in H, commuting up to a 2-morphism there, and can always be mod-
eled by a strictly commuting square in the model.
This is notably of interest when A is pointed and A0 = ∗ is that
point. Then we write just H(X;X0, A) for the corresponding relative
cohomology. Cocycles in here are A-cocycles on X that trivialize when
pulled back to X0.
The curvature characteristic class mentioned above arises from cocy-
cles in such relative cohomology in section 7.4.3..
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• given a morphism f : B → C thought of as a characteristic class, let
A→ B denote its homotopy fiber. For a given object X, choose a rep-
resentative cocycle for each C-cohomology class H(X,C)→ H(X,C).
Then we may call the connected components of the homotopy pullback

Hf (X,A)

��

// H(X,C)

��
H(X,B) // H(X,C)

the f -twisted cohomology on X with coefficients in A.

This we use for defining differential cohomology as curv-twisted flat
differential cohomology.

Our goal now is to exhibit the following concepts internal to H. For X ∈ H
an ∞-groupoid – thought of as target space (a generalized orbifold) – and
for G an ∞-group – the gauge ∞-group or structure ∞-group G – and
given an (∞, 1)-category F – the ∞-category of typical fibers – together

with a morphism ρ : BG // F into a pointed codomain, ptF : pt → F
– which we think of as a representation – of G, we can speak of

• G-cocycles g on G;

• the G-principal ∞-bundle P := g∗EG on X classified by these;

• the ρ-associated ∞-bundles V := g∗ρ∗EF

• the collection Γ(V ) of sections of V ;

• connections ∇ on the G-principal ∞-bundle P .

Except for the last one, the definition of these notions follows pretty much
classical lore in homotopy theory, only that we work not necessarily in the
traditional archetypical (∞, 1)-topos ∞Grpd ≃ Top but in H. This allows
us to speak with ease for instance about the differential geometry of smooth
BnU(1)-principal bundles (otherwise known as (n − 1)-bundle gerbes) or
smooth nonabelian structures such as String-principal 2-bundles. But all
constructions here work for arbitrary sites C, up to section 7.4., where
connections on ∞-bundles are introduced and special properties in the site
are required.

7.1. Principal ∞-bundles

Definition 7..1 (∞-group) Given a one-object ∞-groupoid BG ∈ H the
∞-pullback

G //

��

∗

��
∗ // BG
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is the corresponding ∞-group. In terms of the model, for BG a fibrant
representative, this may be identified with the ordinary pullback

G //

��

(BG)I

(d0×d1)

��
pt // BG×BG

,

where I := {0→ 1} is the categorical interval.

For G an ∞-group, a G-principal ∞-bundle P → X can be defined intrin-
sically in H simply as the ∞-categorical fiber of a morphism X → BG,
as we shall do shortly. In terms of the model for H, this simple statement
requires introducing the universal G-principal bundle, which we now do
first.

Definition 7..2 (universal G-principal ∞-bundle) For BG a fibrant
representative in the model, the universal
G-principal ∞-bundle EG // // BG is given by the ordinary pullback

EG
≃ // //

��

�� ��

pt

��
(BG)I

≃d1
����

≃

d0

// // BG

BG

.

Lemma 7..3 The morphism EG // // BG defined this way is indeed a
fibration and its kernel is G: we have a short exact sequence

G
�

� i // EG
p // // BG .

Proof. This is a standard fact in homotopy theory, but maybe deserves to
be highlighted here in the context of principal ∞-bundles in H.

That p is a fibration is the factorization lemma [13]. To see that G is
indeed the kernel of this fibration, consider the diagram

G //

��

EopG //

��

pt

��
EG //

��

BGI
d1 //

d0

��

BG

pt // BG

.
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The right and bottom squares are pullback squares by definition. Moreover,
G is by definition 7..1 the total pullback

G //

��

!!D
DD

DD
DD

D pt

��
BGI

d1 //

d0

��

BG

pt // BG

.

Therefore also the top left square exists and is a pullback itself and hence
so is the pasting composite of the two top squares. This says that i is the
kernel of p.

Definition 7..4 (G-principal ∞-bundles) For X ∈ H and G ∈ H an
∞-group, and for g : X → BG a G-cocycle on X, the corresponding homo-
topy fiber P → X, i.e. the ∞-pullback

P //

��

∗

��
X

g // BG

is the G-principal ∞-bundle classified by g. In terms of the model for H,

the cocycle is given by an ∞-anafunctor X oooo ≃ X̂
g // BG and the cor-

responding G-principal ∞-bundle πg : P // // X classified by g is given
by the ordinary pullback diagram

g∗EG //

����

�� ��

EG

����
X̂

≃
����

g // BG

X

.

For n ≤ 2 this way of describing (universal) principal n-bundles was de-
scribed in [32].

If G is a group or strict 2-group, this definition of G-principal bundles
is equivalent to the definitions in [6, 5, 48].

Of course this statement involves higher categorical equivalences: for G
a 2-group and g : X | // BG a cocycle, the pullback g∗EG is a priori a 2-
groupoid, whereas in the literature on 2-bundles one expects this total space
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to be a 1-groupoid. But this desired 1-groupoid is obtained by dividing out
2-isomorphisms in g∗EG and the result is weakly equivalent to the original

2-groupoid g∗EG
≃ // // (g∗EG)∼ .

Principal ∞-bundles and line bundle gerbes. For every ordinary
(Lie) group G, i.e. a one object Lie groupoid BG in H = Sh(∞,1)(CartSp),
there is a 2-group AUT(G), i.e. a one-object Lie 2-groupoid BAUT(G) in
H defined as the internal automorphism 2-group. The notion of G-gerbe
introduced by Giraud corresponds to the notion of AUT(G)-principal 2-
bundle as described here. For G = U(1) we have that BAUT(U(1)) is the

2-groupoid given by the crossed complex U(1)
0
→ Z2

→
→ ∗, where Z2 acts on

U(1) by automorphisms. A AUT(U(1))-principal 2-bundle is what in the
literature has been called a Jandl-gerbe. If one assumes that the Z2-part
of a AUT(U(1))-cocycle is trivial, one arrives at a plain BU(1)-principal
2-bundle in H. If a cocycle for these is written down in a certain form,
this is what in the literature is called a bundle gerbe. Similarly a cocycle

for a B2U(1)-principal 3-bundle in our sense, written down in a certain
way, is called a bundle 2-gerbe. Generally therefore, for n ∈ N, we may
think of (certain representative cocycles for) BnU(1)-principal ∞-bundles
as bundle n-gerbes.

Not all higher principal bundles that appear in practice are of this
abelian form. But by local semi-trivialization many cocycles for nonabelian
G-principal ∞-bundles may be realized as abelian principal ∞-bundles on
total spaces of nonabelian principal n-bundles for lower n.

For let BA→ BĜ→ BG be a fibration sequence in H. Then consider
the diagram in H of the form

Ĝ

��

// P̂

��

// ∗

��
G

��

// P //

��

BA

��

// ∗

��
∗ x // X

ĝ // BĜ // BG

,

where every single square and hence all rectangles are ∞-pullback squares.
This exhibits P̂ → X as the total space of the Ĝ-principal ∞-bundle clas-
sified by ĝ. But the diagram shows that this is encoded in an A-principal
∞-bundle on the total space P of the underlying G-principal ∞-bundle,
satisfying the special property that its restriction to any fiber presents the
cocycle that exhibts the extension Ĝ→ G.

If A is an abelian∞-group, then this construction allows to speak of the
possibly nonabelian Ĝ-principal ∞-bundle P̂ only in terms of abelian co-
cycles on P . This is for instance the case for String(n)-principal 2-bundles.
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The 2-group String(n) is defined by the fibration sequence

· · · → B2U(1)→ BString(n)→ BSpin(n)
1
2
p1
→ B3U(1) .

Hence a String-principal 2-bundle may equivalently be encoded by a certain
bundle gerbe on the total space of the underlying Spin(n)-principal bundle.
These structures appear in the background of the heterotic string. See [69]
for a survey. Similarly, using now the fiber sequence

· · · → B2U(1)→ BAUT(U(1)) → BZ

we find that AUT((1))-principal 2-bundles are the same as bundle gerbes
on certain double covers. These structures model the Kalb-Ramond field
on an orbifold in string theory.

7.2. Associated ∞-bundles

For many aspects of quantum theory it is crucial to pass from principal bun-
dles to associated vector bundles. For instance the electromagnetic field on
a space X is entirely encoded in a U(1)-principal bundle P → X with
connection ∇. But to form the spaces of quantum states of the quantum
particle that is charged under this field, one passes to the associated line
bundle E := P ×U(1) C – a rank-1 vector bundle – of the principal bundle,
and then forms the space of sections of that. This space of linear sections
in turn, may be understood as the collection of morphisms Ψ : X ×C→ E
from the trivial line bundle into E. Here it is important this this mor-
phism is not required to be an isomorphism, but a general morphism in
the category Vect(X) of vector bundles over X. This means that for the
quantum theory it is crucial to generalize from groupoid-valued stacks to
category-valued stacks, and hence from ∞-groupoid valued ∞-stacks to
(∞, 1)-category valued ∞-stacks, and to realize associated ∞-bundles in
terms of these.

This is what we formalize now. While there is no good general intrinsic
theory of (∞, 2)-toposes of (∞, 1)-category valued∞-stacks available yet, it
is pretty clear what the (∞, 1)-category of (∞, 1)-category-valued ∞-stacks
should be: let sSet+ be the model structure on marked simplicial sets in-
troduced in [65], which provides a simplicial model structure that models
quasi-categories. Then define the (∞, 1)-category of (∞, 1)-category-valued
∞-stacks on C to be, as before, the left Bousfield localization of the global
projective model structure Func(Cop, sSet+) at Čech nerves of covering fam-
ilies. In the following by (∞, 1)-category over C, we shall mean an object
in this left Bousfield localization.

So let F be some (∞, 1)-category over C in this sense (not necessarily an
∞-groupoid), which will play the role of the stack Vect of ordinary vector
bundles. An ∞-anafunctor

ρ : BG | // F
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may be thought of as an∞-group cocycle with values in F . If F is equipped

with a point, pt
ptF // F , we may think of such a morphism ρ also as a

representation of G. In analogy with the universal G-principal ∞-bundle
from definition 7..2 we obtain the universal F -bundle (with respect to the
chosen point ptF ) as a pullback from the point:

Definition 7..5 (universal F -bundle) For F an (∞, 1)-category with cho-

sen point ∗
ptF // F the universal F -bundle EF // // F is the pullback

EF // //

��

�� ��

∗

ptF
��

F I d0 // //

d1
����

F

F

.

Here I = {0 → 1} crucially still denotes the category free on a single
nontrivial morphisms, not the groupoid. This means that an object in F I

is not in general an invertible morphism in F .

Definition 7..6 (associated F -bundle) Given a representation morphism
ρ : BG→ F we call the lax (“comma”-) ∞-pullback

ρ∗EF //

��

∗

��
BG

ρ // F

which for F a fibrant representative in the model is given as the ordinary
pullback

ρ∗EF //

����

EF

����
B̂G

≃
����

ρ // F

BG

the F -bundle ρ-associated to the universal G-bundle. Correspondingly the
further ∞-pullback along a g-cocycle
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g∗ρ∗EF //

��

ρ∗EF //

��

∗

��
X

g // BG
ρ // F

which is modeled by the sequence of ordinary pullbacks

g∗ρ∗EF //

����

�� ��

ρ∗EF //

����

EF

����
ˆ̂
X

g //

≃
����

B̂G
ρ // F

X

is the F -bundle ρ-associated to the specific G-principal bundle g∗EG.

The pullback V in

V //

��

ρ∗EF

��

// EF

��
∗ //

B̂G
ρ // F

is the representation space itself, the typical fiber of the ρ-associated bun-
dles.

7.3. Sections of associated ∞-bundles

Definition 7..7 (section) A section σ of a ρ-associated ∞-bundle V :=

ρ∗g∗EF coming from a cocycle X |
g // BG is a lift of the cocycle through

ρ∗EF // // BG or equivalently a morphism from the trivial F -bundle with

fiber ptF to V

Γ(V ) :=





ρ∗EF

����
X

g //

σ
<<x

x
x

x
BG




≃





X

~~}}
}}

}}
}

Id

  @
@@

@@
@@

@

pt

ptF   A
AA

AA
AA

X

ρ◦g
~~~~

~~
~~

~~

F

σ
)1ZZZZZ

ZZZZZ
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Lemma 7..8 These two characterizations of sections are indeed equivalent.

Proof. First rewrite




X

g

��}}{{
{{

{{
{{

pt

ptF !!C
CC

CC
CC

C BG

ρ

��
F

σ %-RR
RR





≃





pt
ptF // F

X
σ //________

==||||||||

g
!!C

CC
CC

CC
C F I

d0

OO

d1
��

BG
ρ // F





using the characterization of right (directed) homotopies by the (directed)
path object F I . Using the universal property of EF as a pullback this
yields

· · · ≃





EF

����
X g

//

σ

66llllllll
BG ρ

// F




≃





ρ∗EF

����
X

g //

σ
<<x

x
x

x
BG





.

7.4. Connections on ∞-bundles

A gauge background field is crucially not just an ∞-bundle, but an ∞-
bundle with connection: the connection encodes the forces acting on the
objects that are charged under the background field, its parallel transport
enters the action functional for these objects. The underlying ∞-bundle
only encodes the global nontriviality of this parallel transport, while the
crucial local physical information is in the connection.

In low categorical dimension n, following an original suggestion by John
Baez (see [50] for an exposition and [40], [41] for details) it is by now “well
known” that the n-connection is in fact equivalent to the parallel trans-
port n-functor on the path n-groupoid that it induces. In [70] the full
∞-categorical formulation of this phenomenon was indicated, with empha-
sis on Lie differential geometric aspects. We now discuss this with more
emphasis on some general abstract properties, that we need for our exam-
ples in section 9.. A comprehensive discussion is to appear elsewhere, see
[71].

7.4.1. The homotopy ∞-groupoid

To obtain the ∞-functor that sends each object X ∈ H to its path ∞-
groupoid Π(X), we shall now observe that in nice cases this is defined
canonically.1

1 U.S. thanks Richard Williamson for useful discussion of this point. It turns out
that, in some disguise and up to some issues, this is almost a classical fact. But
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Theorem 7..9 Let C be a site whose objects are geometrically contractible
in that Kan-complex-valued presheaves on C satisfy descent for simplicial
presheaves on objects of C. Then H = Sh(∞,1)(C) is a
locally contractible (∞, 1)-topos in that the terminal global sections geomet-
ric morphism Γ : H→∞Grpd is essential, i.e. in that we have a triple of
adjoint (∞, 1)-functors

(Π ⊣ LConst ⊣ Γ) : H

Π //
oo LConst

Γ
//∞Grpd .

This is the case notably for the site C = CartSp with covering families
given by ordinary covers that are good covers (all intersections of patches
are contractible).

In this case we have moreover (Π ◦ LConst ⊣ Γ ◦ LConst) ≃ (Id ⊣ Id) :
∞Grpd→∞Grpd.

Remark. The last statement means that the shape of the locally con-
tractible (∞, 1)-topos Sh(∞,1)(CartSp), in the sense of shape theory of
(∞, 1)-toposes [65], is that of the point. This highlights the fact that
Sh(∞,1)(CartSp) is a gros (∞, 1)-topos of “all” spaces modeled on CartSp,
rather than something that is to be thought of as a generalized topological
space itself: we may indeed usefully think of the objects in CartSp as noth-
ing but thickened points, n-dimensional disks that only serve to encode the
notion of smooth families around a given point. Useful comments along
these lines can be found in [56].

Proof. For the first statement it is sufficient to produce a Quillen ad-
junction

(Π ⊣ LConst) : sPSh(C)proj,loc
Π //

oo
LConst

sSetQuillen

with the underlying functor of LConst simply being the constant presheaf
functor. Almost by definition that has an sSet-enriched left adjoint given
by sending a presheaf to its colimit. Since LConst evidently sends (acyclic)
fibrations in sSetQuillen to (acyclic) fibrations in the global model struc-
ture sPSh(C)proj, it follows that lim

→
: sPSh(C)proj → sSetQuillen preserves

cofibrations. But the cofibrations do not change under left Bousfield local-
ization, so that also Π := lim

→
: sPSh(C)proj,loc → sSetQuillen preserves cofi-

brations. Moreover, by assumption LConst : sSetQuillen → sPSh(C)proj,loc
preserves fibrant objects. Noticing that sSetQuillen is a left proper model

lifting the disguise and making the abstract (∞, 1)-topos-theoretic structure manifest
turns out to be very useful. For a detailed commented review and more literature see
http://ncatlab.org/nlab/show/homotopy+groups+in+an+(infinity,1)-topos.

http://ncatlab.org/nlab/show/homotopy+groups+in+an+(infinity
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category, this means that the conditions of corollary A.3.7.2 in [65] are sat-
isfied, which says that (Π := lim

→
⊣ LConst) is indeed a Quillen adjunction

for the local model structure on sPSh(C), as stated.
To see that the site CartSp does satisfy the required assumptions, let

{Ui → U} be a good cover of U ∈ CartSp and write C(Ui) :=
∫ [n]∈∆

∆[n] ·∐
i0,··· ,in

Ui0,··· ,in for the corresponding Čech nerve, regarded as simplicial
presheaf. Then for S a Kan complex we have

sPSh(C(Ui),LConst(S)) := sPsh(

∫ [n]∈∆

∆[n] ·
∐

i0,··· ,in

Ui0,··· ,in ,LConstS)

=

∫

[n]∈∆

∏

i0,··· ,in

sPSh(Ui0,··· ,in ,LConstS)

=

∫

[n]∈∆

∏

i0,··· ,in

sSet(∗,LConstS)

= sSet



∫ [n]∈∆

∆[n] ·
∐

i0,··· ,in

∗, S




which is a Kan complex weakly equivalent to S, since the simplicial set
coming from the cover is a contractible Kan complex, since U ∈ CartSp is
topologically contractible. So the morphism

S = sPsh(U,LConst(S))→ sPSh(C(Ui),LConst(S))

is a weak equivalence, which means that LConst(S) satisfies descent.
Similarly we have that the right adjoint to the constant simplicial presheaf

functor, Γ := lim
←

: sPShproh,loc → sSetQuillen preserves fibrant objects, and

that LConst also preserves cofibrations (since the point R
0 is cofibrant

and tensoring with a simplicial set sends cofibrant presheaves to cofibrant
presheaves). Since also sPSh(C)proj,loc is left proper (being the left Bous-
field localization of a functor category with values in a left proper model
category), corollary A.3.7.2 in [65] applies again to show that we have a
triple of Quillen adjoint functors

(Π ⊣ LConst ⊣ Γ) : sPSh(C)proj,loc → sSetQuillen .

By the above discussion Π ◦ LConst = IdsSet and Γ ◦ LConst = IdsSet are
evidently composites of derived functors, which proves the last claim.

Remark: topological geometric realization. The colimit over a rep-
resentable presheaf is the singleton set ∗. By [56], every object X ∈
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sPSh(C)proj has a cofibrant replacement X̂ that is degreewise a coprod-

uct of representables {Uin ∈ C}: X̂ =
∫ [n]∈∆

∆[n] ·
(∐

in
Uin

)
. This means

that the (∞, 1)-functor modeled by Π sends such X to (the Kan fibrant re-
placement of) the simplicial set obtained by contracting in this expression

each representable to a point: Π(X̂) =
∫ [n]∈∆

∆[n] ·
(∐

in
∗
)
.

In particular, for C = CartSp andX a manifold, the simplicial set Π(X̂)
is under the Quillen equivalence sSetQuillen ≃ Top a topological space that
is weakly homotopy equivalent to X. So we may think of |Π(−)| : H →

∞Grpd
≃
→ Top as being a topological geometric realization of structured

objects in H to plain topological spaces, up to weak homotopy equivalence.
Indeed, by proposition 2.8 in [56], the cofibrant replacement of a sim-

plicial presheaf X may be taken to be of the form X̂ =
∫ [n]∈∆

∆[n] · X̂n,

with X̂n a replacement of the simplicially discrete presheaf Xn. This is

sent by |Π(−)| to the topological space
∫ [n]∈∆

∆n × |Π(X̂n)|, which is the

geometric realization of the simplicial topological space |Π(X̂•)| obtained
by geometrically realizing X in each degree.

So again in our running example of C = CartSp, we find in particu-
lar that if X is a simplicial manifold or simplicial diffeological space, then
|Π(X̂)| is, up to weak homotopy equivalence, the familiar topological geo-
metric realization of X.

The fact alone that the path ∞-groupoid functor is part of an essential
geometric morphism of (∞, 1)-toposes (Π ⊣ LConst ⊣ Γ) leads to some
useful general statements about the geometric homotpy groups of objects
in H.

Definition 7..10 Write Core(∞Grpd) for the ∞-groupoid of small ∞-
groupoids. Define

Cov := H(−,LConst(Core(∞Grpd))) : H→∞Grpd .

For X ∈ H we call Cov(X) the ∞-groupoid of ∞-covering spaces over X.

Theorem 7..11 (∞-Galois theory) Let H be a locally contractible (∞, 1)-
topos. We have naturally in X ∈ H the following statements.

• covering ∞-spaces correspond to ∞-local systems:

Cov(X) ≃ ∞Func(Π(X),∞Grpd) ;

• for each point x : ∗ → |Π(X)| in the geometric realization of X, the
automorphism ∞-group of the induced fiber-functor Fx : Cov(X) →
∞Grpd is equivalent to the geometric homotopy groups Ωx|Π(x)| =
AutΠ(X)op(x) of |Π(X)| at X:

Aut(Fx) ≃ Ωx|Π(X)| .
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Proof. The first statement is simply the hom-equivalence corresponding to
the (∞, 1)-adjunction (Π ⊣ LConst):

Cov(X) := H(X,LConst(Core(∞Grpd)))

≃ ∞Grpd(Π(X),Core(∞Grpd))

=∞Func(Π(X),∞Grpd)

.

The second fact is abstract Tannaka duality, a formal consequence of apply-
ing the (∞, 1)-Yoneda lemma four times in a row: the fiber functor Fx :=

∞Func(∗
x
→ Π(X)) : ∞Func(Π(X),∞Grpd) → ∞Grpd may itself be re-

garded as an (∞, 1)-presheaf. By the (∞, 1)-Yoneda lemma for the (∞, 1)-
Yoneda embedding j : Π(X)op → PSh(∞,1)(Π(X)op), this is equivalently
Fx ≃ HomPSh(∞,1)(Π(X)op)(j(x),−). But this means that Fx ≃ j(j(x)) is it-

self a representable (∞, 1)-presheaf, an object in PSh(∞,1)(PSh(∞,1)(Π(X)op)op).
The statement then follows from applying the (∞, 1)-Yoneda lemma two
more times:

Aut(Fx) ≃ Aut(j(j(x)))

≃ Aut(j(x))

≃ AutΠ(X)op(x)

≃ Ωx|Π(X)| ,

where we suppressed some evident subscripts for readability.

7.4.2. The geometric path ∞-groupoid

We now want to obtain a notion of path ∞-groupoid internal to H. For
that we use the above adjunction to reflect the homotopy ∞-groupoid Π
back into H.

Definition 7..12 For H a locally contractible (∞, 1)-topos, write

(Π ⊣ ♭) := (LConst ◦ Π ⊣ LConst ◦ Γ) : H→ H

for the composite adjunction. We call Π the path ∞-groupoid functor.

While entirely abstractly defined, it turns out that the path ∞-groupoid
functor does induce an intrinsic notion of geometric paths in H. We make
this explicit for C = CartSp with the following statement.

Theorem 7..13 For C = CartSp in the model [Cop, sSet] the functor Π
is equivalently given by the left Quillen functor which is the left-derived
Yoneda extension ΠR of the smooth singular simplicial complex functor
C → [Cop, sSet] : U 7→ U∆•

R , where ∆R is the canonical cosimplicial object
exhibiting the geometric smooth n-simplex.
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Proof. Choose a functorial factorization

U

""F
FFF

FF
FF

F
�

� // ΠR(U)

≃
����

U∆•
R

in sPSh(C)proj of the evident inclusion U → U∆•
R . Notice that since the

representable U is cofibrant in sPSh(C)proj,loc, also ΠR(U) is cofibrant. For
general X ∈ sPSh(C) we then set

ΠR(X) :=

∫ U∈C

ΠR(U) ·X(U) .

Here the coend over the tensoring of sPSh(C) over sSet

∫
(−) · (−) : [C, sPSh(C)proj]inj × [Cop, sSet]proj× → sPSh(C)proj

is a left Quillen bifunctor by proposition A.2.26 and remark A.2.27 of [65].
Since by construction ΠR(−) regarded as an object in [C, sPSh(C)proj]inj
is cofibrant, this means that ΠR(−) =

∫ U∈C
ΠR(U) · (−)(U) preserves

cofibrations and acyclic cofibrations. Moreover, this ΠR extends to an
sSet-enriched functor and as such has an sSet-enriched right adjoint ♭R :
X 7→ sPSh(ΠR(−),X). Therefore

(ΠR ⊣ ♭R) : sPSh(C)proj
//

oo sPSh(C)proj

is a Quillen adjunction for the global model structure. It remains to show
that this descends to a Quillen adjunction on the local model structure.
For this notice that ΠR sends projections C({Ui}) → U of good covers
{Ui → U} out of Čech nerves of good covers to weak equivalences.

This is because using that ΠR(U)→ ∗ is a global weak equivalence for
U ∈ CartSp, and that the Čech nerve is cofibrant, we have

∫ [n]∈∆∐
i0,··· ,in

ΠR(Ui0,··· ,in) ·∆[n]
≃ //

≃
��

∫ [n]∈∆∐
i0,··· ,in

∗ ·∆[n]

≃
��

ΠR(C({Ui})) =
∫ [n]∈∆∐

i0,··· ,in
ΠR(Ui0,··· ,in) ·∆[n] // ∫ [n]∈∆∐

i0,··· ,in
∗ ·∆[n]

≃ // ∗

,

where ∆ : ∆ → sSet : [n] 7→ N([n]/∆)op is the Bousfield-Kan cofibrant
replacement of ∆ and of ∗ in [∆, sSet]proj, and we use again that all coends
over tensors here are Quillen bifunctors, and finally, on the right, that U is
topologically contractible.
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From this we can now conclude that ♭R preserves fibrant objects in
sPSh(C)proj,loc. This is because the fibrant objects in the left Bousfield
localization are the globally fibrant objects that satisfy descent on all
Čech nerves of good covers as above. And since both C({Ui}) as well
as U and therefore also ΠR(C({i})) and of course ΠR(U) are cofibrant in
sPSh(C)proj,loc, we have by adjunction that

sPSh(C({Ui})→ U, ♭R(A)) ≃ sPSh(ΠR(C({Ui}))→ ΠR(U), A)

is the enriched hom of a weak equivalence between cofibrant objects into a
fibrant object in the simplically enriched model category sPSh(C)proj, and
so is itself a weak equivalence (in sSetQuillen). But this says that ♭R(A)
satisfies descent.

Again by appeal to corollary A.3.7.2 in [65] we therefore have the desired
local Quillen adjunction

(ΠR ⊣ ♭R) : sPSh(C)proj,loc
//

oo sPSh(C)proj,loc .

It remains to show that the ∞-functor modeled by ΠR, i.e. its left
derived functor, is indeed equivalent to the abstractly defined Π. This fol-
lows again using Dugger’s cofibrant replacement theorem and the remarks
about geometric realization in section 7.4.1.: forX a simplicial presheaf and

ΠR(X̂) =
∫ [n]∈∆

∆[n]
∐

in
ΠR(Uin) the value of the left derived functor of

ΠR, this is related by a zig-zag of weak equivalences, as in the diagram

above, to
∫ [n]∈∆

∆[n] ·
∐

in
LConst∗ = LConstΠ(X̂) =: Π(X̂) .

Remark. The ∞-groupoid ΠR(X) may be thought of as generated in
degree n from the (n − k)-dimensional smooth paths in the smooth space
of k-morphisms of X. The unit of the adjunction X → Π(X) identifies X
as the object of constant paths inside Π(X). In low categorical degree, a
very explicit description of ΠR(X) for X a diffeological (Čech-)groupoid
is given in [41]. There it is also discussed how morphism out of ΠR(X)
encode connections on higher principal bundles and nonabelian gerbes on
X. This aspect we describe now in the full abstract generality of a locally
contractible (∞, 1)-topos H.

7.4.3. Differential cocycles and connections

With the path ∞-groupoid availalable, it is immediate to say what a flat
connection on a principal ∞-bundle is: a local system as seen by Π. In
cases where the obstruction to flatness is measured suitably by some char-
acteristic class curv – the curvature – , we can define non-flat connections
as cocycles in the curv-twisted cohomology of Π.

Throughout now H is assumed to be a locally contractible (∞, 1)-topos.
Notice that the units and counits of the adjunctions (Π ⊣ LConst ⊣ Γ)
induce canonical natural morphisms
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X → Π(X)

and

♭(A)→ A .

Definition 7..14 For g : X → BG a cocycle with corresponding G-principal
∞-bundle P → X, we say that an extension ∇ : Π(X)→ BG in

X

��

g // BG

Π(X)

∇

;;wwwwwwwww

is a flat connection on P with underlying cocycle g. If the underlying cocycle
is trivial, then we call a corresponding flat connection a
flat/closed G-valued differential forms datum.

BGdR : U 7→ HI(




U
��

Π(U)


 ,



∗
��

BG


)

for the sheaf of closed G-valued differential forms, where HI is the arrow-
(∞, 1)-category of H.

We now turn to the discussion of general, not-necessarily flat connection
connections on principal ∞-bundles. Of the full theory we here just treat
the special case where G is braided, meaning that A := BG is itself a group
object with one further delooping BA. The general theory is discussed
elsewhere [71]. A simple but important example to keep in mind is G =
BnU(1), in which case BA = Bn+2U(1).

Theorem 7..15 For H a locally contractible (∞, 1)-topos and A ∈ H a
group object, we have a fiber sequence

♭(A)→ A
curv
→ BAdR .

This means that for g : X → A a given cocycle, the obstruction to lifting
it to a flat differential cocycle X → ♭(A), which by adjunction corresponds
to Π(X) → A, is precisely the nontriviality of its curv characteristic class
X → A→ BAdR.

Definition 7..16 A differential cocycle refining a cocycle g : X → BG –
or equivalently a connection on the G-principal ∞-bundle P → X classified
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by g – is a cocycle in curv-twisted A-cohomology, i.e. in the ∞-pullback
Hcurv(X,BG) in

Hcurv(X,BG)
F //

η

��

H(X,B2GdR)

��
H(X,BG) // H(X,B2GdR)

,

where H(X,B2GdR) := π0H(X,B2GdR) is the set of G-valued de Rham
cohomology classes and the right vertical morphism is a choice of cocycle
representative for each class. For ∇ a differential cocycle we call η(∇) the
underlying cocycle and F (∇) its curvature characteristic class.

Theorem 7..17 In the model for H a differential cocycle/connection on X

is given by a fixed cofibrant replacement ∅ →֒ Y
≃
→ X of X and a diagram

Y

��

g // BG

��
Π(Y )

∇ // EBG

such that the composite morphism in

F (∇) : Π(Y )
∇
→ EBG→ B2G

equals the corresponding curvature de Rham cocycle. A morphism between
such cocyles is a commuting diagram

Y

��

g1
##

g2

;;BG

��
Π(Y )

∇1 ##

∇2

;;EBG

��

��

in the sSet-enriched category [Cop, sSet], that keeps the curvature fixed, in
that

Π(Y )

∇1

##

∇2

;;EBG // B2G��
= F (∇1) = F (∇2) : Π(Y )→ B2G .
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Given a differential cocycle (g,∇) and a representation ρ : BG → F ,
the total space E = g∗ρ∗F of the corresponding ρ-associated F -bundle is
accompanied by its action ∞-groupoid E∇ with respect to the action of the
paths in the base on the fibers, under the connection.

Definition 7..18 The ∞-groupoid E∇ associated in the model to a given
differential cocycle (g,∇) is the pullback

E∇

��

// EF

��
Π(Y )

∇ // EBG // F
∐

BGEBG

.

This fits canonically into a commuting diagram

E //

��

E∇

��
Y // Π(Y )

in the model.
We can also consider applying Π to objects that are not smooth ∞-

groupoids, but smooth (∞, 1)-categories. Notably if Σ is a causal Lorentzian
manifold then this may naturally be regarded as a smooth poset, a smooth
category with exactly none or one morphism between every ordered pair
(σ1, σ2) of points: one if σ2 is in the future of σ1, none otherwise. Then
Π(Σ) is a smooth (∞, 1)-category whose morphisms are generated from
spacelike paths in Σ and timelike jumps, and whose 2-morphisms are gen-
erated from those of the form

σ1

��

''
σ′1

��
σ2 77 σ

′
2��

,

where horzontal morphism are given by spacelike paths and are invert-
ible, while the vertical 1-morphisms are given by future-directed jumps and
are non-invertible.

8. Quantization and quantum symmetries

We want to think of an associated ∞-bundle E → X with connection ∇
as a background field (a generalization of an electromagnetic field) on X to
which a higher dimensional fundamental brane – such as a particle, a string
or a membrane – propagating onX may couple. If a piece of worldvolume of
this fundamental brane is modeled by an (∞, 1)-category Σ then (following
for instance [16]) we want to say that
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• the space of fields over Σ is CΣ := hom(Σ,X), the object of maps
from the worldvolume to target space X;

• the space of states over Σ is the space of sections Γ(τΣV ) of the back-
ground field V transgressed to the space of fields.

• the quantum time propagation along a piece of worldvolume Σin →
Σ← Σout is given by pull-push of sections through the span [Σin,X]←
[Σ,X] → [Σout,X ], weighted by the parallel transport of ∇ over Σ –
the path integral.

We now try to give this a precise meaning.

8.1. Background field and space of states

Definition 8..1 A background structure for a σ-model is

• an ∞-groupoid X ∈ H called target space;

• an ∞-group G, called the gauge group;

• a G-principal ∞-bundle P → X with a connection ∇, called the
background gauge field.

• a representation ρ called the background matter content.

Then for Σ a smooth (∞, 1)-category, to be called parameter space or
worldvolume, we say

• X × Σ is the extended configuration space;

• an action functional is a connection on a ρ-associated∞-vector bundle
on X×Σ whose restriction to X is (E,∇), called the gauge-interaction
part of the action, whereas the part depending on Σ is called the
kinetic action.

8.2. Transgression of cocycles to mapping spaces

Following [40], we identify transgression to mapping spaces with the internal
hom applied to cocycles:

Definition 8..2 (transgression of cocycles) For X |
ρ◦g // F a cocycle

classifying a ρ-associated ∞-bundle on X and for Σ any other ∞-groupoid,
we say that the transgression τΣ(ρ ◦ g) of ρ ◦ g to XΣ is its value under the
pointed internal hom in H:

τΣ(ρ ◦ g) := hom(Σ, ρ ◦ g) : hom(Σ,X)→ hom(Σ, F ) .
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8.3. Branes and bibranes

From the second part of definition 7..7 one sees that spaces of states, being
spaces of sections, are given by certain morphisms between background
fields pulled back to spans/correspondences of target spaces. From the
diagrammatics this has an immediate generalization, which leads to the
notion of branes and bibranes.

Definition 8..3 (branes and bibranes) A brane for a background struc-
ture (X, ρ ◦ g) is a morphism ι : Q → X equipped with a section of the

background field pulled back to Q, i.e. a transformation

Q

�����
ι
��;

;;

pt

ptF
��=

==
X

ρ◦g����
�

F

V $,QQQQ .

More generally, given two background structures (X, g, ρ) and (X ′, g′, ρ), a

bibrane between them is a span
Q

ι
����

� ι′

��=
==

X X ′
equipped with a transforma-

tion

Q
ι
����

� ι′

��=
==

X

ρ◦g ��=
==

X ′

ρ′◦g′
����

�

F

V %-RRRR .

Bibranes may be composed –“fused” – along common background struc-
tures (X, ρ◦g): the composite or fusion of a bibrane V on Q with a bibrane
V ′ on Q′ is the bibrane V · V ′ given by the diagram

Q×X′ Q

~~}}
}}

}}
}}

  A
AA

AA
AA

A

X

ρ◦g
!!B

BB
BB

BB
B X

ρ′′◦g′′}}||
||

||
||

F

s∗V ·t∗V ′

)1[[[[[[[[[[
[[[[[[[[[[

:=

Q×X′ Q′
s

||xx
xx

xx t

##G
GGG

GG

Q

����
��

##G
GG

GG
G Q′

{{www
ww

w
��:

::
:

X

ρ◦g ((PPPPPPPPPP X ′

ρ′◦g′��

X ′′

ρ′′◦g′′vvmmmmmmmmmmm

F

V
'/WWWWWWW

WWWWWWW V ′

)1[[[[[[ [[[[[[

If Q carries further structure, the fused bibrane on Q×t,sQ may be pushed
down again to Q, such as to produce a monoidal structure on bibranes

on Q. Consider therefore a category Q
s //

t
// X internal to ω-groupoids,

equivalently a monad in the bicategory of spans internal to ωGroupoids,
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with composition operation the morphism of spans

Q×t,s Q

zzuuu
uu

$$II
III

comp

��

Q
s
����� t

JJJ

%%JJ
J

Q
stt

t
yyttt

t
��<

<<

X X X

Q
s

iiRRRRRRRRRR t

66llllllllll

.

Definition 8..4 (monoidal structure on bibranes) Given an internal
category as above, and given an F -cocycle g : X → F , the composite of two

bibranes

Q

����
�

��?
??

X

g   @
@@

X

g~~~~
~

F

&.UUUUUU
V,W

&.UUUUUU on Q is the result of first forming their composite

bibrane on on Q×t,s Q and then pushing that forward along comp:

V ⋆ W :=

∫

comp

(s∗V ) · (t∗W ) .

Here for finite cases, which we concentrate on, push-forward is taken to be
the right adjoint to the pullback in a proper context.

Remarks. Notice that branes are special cases of bibranes and that
bibrane composition restricts to an action of bibranes on branes. Also
recall that the sections of a cocycle on X are the same as the branes of this
cocycle for ι = IdX .

The idea of bibranes was first formulated in [18] in the language of modules
for bundle gerbes. We show in section 9.5. how this is reproduced within
the present formulation.

8.4. Quantum propagation

For ρ : BG → F a representation, the corresponding representation space
V is in applications typically equipped with a bimonoidal structure (V,+, ·).

Given a sufficiently tame ∞-groupoid Ψ→ V over V , we may think of
it under ∞-groupoid cardinality as presenting a linear combination in V ,
where each element in V is weighted by the ∞-groupoid cardinality of the
fiber above it. In this way ∞-groupoids over V are a way of presenting
linear combinations in V without actually computing these. In particular,
they may not converge in any sense.

Since the typical fiver of a ρ-associated ∞-bundle is V , similarly an
∞-groupoid Ψ → E over E may be thought of as representing a a section
of E, that may possibly be very singular.
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For Σin → Σ ← Σout a piece of worldvolume with specified action
functional exp(S)

E
((QQQQQQ

��

// EF

��

Id
((QQQQQQQ

Eexp(S)

��

// EF

��
Σ×X

((QQQQ

��

// F
((QQQQQQ

Π(Σ×X)

��

exp(S) // F
∐

BGEBG

Σ
((RRRRRRR

Π(Σ)

consider the corresponding span

homΣ







Σin

��
Π(Σin)



,




E

��
Eexp(S)






← homΣ







Σ

��
Π(Σ)


 ,




E

��
Eexp(S)





→ homΣ







Σout

��
Π(Σout)



,




E

��
Eexp(S)







.

Then the pull-push of ∞-groupoids through the bottom part we may
regard as modelling the quantum propagation along Σ.

9. Examples and applications

We start with some simple applications to illustrate the formalism and then
exhibit some maybe interesting aspects in the context low dimensional or
finite group QFT.

9.1. Ordinary vector bundles

Let G be an orinary group, hence a 1-group, and denote by F := Vect
the 1-category of vector spaces over some chosen ground field k. A linear
representation ρ of G on a vector space V is indeed the same thing as a
functor ρ : BG→ Vect which sends the single object of BG to V .

The canonical choice of point ptF : pt → Vect is the ground field k, re-
garded as the canonical 1-dimensional vector space over itself. Using this we
find from definition 7..5 that the universal Vect-bundle is EVect = Vect∗,
the category of pointed vector spaces with Vect∗ // // Vect the canon-
ical forgetful functor. Using this one finds from definition 7..6 that the

ρ-associated vector bundle to the universal G-bundle is V//G // // BG ,

where V//G := ( V ×G
p1 //
ρ

// V ) is the action groupoid of G acting on V ,

the weak quotient of V by G.
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For g : X |
g // BG a cocycle describing a G-principal bundle and for V

the corresponding ρ-associated vector bundle according to definition 7..6,
one sees that sections σ ∈ Γ(V ) in the sense of definition 7..7 are precisely
sections of V in the ordinary sense.

9.2. The charged quantum particle

In this section we indicate how the familiar path integral quantization of
the electromagnetically charged quantum particle arises from the general
discussion. We will here fall short of attemptig to discuss the measure on
paths with respect to which the integral is done. While this is arguably the
crucial technical point of making sense of the path integral, it may still be
of interest to see here how just the underly structure of the path integral
arises.

The background field for the charged particle that we consider is the
electromagnetic field. The data involved is

• the target space X – a smooth manifold;

• the gauge group G = U(1);

• a choice of representation

ρ : BG→ V ectC ,

taken to be the canonical representation on V = C;

• the background field given by

– a U(1)-principal bundle P → X classified by a [[cocycle]] g :
X → BU(1) in H which in the model is given by an anafunctor

X
≃
← Y → BU(1);

– a connection ∇ on this bundle, which in the model is given by a
diagram

Y

��

g // BU(1)

��
Π(Y )

∇ // EBU(1)

,

and whose field strength is given by the composite

F : Π(Y )
∇
→ EBU(1)→ B2U(1) .

In [40] a realization of this setup on terms of smooth strict 2-groupoids
is given. It is shown there in particualr that such differential cocycles (g,∇)
correspond precisely to ordinary line bundles with connection: Y may be
chosen to be the Čech 2-groupoid induced from a good cover {Ui → X}, g is
a transition function/ Čech cocycle {gij ∈ C∞(Ui∩Uj), U(1))} with respect
to this cover, ∇ encodes the parallel transport of the correspondingly the
local differential form data Ai ∈ Ω1(U1) and F (ω) is the parallel surface
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transport of the corresponding curvature 2-form F ∈ Ω2(X), which here in
the physical model is the electromagnetic field strength tensor.

Inspection shows that the corresponding action groupoid Eexp(S) can be
characterized as

• objects are triples (x, σ, v) with σ ∈ Σ, x ∈ X and v a vector in the
fiber of E over X.

• morphisms (x, σ, v) → (x′, σ′, v′) correspond to paths [0, 1] → X × Σ
from (σ, x) to (σ′, x′), such that evaluating the action on this path
takes v to v′.

Consider a “delta-section” of E, given by the terminal groupid Π : ∗ →
E over E, that picks one vector v in the fiber Ex over a point x.

For [t1, t2] ⊂ Σ an interval, the pull-push of this Ψ through the bottom
part of the span in section 8.4. produces over the fiber ≃ V of E over y
the 0-truncated ∞-groupoid which over v′ is the set of those paths from
x to y, whose action takes v to v′. If everything were suitably finite, the
decategorification of this V -colored set would then indeed yield the familiar
expression

Ψ′(y) =

∫

x
γ
→y

exp(Skin(γ))tra∇(γ)Ψ(x)

for the path integral of the charged particle.

9.3. Group algebras and category algebras from bibrane monoids

In its simplest version the notion of monoidal bibranes from section 8.3.
reproduces the notion of category algebra k[C] of a category C, hence also
that of a group algebra k[G] of a group G. Recall that the category algebra
k[C] of C is defined to have as underlying vector space the linear span of
C1, k[C] = spank(C1), where the product is given on generating elements
f, g ∈ C1 by

f · g =

{
g ◦ f if the composite exists

0 otherwise

To reproduce this as a monoid of bibranes in the sense of section 8.3., take
the category of fibers in the sense of section 7.2. to be F = Vect as in
section 9.1.. Consider on the space (set) of objects, C0, the trivial line

bundle given as an F -cocycle by i : C0
// pt

ptk // Vect . An element
in the monoid of bibranes for this trivial line bundle on the span given by
the source and target map C1s

~~}}
t
  A

A

C0 C0

is a transformation of the form

C1s
||xxx

t
""FF

F

C0

i
##GG

G C0

i
{{www

Vect

V
&.VVVV VVVV . In terms of its components this is canonically identified

with a function V : C1 → k from the space (set) of morphisms to the ground
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field and every such function gives such a transformation. This identifies
the C-bibranes with functions on C1.

Given two such bibranes V,W , their product as bibranes is, according to
definition 8..4, the push-forward along the composition map on C of the
function on the space (set) of composable morphisms

C1 ×t,s C1 → k

(
f
→

g
→) 7→ V (f) ·W (g) .

This push-forward is indeed the product operation on the category algebra.

9.4. Monoidal categories of graded vector spaces from bibrane
monoids

The straightforward categorification of the discussion of group algebras in
section 9.3. leads to bibrane monoids equivalent to monoidal categories of
graded vector spaces.

Let now F := 2Vect be a model for the 2-category of 2-vector spaces. For
our purposes and for simplicity, it is sufficient to take F := BVect →֒
2Vect, the 2-category with a single object, vector spaces as morphims with
composition being the tensor product, and linear maps as 2-morphisms.
This can be regarded as the full sub-2-category of 2Vect on 1-dimensional
2-vector spaces. And we can assume BVect to be strictified.

Then bibranes over G for the trivial 2-vector bundle on the point, i.e.

transformations of the form
G

{{www
##G

GG

pt
##GG

G pt
{{www

BVect

(0YYYY YYYY
canonically form the category

VectG of G-graded vector spaces. The fusion of such bibranes reproduces
the standard monoidal structure on VectG.

9.5. Twisted vector bundles

The ordinary notion of a brane in string theory is: for an abelian gerbe G
on target space X a map ι : Q → X and a PU(n)-principal bundle on Q
whose lifting gerbe for a lift to a U(n)-bundle is the pulled back gerbe ι∗G.
Equivalently: a twisted U(n)-bundle on Q whose twist is ι∗G. Equivalently:
a gerbe module for ι∗G.

We show how this is reproduced as a special case of the general notion of
branes from definition 8..3, see also [41].

The bundle gerbe on X is given by a cocycle g : X | // BBU(1) . The co-

efficient group has a canonical representation ρ : B2U(1)→ F := BVect →֒
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2Vect on 2-vector spaces (as in section 9.4.) given by

ρ : •

Id
��

Id

?? •c∈U(1)�� 7→ •

C

��

C

?? •·c�� .

See also [41, 38].
By inspection one indeed finds that branes in the sense of diagrams

Q

{{www
ww ι

##G
GGG

G

pt

ptF
$$H

HHH
X

ρ◦g{{vvv
v

BVect

V )1ZZZZZZ
ZZZZZZ are canonically identified with twisted vector bundles on

Q with twist given by the ι∗g: the naturality condition satisfied by the com-

ponents of V is

C

C

??
?

��?
??

C

(π∗
1E)y

��

C //

C���

??���

C

π∗
3Ey

��
C C // C

Id
��

π∗
13gtw(y)

x� yy
yyy

yy
yy

yyy
yy

y

yyy
yyy

yy
yy

yyy
yy

=

C

C

??
?

��?
??

(π∗
2E)y

��

C

C���

??���

π∗
1Ey

��

C

(π∗
3Ey)

��

C

C

??
?

��?
??

C C //

C���

??���

C

·g(y)��

π∗
23gtw(y)

zzzz

y�
π∗
12gtw(y)

��
��
��
�

��
��
��
�

� �
��
��
�

��
��
��

, for all

y ∈ Y ×X Y ×X Y ×X Y in the triple fiber product of a local-sections admit-
ting map π : Y → X whose homotopy coherent nerve Y •, regarded as an∞-

category, provides the cover for the∞-anafunctor X Y •
≃oooo g // B2U(1)

representing the gerbe. See [41] for details. E → Y is the vector bundle on
the cover encoded by the transformation V . The above naturality diagram
says that its transition function gtw satisfies the usual cocycle condition for
a bundle only up to the twist given by the gerbe g: if Y → X is a cover
by open subsets Y = ⊔iUi, then the above diagram is equivalent to the
familiar equation

(gtw)ij(gtw)jk = (gtw)ik · gijk .

In this functorial cocyclic form twisted bundles on branes were described
in [39, 41].

9.6. Dijkgraaf-Witten theory

Dijkgraaf-Witten theory [17] is the σ-model which in our terms is specified
by the following data:

• the target space X = BG is the one-object groupoid corresponding to
a finite ordinary group G;
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• the background field α : BG→ B3U(1) is aB2U(1)-principal 3-bundle
on BG, classified by a group 3-cocycle on G.

More in detail, for G a finite group, let BG ∈ ∞Grpd be the correspond-
ing bare one-object groupoid. Then we may identify BG = LConstBG.
From purely formal manipulations with the adjunctions in our locally con-
tractible (∞, 1)-topos of smooth ∞-groupoids, using theorem 7..9 we find
that

Π(BG) = Π(LConstBG)

≃ LConst ◦ Π ◦ LConstBG

= LConstBG

= BG

,

which simply reflects the fact that there are no non-constant paths in the
discrete BG. Then from definition 7..14 it follows that every principal ∞-
bundle on such BG uniquely carries a flat connection. In this sense the
cocycle α : BG → B3U(1) is indeed already the full background gauge
field.

For Σ some manifold, a field configuration of the DW model is a mor-
phism Σ → BG in H. Again just formally using the adjunction (Π ⊣
LConst) we find that this is equivalent to a morphism Π(Σ)→ BG. By the
remark below theorem 7..9 we learn that field configurations for the DW
model on smooth manifolds correspond to topological G-principal bundles
on the underlying topological space, i.e. simply to ordinary G-principal
bundles on X. Of course the same can be seen also immediately in compo-
nents by modelling X → BG by an anafunctor out of the Č ech nerve of a
good cover.

9.6.1. The 3-cocycle

To understand the 3-cocycle and its transgression that we discuss later on,
we make explicit what BG looks like:

1-morphisms element elements of G; 2-morphisms are triangles of the

frm





•
h

��@
@@

@@
@@

•
hg

//

g
??~~~~~~~

•
��




, 3-morphisms are tetrahedra of the form





• h // •

k

��
•

g

OO

hg�����

??�����

khg
// •

��
88

8
88

8

�� ��
����

(g,h,k)//

• h //

kh
??

??
?

��?
??

??

•

k

��
•

g

OO

khg
// •

�� ��
�

��
�

��
''
'
''
'





together with their formal inverses. Finally 4-morphisms are 4-simplices of
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the form
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(g,h,k,l)

��

If we think of BG as modeled by a Kan complex, then this is precisely
what it looks like in low degrees, if however we think of BG as being a
strict ω-groupoid, then we need to consider the strict 4-groupoid which is
generated from k-morphisms as indicated above, modulo the relation that
every 5-simplex built from these 4-simplices commutes. This gives a strict
4-groupoid equivalent to the familiar one-object groupoid corresponding to
G
The ∞-functor α : BG→ B3U(1) has to send the generating 3-morphisms
(g, h, k) to a 3-morphism in B3U(1), which is an element α(g, h, k) ∈ U(1).
In addition, it has to map the generating 4-morphisms between pasting
diagrams of these 3-morphisms to 4-morphisms in B3U(1). Since there are
only identity 4-morphisms in B3U(1) and since composition of 3-morphisms
in B3U(1) is just the product in U(1), this says that α has to satisfy the
equations

∀g, h, k, l ∈ G : α(g, h, k)α(g, kh, l)α(h, k, l) = α(hg, k, l)α(g, h, lk)

in U(1). This identifies the∞-functor α with a group 3-cocycle on G. Con-
versely, every group 3-cocycle gives rise to such an ∞-functor and one can
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check that coboundaries of group cocycles correspond precisely to transfor-
mations between these ω-functors. For the strict ω-groupoid picture notice
that α uniquely extends to the additional formal inverses of cells in Y which

ensure that Y
≃ // // BG is indeed an acyclic fibration. For instance the

3-cell 
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has to go to α(g, h, k)−1.

9.6.2. Transgression of DW theory to loop space: the twisted
Drinfeld double

When we transgress DW theory, along the lines of section 8.2., to the free
loop space ΛG := hom(BZ,BG), the background gauge field B2U(1)-3-
bundle (a 2-gerbe or group 3-cocycle) reduced to just a mathbfBU(1)-2-
bundle (a gerbe or group 2-cocycle).

Proposition 9..1 The background field α of Dijkgraaf-Witten theory trans-
gressed according to defintion 8..2 to the mapping space of parameter space
Σ := BZ – a combinatorial model of the circle –

τBZα := hom(BZ, α)1 : ΛG→ B2U(1)

is the groupoid 2-cocycle known as the twist of the Drinfeld double ([10, 29]):

(τBZα) : ( x
g // gxg−1 h // (hg)x(hg)−1 ) 7→

α(x, g, h) α(g, h, (hg)x(hg)−1)

α(h, gxg−1, g)
.

Proof. A 2-cell (x, g, h) in ΛG

gxg−1

h

##G
GGGGGGG

x
hg

//

g
DD							

(hg)x(hg)−1

corresponds to a

closed prism
•

h

��@
@@

@@
@@OO

•OO

x

hg //

g
??~~~~~~~

•OO

(hg)x(hg)−1•

h
@@

@

��@
@@

•
hg

//

g~~~

??~~~

•



48 Urs Schreiber, Zoran Škoda

in BG. The 2-cocycle τBZα sends the 2-cell in ΛG to the evaluation of α
on this prism. One representative of such a 3-morphism, going from the
back and rear to the top and front of this prism, is

•
h

��@
@@

@@
@@OO

gxg−1•

g
??~~~~~~~

OO

x

•OO

(hg)x(hg)−1•

??~~~~~~~

h
@@

@

��@
@@

•
hg

//

JJ��������������������
g~~~

??~~~

•
��

�� ����

��
////

� �
���

��
(g,gxg−1,h)−1

//

•
h

��@
@@

@@
@@

•

g
??~~~~~~~

OO

x

•OO

(hg)x(hg)−1•

??~~~~~~~

h
@@

@

��@
@@

•
hg

//

JJ��������������������
g~~~

??~~~

55

•
��

�� ����

��
////

��

(g,h,(hg)x(hg)−1)//

•
h

��@
@@

@@
@@

•

g
??~~~~~~~

OO

x

•OO

(hg)x(hg)−1•

h
@@

@

��@
@@

•
hg

//

JJ��������������������
g~~~

??~~~

55

hg

��
•

��

��
////

��

�� ����

= //

•
h

��@
@@

@@
@@

•

g
??~~~~~~~

OO

x

•OO

(hg)x(hg)−1

•
hg

//

II�������������������

44

•

��
//// ��

(x,g,h) //

•
h

��@
@@

@@
@@

•

g
??~~~~~~~

OO

x

hg // •OO

(hg)x(hg)−1

•
hg

//

hgx|||||||

>>|||||||

•

��

�#
????

�� ����

.

This manifestly yields the cocycle as claimed.

9.6.3. The Drinfeld double modular tensor category from DW
bibranes

Let again ρ : B2U(1)→ 2Vect be the representation of BU(1) from section
9.4. and let τBZα : ΛG → B2U(1) be the 2-cocycle obtained in section
9.6.2. from transgression of a Dijkgraaf-Witten line 3-bundle on BG and
consider the the ρ-associated 2-vector bundle ρ ◦ τBZα corresponding to
that. Its sections according to definition 7..7 form a category Γ(τBZα).
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Corollary 9..2 The category Γ(τBZα) is canonically isomorphic to the
representation category of the α-twisted Drinfeld double of G.

Proof. Follows by inspection of our definition of sections applied to this
case and using the relation established in 9.6.2. between nonabelian cocycles
and the ordinary appearance of the Drinfeld double in the literature:

a section is a natural transformation σ : constk → τBZα : ΛG→ 2Vect.
Its components are therefore an assignment σ : G → Vect such that over
each
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This defines an τBZα-twisted equivariant vector bundle over ΛG. As in the
discussion there, this exhibits σ as a twisted representation of ΛG. This
establishes the claim [10].

9.6.4. The fusion product

In the case that α is trivial, the representation category of the twisted
Drinfeld double is well known to be a modular tensor category. The fusion
tensor product on this category is reproduced from a monoid of bibranes
on ΛG.

We may think of ∗ → BZ ← ∗ as the cobordism cospan of a closed
string. Homming this cospan into the target space BG produces the span

ΛGs
{{vvv

t
##HH

H

BG BG

of groupoids. A bibrane ΛGs
yyrrr

t
%%LL

L

BG

const∗
%%LL

L BG

const∗
yyrrr

2Vect

σ #+OOOO OOO
O

on this is, by

the above, an untwisted representation of ΛG. σ : x 7→ σ(x). Analogous
to section 9.4., we find that the bibrane fusion of σ with some other σ′ is
the representation σ ⋆ σ′ : x 7→

⊕
y∈G σ(xy−1) ⊗ σ′(y). This is indeed the

fusion product on these representations.
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9.7. Outlook: Chern-Simons theory

Dijkgraaf-Witten theory for a finite group G and a group 3-cocycle α is
supposed to be a finite analog of the richer Chern-Simons theory which is
defined for a Lie group G and a certain bundle gerbe on G. In (∞, 1)-
topos language this can be made precise in that both theories (at least
as far as their classical formulation goes, which is fully understood) are
literally defined on the same type of data, only that the extra structure on
G differs, which is a difference that the abstract structure of H takes care
of automatically:

in both cases the target space object is X = BG in H and the back-
ground gauge field is a B2U(1)-principal 3-bundle with connection ∇, given
by a differential cocycle (α,∇)

BG
α //

��

B3U(1)

��
Π(BG)

∇ // EB3U(1)

as in section 7.4.. We had seen that in the Dijkgraaf-Witten case of finite
G, this general statement reduces to the much simpler statement that the
background field is already determined by the morphism α : BG→ B3U(1),
which moreover in this case is nothing but a bare group 3-cocycle on G with
coefficients in U(1).

But the very same morphism BG→ B3U(1) is something much richer
in the case that G is a genuine Lie group. There are various ways to
characterize this morphism in terms of a concrete model. One way to think
of it is as a G-equivariant bundle 2-gerbe on the point, a bundle gerbe on
G with some extra structure and properties.

Similarly the differential cocycle: by unwinding what a morphismΠR(BG)→
B3U(1) is in the model, one finds that it can for instance be given by a
degree 4-class in the complex of differential forms on the simplicial manifold

· · ·G×G
// //// G

//
// ∗ . That is given by a certain 3-form on G and a

2-form on G × G, satisfying some relation. Details of this using explicit
models in terms of bundle gerbes have been worked out by various authors,
see for instance [77] for a good account.

Then for Σ a piece of cobordism, a field configuration φ for the Chern-
Simons quantum field theory is a morphism in HI from Σ → Π(Σ) to
BG→ Π(BG). This defines on Σ the differential cocycle

Σ
φ //

��

BG
α //

��

B3U(1)

��
Π(Σ)

Π(φ) // Π(BG)
∇ // EB3U(1)

.

For 3-dimensional Σ, its volume-holonomy is the familiar Chern-Simons
action. One way to see this is by differentially approximating the ∞-Lie
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groups involved here by their corresponding ∞-Lie algebras (L∞-algebras)
one passes from this diagram to a corresponding diagram of dg-algebras: if
P → Σ is the (ordinary) G-principal bundle classified by α, this is

Ω•vert(P ) oo
Avert

OO
CE(g) oo

µ

OO CE(b2u(1))
OO

Ω•(P ) oo
(A,FA)

W(g) oo
(csµ,Pµ)

W(b2u(1))

,

where g is the Lie algebra of G, CE(g) its Chevalley-Eilenberg algebra,
W(g) its Weil algebra, CE(b2u(1)) the dg-algebra on a single degree-3 gen-
erator with trivial differential and W(b2u(1)) the one with free differential,
accordingly µ ∈ CE(g) a Lie algebra 3-cocycle and Pµ = dW(b2u(1))csµ the
invariant polynomial in transgression with it. The image of the degree 3
generator under the total horizontal bottom morphism is the Chern-Simons
form csµ(A,FA) of the g-valued connection 1-form A on P . This differential
approximation to the differential Chern-Simons cocycle in H is discussed
in [35]. A full account shall be given elsewhere.

10. Conclusion

We discussed that symmetries assembled into categories and higher ana-
logues allow for a systematic and uniform treatment of many phenomena in
noncommutative geometry, geometry and physics. The emphasis has been
on monoidal categories acting on categories of sheaves in NC geometry;
and on higher cocycles for smooth ∞-groupoids. We sketched generalized
notions of background fields and aspects of their induced σ-models.

Let us list some related topics not touched on here. Some σ-models and
couplings can be defined using infinitesimal versions of gauge n-groupoids.
E.g. a remarkable AKSZ construction [1] utilizes essentially Lie algebroids
as gauge “Lie algebras”. The relation betwen higher groupoids and L∞-
algebroids (particularly “integration”) is an active area of research (cf. its
role in our context in [36]).

With actions of higher groups, notions of equivariance for categorified ob-
jects (e.g. gerbes) under usual or higher groups need some treatment. The
first author has studied Z2-equivariant gerbes as an expression of so-called
Jandl structures in CFT; and the second author studied 2-equivariant ob-
ject in 2-fibered categories (presented at WAGP06, Vienna 2006; the basic
definition is sketched in [45]).
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