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Abstract - Product quality concept in a ceramic tile plant is 

presented. Entropy and information content of measurement 

data is calculated. Several entropy concepts have been 

elaborated: Shannon entropy, 1D and 2D Carnap entropy. 

Because of plant informational macrodynamics the 

dominance of 1D Carnap entropy of process data sources has 

been argued on measurement data of the kiln temperature 

profiles and press control parameter data. Obtained process 

entropies have been compared to normalized process data 

distributions such as Gaussian and uniform distribution. 

 

 

I. INTRODUCTION 
 

Ceramic plant behavior and respective quality of its final 
product highly depend on the overall plant organization, 
process technology state and production discipline. In 

order to study the regularities in the plant results and to 
enable detection of its quality critical points a series of 
measurements has been made and its parameter studied. 
Among the most serious analysis is the analysis of process 
entropies. In order to fulfill the plant goal the information 
system theory has been proposed [1] that unifies 
information description of different process information 
sources and information formalism for building the system 

regularities. Such system regularities are represented by 
informational macrodynamics.  

The self-information of a random event or a random 
message is a term coined by C. E. Shannon who defined it 

to be “minus logarithm of the probability of a random 
event“. The Shannon “entropy“ of the stochastic source 
that generated the event is the expectation of the self-
information. Shannon discovered that the entropy of a 
stochastic source has a clear and important physical 
meaning: the smallest number of bits to represent the event 
from the stochastic source.  

In the broadest sense the source distribution is 

completely known, or it is known to belong to a 
parameterized family of probability distributions, or the 
source distribution is known to be stationary and ergodic, 
but no other information is available [2]. A question arises: 

can we find an appropriate and universal way to estimate 
the probability measure that describes the generation of 
information at the information source? 

For short data acquisition series the probability being 
approximated with relative frequencies cannot be defined. 
Sometimes no a priori information about the underlying 
statistics of the source is available. Even worse, the 
majority of real production processes possess strict and 
controlled number of source values with superimposed 
unknown noise. On the other hand processes exhibit 
standard information patterns representing expected states 
of the plant. These patterns do not follow any distribution, 

violating the possibility of relevant information 
measurement.  

Informational description of the plant cannot strictly 
follow from Shannon’s information entropy concept 

because of evident deterministic structure that results in 
data uniformity disruptions. Thus several other entropies 
have been studied and elaborated in the article in reference 
to the plant data dynamics. Entropy results have been 
presented and compared. 

 

 
II. PROCESS ENTROPIES 

 
Information system theory as proposed by Vladimir S. 

Lerner [1] is conceived to build a bridge between the 

mathematical systemic formalism and information 
technologies dealing with transformation of information. 
The aim of such procedure is to obtain system models that 
reveal information laws and specific object codes and 
patterns. General evaluation of informational aspect of 
stochastic data is enabled by application of Kolmogorov 
entropy [3] that measures the extent of chaos in a system.  

According to Shannon's interpretation, system 

uncertainty is closely related to system information content 

we possess [2]. Let us designate with ),( TlI  the 

information amount obtained by following up system 
trajectories in time interval T with precision l. Basic cell of 
the system phase space with dimension m possesses the 

volume 
m

l  and observation time interval TN =τ . 

Designating with iNiip ...1,0  complex probability of the 

observed system x(t) to be found in 0=t  in cell i0 , in 

τ=t  in cell 1i ,..., and in τNt =  in cell Ni , the 

informational content equals to  
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Kolmogorov entropy is given as the limit value of  
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Kolmogorov entropy thus measures information amount 
necessary for precise determination of system trajectory in 

phase space, or the loss of information in the system 
starting from its initial point. For system states with equal 

probabilities
N
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The generalization of K entropy can be done by 

introducing so called information of the order q as [4]  
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Information content is information of the first order. K-
entropy of the order q is defined as in [2]: 
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0K  is topologic entropy, 1K is information entropy, 2K  

is correlation entropy etc. Permitted are also non-integer 
values of parameter q. 

Topologic entropy excludes the notion of probability 

and treats the abstract measure of entropy as introduced by 
philosopher Rudolf Carnap [5].  By constructing a time-
dynamic two dimensional Voronoi diagram using Voronoi 
cell generators with coordinates of value and change of 
value, entropy becomes a function of the cell areas. 
Accepting the knowledge of the final (teleonomic, 
purposeful) state of the system at each stage of its 
trajectory the 2D Carnap or teleonomic entropy is used to 
describe changes in any end-directed system. Actually this 

term can be justified only at the price of system state 
enumeration follow-up.  

We will introduce a simplified approach to the topologic 

entropy concept by reducing the dynamic dimension of the 
process, i.e. excluding system dynamics and observing the 
system as a series of its values only. This approach 
significantly reduces calculation burden when defining 
specific event space distribution but introduces the 
problem of multiple identical state values that was hidden 
in the original Carnap concept and in its derivates as well. 
 
 

III. A REVISITED CARNAP ENTROPY CONCEPT 

 

Rudolf Carnap (1956) introduced an n-dimensional 
system space using its n system variables within their 

theoretic limits 
µR , µ being at maximum equal to n. Each 

system variable iu  is given within its minimum and 

maximum values of its space iφ . A two, three, or more – 

dimensional spaces are produced with respective Voronoi 

diagrams. The relevant occupation space je is defined for 

each measurement point ),( 21 iij uub  according to 

minimum distance criterion from neighboring points.   
Because of the possibility to relate the relative ratio of 

each occupation space and theoretic limit, the dual 

logarithm of the relation is named Carnap entropy: 
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The time-space trajectory of the system produces a 
dynamic Voronoi diagram that can be traced and compared 
to the desired, teleonomic system trajectory. Thus Carnap 

entropy can measure system entropy of teleonomic 

systems.  
A problem not specified in the Carnap concept is the 

case of equal measurement points and the case of extreme 
reduction of the dimensions to only one.  

It is important to stress out that multiple point evaluation 
exists. The reason for multiple point evaluation exists in 
technology praxis where strict control of particular process 
measurement is necessary for product quality enforcement. 
On the other hand one-dimensionality of the Carnap 

entropy is forced whenever overall plant data are examined 
whose mutual difference values do not indicate any system 
dynamics or just do not carry explainable information 

content.  
 
 

IV. ONE-DIMENSIONAL CARNAP ENTROPY FOR 
PERIODIC, UNIFORM, AND GAUSSIAN 
DISTRIBUTION 

 

Theorem 1: Carnap based entropy is invariant to event 
occurrence instant. 
Proof: The change of element ordering in the relation (5) 
does not produce any change in the sum value.    

Corrolary 1: One-dimensional Carnap entropy as stated in 
relation (5) is applicable also to time independent data 
series.  

Periodic scanning N times of a constant process value L 

should yield a negligible one-dimensional Carnap entropy 
because the space that occupies first measurement is total 

space L with 0=
L

L
ld

L

L
 and all the other data occupy a 

negligible space with 0
00
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ld
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.  

However, reserving for 1−N measurement the 
1

1

−N
 

part of the space can yield the entropy in the form that is 
independent of L that is 
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Thus for N=25 Carnap entropy equals to 0.0614 + 
4.5849 bit, for N=1000 it equals 0.00144 + 2.9996 bit, and 

for N=100.000 it equals 0.0000043 + 16.6096 bit which is 
not a satisfying result.  

Therefore space of equal measurement values should not 
be subdivided among equal measurement points. It should 

be taken as a unique however small space je  and its 

content multiplied by the number of equal measurements. 
This statement is valid for Carnap entropy of any 
dimension. 
 
 
IV.I. 1D UNIFORMLY DISTRIBUTED CARNAP 

ENTROPY 
 

Let us suppose that a uniformly distributed one-
dimensional data exhibit total number of occurrences N put 

into 1−k  equal increment classes with incremental 



differences i∆  and also that there is defined an initial class 

0w . Then a total space L that can be expressed as 
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Let us suppose that 
iw  represents the measured value of 

the 
th

i  class. Supposing the initial value of the uniform 

distribution possessing value x, ><= µ,0
def

x , x being a 

left flank of the class 0w , and knowing that the mean 

measurement value equals to 
N

L
=µ , then the value y∆  

between x and mean value equals to xy −=∆ µ  and the 

class steps uniformly increase from x to yx ∆+ 2  with 

class increments 
k

y
i

∆
=∆

2
. Thus the measured value of 

the class i equals to  
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Possessing λ=
k

N
 events in each class total 1D Carnap 

entropy of the uniform distribution is 
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Usually the number of classes k is approximated with 

N , and relation (8) depends only on the value x . 

 

 
IV.2. 1D GAUSSIAN DISTRIBUTED CARNAP ENTROPY 
 

Gaussian distribution involves measured values 
distributed into classes with different number of events 
with values distributed according to given parameters 

),( 2σµ  of mean value and variance. With ∆  as interval 

between measurements, N as total number of 
measurements, total occurrence space L is given by 

)(max , NL σµ= . Occurrence classes are usually of the 

width 
2

σ
≅c . Left flank of the distribution can be 

calculated from the binominal distribution as [6] 
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where tif  is expectation of one event in the minimum 

value class. With known N , the correspondent deviation 

from mean value for unity normal distribution can be 

calculated from Gaussian unity distribution as 
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For 100=N  the distribution is between 

)54.3,54.3( σσ−  and data can be subdivided into 14 

classes. Thus one-dimensional Carnap entropy of the 

Gaussian measurement starts from 
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 . Therefore total 1D 

Carnap entropy of the Gaussian distribution is  
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The error term has to be added because of volatility of 
distribution that can change upper and lower flank of the 

actual distribution. The inclusion of actual data for tif  and 

with 11 =tf  gives 

       −









−








−

−=
L

N
L

ld
L

N
L

CG

1
2

1
2 ϕϕ

 

err
L

uNc
ld

L

uNck

i

ii +−∑ =2

22 )()(

σ

ϕ

σ

ϕ
   (11). 

 

 
V. PROCESS MEASUREMENT DATA AND 

RELEVANT ENTROPY CALCULATIONS 
 

Data have been taken from two-stage kiln temperature 
sensors on the daily basis from August to October 2008 in 
the KIO KERAMIKA tile factory in Orahovica, Croatia. A 

separate program that calculates Shannon and 1D and 2D 
Carnap entropies has been prepared in Java programming 
language. Calculations are given in Table 1.  

The following 31 signals, Signal 10 to Signal 40, have 

been taken across five tile press machines measured on the 
daily shift basis and relevant entropies have been 
calculated as in Table 1. Data are given in Table 2. 

 

VI. DISCUSSION AND CONCLUSION 
  

Data on process measurements are required for further 
analyses, modeling, decision and intervention. Common 
issue in process analyses and modeling are product quality 

while retaining adequate plant productivity. In KIO 
KERAMIKA ceramic tile plant high productivity is 
enabled through complete press, design prefabrication, and 

kiln automation as well as by robotic platform application 
in the internal tile transport. Still high production machines  



 
Table 1: Entropy calculations of 90-day temperature profiles in the two-stage kiln in KIO KERAMIKA tile factory, Orahovica, Croatia 
 

Signal name Temperature lower 
bound, ˚C 

Temperature upper 
bound ,˚C 

Shannon entropy, 
bit 

1D Carnap 
entropy, bit 

2D Carnap 
entropy, bit 

Signal 44 1106 1166 none* 17,0464 5,82848 

Signal 45 1119 1151 2,89715 20,4124 6,96516 

Signal 46 1106 1166 none 16,8702 5,44023 

Signal 47 1106 1166 2,9183  19,6232 6,66346 

Signal 48 1107 1169 none 15,7453 5,5408 

Signal 49 1114 1150 2,74091 18,5061 5,98589 

Signal 50 1107 1170 none 16,0646 5,584 

Signal 51 1114 1150 2,7879 18,7413 6,5268 

* one or more empty data classes 

 
Table 2. Entropy calculations for 31 signals, Signal 10 to Signal 40, across five tile press machines for daily shift quality control 
 

Press name Data lower bound Data upper bound Shannon entropy, 

bit 

1D Carnap 

entropy, bit 

2D Carnap 

entropy, bit 

Press 5 -0,1 50,1 none* 5,01798 3,29666 

Press 6 0 60,1 none 3,16758 3,05867 

Press 8 0 48 none 4,59378 3,48107 

Press 9 0 50,1 none 3,08708 3,37782 

Press 10 -0,1 47,1 none 4,76176 3,30893 

*- one or more empty data classes 

 
require adequate workers’ support and logistics. Therefore 
55 signal sources in the process are measured and taken 

from the process by quality control division of the plant 
mostly on the daily shift basis and independent of process 
control manipulations. As referred by cited authors [1, 2, 
and 3] and known from Shannon’s information theory, the 

quantity of information can be measured by data entropy. 
Stochastic information source with lower entropy 
contentthereby contains more information, because of its 
lower internal data volatility. Thus process information 

source with high volatility can be indicated as a source of 
quality problems in the production.  

Data time series taken during three months from the 
ceramic kiln and put into Shannon based procedure have 

shown poor ability for usual entropy analysis because of 
zero values in their distribution function that are the basis 
for entropy calculations, Table 1. Moreover data taken 
across presses cannot completely be used for such 

analytical purposes, Table 2. Therefore a new concept of 
one-dimensional Carnap entropy has been proposed that 
enables simple and fast process entropy calculations. This 
entropy covers complete measuring range by dividing it 

into subspaces of each particular measurement value.  
Authors propose that multiple data occurrences in the 

Carnap theory should be solved by addition of particular 
entropy contributions. The obtained results with 1D 
Carnap entropy for press quality indicate the difference in 
production quality for press 6 and 9 compared to press 5, 8 
and 10. Carnap entropy is usually conceived as two-
dimensional entropy of the signal state dynamics [4, and 

5]. This entropy is calculated for process signals as well, 
and given in Tables 1 and 2, but for process across signal 
data it is not interpretable. The procedure is also very time-
consuming, taking approximately ten minutes for each 31-

data row in Table 2 calculations on a 2 GHz machine with 
512 MB memory and Intel processor. Algorithm 
calculation optimization was not applied, although around 
3 billion operations are required for Voronoi diagram  

 
calculation in the particular case.  

Further work is required to connect calculated entropies 
for the whole production process with product quality 
models and with worker’s motivation profiles into a 

meaningful and harmonic unity [1]. 
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