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Abstract In this paper we recall and provide short proofs of some classical
triangle inequalities and prove corresponding non–Euclidean, i.e. spherical and
hyperbolic versions of these inequalities. Among them are well known Euler’s
inequality, Rouché’s inequality (also called ”fundamental triangle inequality”),
Finsler–Hadwiger’s inequality, isoperimetric inequality and others.

1 Introduction

As it is well known, the Euclid’s Fifth Postulate (through any point in a plane
outside of a given line there is only one line parallel to that line) has many
equivalent formulations. Recall some of them: sum of the angles of a triangle is
π (or 180◦), there are similar (non–congruent) triangles, there is the area func-
tion (with usual properties), every triangle has unique circumcircle, Pythagoras’
theorem and it’s equivalent theorems such as the law of cosines, the law of sines,
heron’s formula and many more.

The negations of the Fifth Postulate lead to spherical and hyperbolical ge-
ometries. So, negations of some equalities characteristic for the Euclidean ge-
ometry lead to inequalities specific for either spherical or hyperbolic geometry.
For example, for a triangle in the Euclidean plane we have the law of cosines

c2 = a2 + b2 − 2ab cos C,

where we stick with standard notations (that is a, b and c are the side lengths
and A,B and C are the angles opposite, respectively to the sides a, b and c).
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It can be proved that in the spherical geometry one has the corresponding
inequality

c2 < a2 + b2 − 2ab cos C,

and in the hyperbolic geometry the opposite inequality

c2 > a2 + b2 − 2ab cos C.

In fact, we have

a2 + b2 − 2ab cos C < c2 < a2 + b2 + 2ab cos(A + B).

See [12] for details.
On the other hand, there are plenty of interesting inequalities in the (ordi-

nary or Euclidean) triangle geometry relating various triangle elements. In this
paper we shall prove some of their counterparts in non–Euclidean cases.

Let us fix (mostly standard) notations. For a given triangle4ABC, let a, b, c
denote the side lengths (a opposite to the vertex A, etc.), A,B,C corresponding
angles, 2s = a+b+c the perimeter of the triangle, S its area R the circumradius,
r the in radius, ra, rb, rc the excircle radii.

We use the symbols of cyclic sums and products such as:∑
f(a) = f(a) + f(b) + f(c)∑
f(A) = f(A) + f(B) + f(C)∑
f(a, b) = f(a, b) + f(b, c) + f(c, a)∏
f(a) = f(a)f(b)f(c)∏
f(x) = f(x)f(y)f(z)

2 Euler’s inequality

In 1765. Euler proved that the triangle’s circumradius R is at least twice as big
as its inradius r, i.e.

R ≥ 2r,

with equality iff the triangle is equilateral.Here is a short proof. R ≥ 2r ⇔
abc
4S ≥

2S
s ⇔ sabc ≥ 8S2 = 8s (s− a)︸ ︷︷ ︸

=x

(s− b)︸ ︷︷ ︸
=y

(s− c)︸ ︷︷ ︸
=z

⇔
∏

(s − x) ≥ 8
∏

x ⇔

s
∑

xy −
∏

x ≥ 8
∏

x ⇔
∑

x ·
∑

xy ≥ 9
∏

x ⇔
∑

x2y ≥ 6
∏

x
A−G⇐⇒

∑
x2y ≥

6(
∏

x2y)
1
6 = 6

∏
x.

(Yet another way to prove the last inequality: x2y+yz2 = y(x2+z2) ≥ 2xyz,
and add such three similar inequalities.) The equality case is clear.

The inequality 8S2 ≤ sabc (equivalent to Euler’s) can also be easily obtained
as a consequence (via A−G) of the ”isoperimetric triangle inequality”:

S ≤
√

3
4

(abc)
2
3 ,
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which we shall prove in §4.
The Euler inequality has been improved and generalized (e.g. for simplices)

many times. A recent and so far the best improvement of Euler’s inequality is
given by (see [15]) (and it improves [16]):

R

r
≥ abc + a3 + b3 + c3

2abc
≥ 2

3

(
a

b
+

b

c
+

c

a

)
≥ a

b
+

b

c
+

c

a
− 1 ≥ 2

Now we turn to the non–Euclidean versions of Euler’s inequality. Let k be the
(constant) of the hyperbolic plane in which a hyperbolic triangle 4ABC sits.
let ε = π− (A + B + C) be the excess (or ”defect”). The area of the hyperbolic
triangle is given by S = k2ε.

Theorem 2.1 (Hyperbolic Euler’s inequality) Suppose a hyperbolic triangle has
a circumcircle and let R be its radius. Let r be the radius of the triangle’s
incircle. Then

tanh
R

k
≥ 2 tanh

r

k
(2.1)

The equality is achieved for an equilateral triangle for any fixed excess.

Proof .
Recall that the radius R of the circumcircle of a hyperbolic triangle (if it exists)
is given by (e.g. see [6], [7], [5], [8]):

tanh
R

k
=

√
sin ε

2

2
∏

cosh a
2k

=
a

∏
sinh a

2k√
sinh s

k sinh s−a
k

(2.2)

Also the radius if the incircle (radius of the inscribed circle) r of the hyperbolic
triangle is given by (same references):

tanh
r

k
=

√∏
sinh s−a

2

sinh s
k

(2.3)

We can take k = 1 in the above formulas. Then it is easy to see that (2.1) is
equivalent to∏

sinh(s− a) ≤
∏

sinh
a

2
,

or, by putting (as in the Euclidean case) x = s− a, y = s− b, z = s− c, to∏
sinhx ≤

∏
sinh

s− x

2
. (2.4)

By writing 2x instead of x etc., (2.4) becomes∏
sinh 2x ≤

∏
sinh(s− x) =

∏
sinh(y + z).
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Now by the double formula and addition formula for sinh, after multiplication
we get

8
∏

sinhx ·
∏

coshx ≤
∑

sinh2 x sinh y cosh y cosh2 z+
+2

∏
sinhx

∏
coshx

hence

6
∏

sinhx ·
∏

coshx ≤
∑

sinh2 x sinh y cosh y cosh2 z (2.5)

However, (2.5) is simply A − G inequality for the six (nonnegative) numbers
sinhx, coshx, . . . , cosh z. The equality case follows easily. This proves the hy-
perbolic Euler’s inequality.

Note also that (2.5) can be proved alternatively in the following way, using
three times the simplest A−G inequality

sinh2 x sinh y cosh y cosh2 z + cosh2 x sinh y cosh y sinh2 z =
= sinh y cosh y[(sinh x cosh z)2 + (coshx sinh z)2] ≥
≥ 2 sinh y cosh y sinhx cosh z coshx sinh z.

In the spherical case the analogous formula to (2.2) and (2.3) and similar rea-
soning to the previous proof boils down to proving analogous inequality to (2.4):∏

sinx ≤
∏

sin
s− x

2
(2.6)

But (2.6) follows in the same manner as above. So, we have the following.

Theorem 2.2 (Spherical Euler’s inequality) The circumradius R and the inra-
dius r of a spherical triangle on a sphere of radius ρ are related by

tan
R

ρ
≥ 2 tan

r

ρ
(2.7)

The equality is achieved for an equilateral triangle for any fixed spherical excess
ε = (A + B + C)− π.

Remark 2.3 At present, we don’t know how to improve these non–Euclidean
Euler’s inequalities in the sense of the previous discussions in the Euclidean
case. It would also be of interest to have the non–Euclidean analogues of the
Euler inequality R ≥ 3r for a tetrahedron (and similarly for any dimension n).

3 Finsler–Hadwiger’s inequality

In paper [3] from 1938. Finsler and Hadwiger proved the following sharp upper
bound for the area S in terms of side lengths a, b, c of a triangle (improving
Weitzenbreck’s inequality):∑

a2 ≥
∑

(b− c)2 + 4
√

3S (3.8)
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Here are two short proofs of (3.8). First proof (citeJMS): Start with the law of
cosines a2 = b2 + c2 − 2bc cos A, or equivalently a2 = (b− c)2 + 2bc(1− cos A).
From the area formula 2S = bc sinA, it then follows a2 = (b − c)2 + 4S tan A

2 .
By adding all three such equalities we obtain∑

a2 =
∑

(b− c)2 + 4S
∑

tan
A

2
.

By applying the Jensen inequality to the sum
∑

tan A
2 (that is, using convexity

of tan x
2 , 0 < x < π) and the equality A + B + C = π, (3.8) follows at once.

Second proof ([7]): Put x = s− a, y = s− b, z = s− c. Then∑
[a2 − (b− c)2] = 4

∑
xy.

On the other hand, Heron’s formula can be written as

4
√

3S = 4
√

3
∑

x
∏

x.

Then (3.8) is equivalent to√
3

∑
x ·

∏
x ≤

∑
xy,

and this is equivalent to∑
x2yz ≤

∑
(xy)2,

which in turn is equivalent to∑
[x(y − z)]2 ≥ 0,

and this is obvious.

Remark 3.1 The seemingly weaker Weitzenbreck’s inequality∑
a2 ≥ 4

√
3S

is, in fact, equivalent to (3.8) (see [16]).

Also, there are various ways to write Finsler–Hadwiger’s inequality. For exam-
ple, since∑

[a2 − (b− c)2] = 4r(r + 4R),

it follows that (3.8) is equivalent to

r(r + 4R) ≥
√

3S,

or, since S = rs, it is equivalent to

s
√

3 ≤ r + 4R.
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There are many generalizations, improvements and sharpness of (3.8) (see [4]).
Let us mention here only two recent. One is (see [1]):∑

(b + c) ·
∑ 1

b + c
≤ 10− r

s2
[s
√

3 + 2(r + 4R)],

and the other one is (see [13])∑
a2 ≥ 4

√
3S +

∑
(a− b)2 +

∑
[
√

a(b + c− a)−
√

b(c + a− b)]2.

The opposite inequality is ([16]):∑
a2 ≤ 4

√
3S + 3

∑
(b− c)2.

Note that all these inequalities are sharp in the sense that equality hold iff the
triangle is equilateral (regular).

For the hyperbolic case, we need first an analogue of the area formula 2S =
bc sinA. It is not common in the literature, so for reader’s convenience we
provide its short proof (see e.g. [5]).

Lemma 3.2 (Cagnolli’s first formula) The area S = k2ε of a hyperbolic triangle
ABC is given by

sin
S

2k2
=

sinh a
2k sinh b

2k sinC

cosh c
2k

(3.9)

Proof .
From the well known second (or ”polar”) law of cosines in elementary hyperbolic
geometry

cosh
a

k
=

cos A + cos B cos C

sinB sinC

we get

cosh
a

2k
=

√
sin

(
B + ε

2

)
sin

(
C + ε

2

)
sinB sinC

, sinh
a

2k
=

√
sin

(
ε
2

)
sin

(
A + ε

2

)
sinB sinC

. (3.10)

By multiplying two expressions sinh a
2k · sinh b

2k , and using (3.10) we get

sinh
a

2k
· sinh

b

2k
=

sin ε
2

sinC
cosh

c

2k
.

This implies (3.9).

Theorem 3.3 (Hyperbolic Finsler–Hadwiger’s inequality) For a hyperbolic tri-
angle ABC we have:∑

cosh
a

k
≥

∑
cosh

b− c

k
+ 12 sin

S

2k2
cosh

a

2k
cosh

b

2k
cosh

c

2k
tan

π − ε

6
(3.11)

The equality in (3.11) holds iff for any fixed excess ε, the triangle is equilateral.
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Proof .
The idea is to try to mimic (as much as possible) the first proof of (3.8). Start
with the hyperbolic law of cosines

cosh
a

k
= cosh

b

k
cosh

c

k
− sinh

b

k
sinh

c

k
cos A.

By adding and subtracting sinh b
k sinh c

k , we obtain

cosh
a

k
= cosh

b− c

k
+ sinh

b

k
sinh

c

k
− sinh

b

k
sinh

c

k
cos A =

= cosh
b− c

k
+ sinh

b

k
sinh

c

k
· 2 sin2 A

2
=

= cosh
b− c

k
+ 4 sinh

b

2k
sinh

c

2k
cosh

b

2k
cosh

c

2k
· 2 sin2 A

2

By Cagnolli’s formula (3.9), substitute here the part sinh b
2k sinh c

2k to obtain

cosh
a

k
= cosh

b− c

k
+ 4 cosh

a

2k
cosh

b

2k
cosh

c

2k
sin

S

2k2
tanA (3.12)

Apply to both sides of (3.12) the cyclic sum operator
∑

, and (again) apply
Jensen’s inequality (i.e. convexity of tan x

2 ):

1
3

∑
tan

A

2
≥ tan

(
1
3

∑ A

2

)
= tan

π − ε

6

This implies (3.11). The equality claim is also clear from the above argument.
The corresponding spherical inequality can be obtained by mutatis mutandis

from the hyperbolic case. The area S of a spherical triangle ABC on a sphere
of radius ρ is given by S = ρ2ε, where ε = A+B +C−π is the triangle’s excess.
The spherical Cagnolli’s formula (like 3.9) reads as follows:

sin
S

2ρ2
=

sin a
2ρ sin b

2ρ sinC

cos c
2ρ

. (3.13)

So, starting with the spherical law of cosines, using (3.13) and Jensen’s inequal-
ity, one can show the following.

Theorem 3.4 (Spherical Finsler–Hadwiger’s inequality) For a spherical trian-
gle ABC on a sphere of radius ρ we have∑

cos
a

ρ
≥

∑
cos

b− c

ρ
+ 12 sin

S

2ρ2
cos

a

2ρ
cos

b

2ρ
cos

c

2ρ
tan

ε− π

6
. (3.14)

The equality in (3.14) holds iff for any fixed ε, the triangle is equilateral.

Remark 3.5 Note that both hyperbolic and spherical inequalities (3.11) and
(3.14) reduce to Finsler–Hadwiger’s inequality (3.8) when k → ∞ in (2.5),
or ρ → ∞ in (3.14). This is immediate from the power sum expansions of
trigonometric or hyperbolic functions.
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4 Isoperimetric triangle inequalities

In the Euclidean case, if we multiply all the area formulas, one of which is
S = 1

2bc sinA, we obtain a symmetric formula for the triangle area

S3 =
1
8
(abc)2 sinA sinB sinB. (4.15)

By using A − G inequality and concavity of the function sinx on [0, π] (or,
Jensen’s inequality again), we have:

sinA sinB sinC ≤
(

sinA + sinB + sinC

3

)3

≤

≤
(

sin
A + B + C

3

)3

= sin3 π

3
=

3
√

3
8

This and (4.15) imply the so called ”isoperimetric inequality” for a triangle:

S3 ≤ 3
√

3
64

(abc)2,

or in a more appropriate form

S ≤
√

3
4

(abc)
2
3 . (4.16)

Inequality (4.16) and A−G imply that S ≤
√

3
36 (a + b + c)2, and this is why we

call it ”isoperimetric inequality”.
By Heron’s formula we have (4S)2 = 2sd3(a, b, c), where 2s = a + b + c and

d3(a, b, c) := (a + b− c)(b + c− a)(c + a− b). By [10], Cor. 6.2, we have a sharp
inequality

d3(a, b, c) ≤ (2abc)2

a3 + b3 + c3 + abc
(4.17)

From Heron’s formula and (4.17) it easily follows

S ≤ 1
2
abc

√
a + b + c

a3 + b3 + c3 + abc
(4.18)

namely, we claim

1
2
abc

√
a + b + c

a3 + b3 + c3 + abc
≤
√

3
4

3
√

(abc)2 (4.19)

But (4.19) is equivalent to(
a3 + b3 + c3 + abc

4

)3

≥ (abc)2
(

a + b + c

3

)3

. (4.20)
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To prove (4.20) we can take abc = 1 and prove

a3 + b3 + c3 + 1
4

≥
(

a + b + c

3

)3

. (4.21)

Instead, we prove even stronger inequality

a3 + b3 + c3 + 1
4

≥ 3

√
a3 + b3 + c3

3
. (4.22)

Inequality (4.22) is stronger than (4.21) because the means are increasing, i.e.
Mp(a, b, c) ≤ Mq(a, b, c), for a, b, c > 0 and 0 ≤ p ≤ q, where Mp(a, b, c) =[

(ap+bp+cp)
3

] 1
3
. To prove (4.22), denote x = a3 + b3 + c3 and consider the

function

f(x) =
(

x + 1
4

)3

− x

3
.

Since (by A−G) x
3 ≥ abc = 1, i.e. x ≥ 3, we consider f(x) only for x ≥ 3. Since

f(3) = 0 and derivative f ′(x) ≥ 0 for x ≥ 3, we conclude f(x) ≥ 0 for x ≥ 3
and hence prove (4.19).

Putting all together, we finally have a chain of inequalities for the triangle
area S symmetrically expressed in terms of the side lengths a, b, c.

Theorem 4.1 (Improved Euclidean isoperimetric triangle inequalities)

S ≤ 1
2
abc

√
a + b + c

a3 + b3 + c3 + abc
≤ 1

4
6

√
(a + b + c)3(abc)4

a3 + b3 + c3 + abc
≤
√

3
4

(abc)
2
3 (4.23)

We shall now make an analogue of the ”isoperimetric inequality” (4.16) in the
hyperbolic case.

Start with Cagnolli’s formula (3.9) and multiply all such three formulas to
get (since S = εk2):

sin3 ε

2
=

∏
sinh

a

2k

∏
tanh

a

2k

∏
sinA. (4.24)

As in the Euclidean case we have∏
sinA ≤

(
sinA + sinB + sinC

3

)3

≤
(

sin
A + B + C

3

)3

=
(

sin
π − ε

3

)3

So, this inequality together with (4.24) implies the following.

Theorem 4.2 The area S = εk2 of a hyperbolic triangle with side lengths a, b, c
satisfies the following inequality(

sin ε
2

sin π−ε
2

)3

≤
∏

sinh
a

2k
·
∏

tanh
a

2k
. (4.25)

For a regular triangle (a = b = c, A = B = C) and any fixed excess ε, the
inequality (4.25) becomes an equality (by Cagnolli’s formula (3.9)).
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The corresponding isoperimetric inequality can be obtained for a spherical tri-
angle:(

sin ε
2

sin π+ε
2

)3

≤
∏

sin
a

2ρ
·
∏

tan
a

2ρ
. (4.26)

Remark 4.3 In the 3–dimensional case we have a well known upper bound of
the volume V of a (Euclidean) tetrahedron in terms of product of lengths of its
edges (like (4.16)) :

V ≤
√

2
12

√
abcdef

with equality iff the tetrahedron is regular (and similarly in any dimension), see
[11].

Non–Euclidean tetrahedra (and simplices) lack good volume formulas of Heron’s
type, except the Cayley–Menger determinant formulas in all three geometries.
Kahan’s formula1 for volume of a Euclidean tetrahedron is known only for the
Euclidean case. There are some volume formulas for tetrahedra in all three
geometries now available on Internet, but they are rather involved. We don’t
know at present how to use them to obtain a good and simple enough upper
bound.

Un dimension two, Heron’s formula in all three geometries can very easily
be deduced. A very short proof of Heron’s formula is as follows. Start with the
triangle area (in fact, law of sines) and the law of cosines 4S = 2ab sinC, and
a2 + b2− c2 = 2ab cos C. Now square them both and then add them. The result
is (a form of) the Heron’s formula (4S)2 + (a2 + b2− c2)2 = (2ab)2. In a similar
way one can get triangle area formulas in the non–Euclidean case by starting
with Cagnolli’s formula ((3.9) or (3.13)) and the appropriate law of cosines.

Remark 4.4 In order to improve the non–Euclidean 2–dimensional isoperi-
metric inequality analogous to (4.23) we would need an analogue of the function
d3(a, b, c) and a corresponding inequality like (4.17). This inequality was proved
in [10] as a consequence of the inequality d3(a2, b2, c2) ≤ d2

3(a, b, c), and this fol-
lows from an identity expressing the difference d2

3(a, b, c) − d3(a2, b2, c2) as the
sum of four squares. But at present we don’t know the right hyperbolic analogue
dH
3 (a, b, c) or spherical analogue dS

3 (a, b, c) of d3(a, b, c).

5 Rouche’s inequality and Blundon’s inequality

The following inequality is a necessary and sufficient condition for the existence
of an (Euclidean) triangle with elements R, r and s (see [4]):

2R2+10Rr−r2−2(R−2r)
√

R2 − 2Rr ≤ s2 ≤ 2R2+10Rr−r2+2(R−2r)
√

R2 − 2Rr.

1see www.cs.berkeley.edu/ewkahan/VtetLang.pdf, 2001.
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(5.27)

This inequality (sometimes called ”the fundamental triangle inequality”) was
first proved by É. Rouché in 1851. answering a question of Ramus. It was
recently improved in [14].

A short proof of (5.27) is as follows. Let ra, rb, rc be excircle radii of the
triangle ABC. Then it is well known (and easy to check) that

∑
ra = 4R + r,∑

rarb = s2 and rarbrc = rs2. Hence ra, rb, rc are the roots of the cubic

x3 − (4R + r)x2 + s2x− rs2 = 0. (5.28)

Now consider the discriminant of this cubic, that is

D =
∏

(ra − rb)2.

In terms of elementary symmetric functions e1, e2, e3 (in variables ra, rb, rc) the
discriminant is given by

D = e2
1e

2
2 − 4e3

2 − 4e3
1e3 + 18e1e2e3 − 27e2

3. (5.29)

Since e1 =
∑

ra = 4R + r, e2 =
∑

rarb = s2, e3 =
∏

ra = rs2, we have

D = s2[(4R + r)2s2 − 4s4 − 4(4R + r)3r + 18(4R + r)rs2 − 27r2s2].

From D ≥ 0, (5.27 follows easily. In fact, the inequality D ≥ 0 reduces to the
quadratic inequality in s2:

s4 − 2(2R2 + 10Rr − r2)s2 + (4R + r)3r ≤ 0 (5.30)

The ”fundamental” inequality (5.27) implies a sharp linear upper bound of s in
terms of r and R, known as Blundon’s inequality [2]:

s ≤ (3
√

3− 4)r + 2R. (5.31)

To prove (5.31), it is enough to prove that

2R2 + 10Rr − r2 + 2(R− 2r)
√

R2 − 2Rr ≤ [(3
√

3− 4)r + 2R]2.

A little computation shows that this is equivalent to the following cubic inequal-
ity (with x = R/r):

f(x) := 4(3
√

3−5)x3−30(60
√

3−103)x2+12(48
√

3−83)x+4(229−132
√

3) ≥ 0.

By Euler’s inequality x ≥ 2, f(2) ≥ 0 and clearly f(x) ≥ 0 for x ≥ 2.
Yet another (standard) way to prove Blundon’s inequality (5.31) is to use

convexity of the biquadratic function on the left hand side of the inequality
(5.30).

Blundon’s inequality is also sharp in the sense that equality holds in (5.31) iff
the triangle is equilateral. (Recall by the way that a triangle is a right triangle
if and only if s = r + 2R).
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Let us turn to non–Euclidean versions of the ”fundamental triangle inequal-
ity”.

Suppose a hyperbolic triangle has the circumscribed circle. As before, denote
by R, r, and ra, rb, rc, respectively, the radii of the circumscribed, inscribed and
excribed circles of the triangle. Then by (2.2) and (2.3) we know R and r, while
ra (and similarly rb and rc) is given by

tanh
ra

k
= sinh

s

k
tan

A

2
, (5.32)

and by using

tan
A

2
=

√
sinh s−b

k sinh s−c
k

sinh A
k sinh s−a

k

. (5.33)

The combination of these two expresses ra in terms of A, b, and c. In order
to obtain the analogue of cubic equation (5.28) for the hyperbolic triangle and
whose roots are x1 = tanh ra

k , x2 = tanh rb

k , x3 = tanh rc

k , we have to compute
the elementary symmetric functions e1, e2, e3 in the variables x1, x2, x3. We
compute first (the easiest) e3. Equations 5.32, 5.33 and 2.3 yield

e3 =
∏

tanh
ra

k
= sinh2 s

k
tanh

r

k
. (5.34)

Next, by (5.32) and (5.33):

e2 =
∑

tanh
ra

k
· tanh

rb

k
= sinh2 s

k

∑
tan

A

2
tan

B

2
= sinh

s

k

∑
sinh

s− a

k

Using the identity

sinh(x+y+z)−(sinhx+sinh y+sinh z) = 4 sinh
y + z

2
sinh

z + x

2
sinh

x + y

2
,

applied to x = s−a
2 , y = s−b

2 , z = s−c
2 , it follows that

sinh
s

k
−

∑
sinh

s− a

k
= 4

∏
sinh

a

2k
(5.35)

And now from (2.2) and (2.3) we get

e2 = sinh2 s

k

(
1− 2 tanh

r

k
tanh

R

k

)
(5.36)

Finally, to compute e1, we use the identity

tan(x + y + z) =
tanx + tan y + tan z − tanx tan y tan z

1− tanx tan y − tan y tan z − tan z tanx
(5.37)

By (5.32), e1 = sinh s
k

∑
tan A

2 . Now from (5.37):∑
tan A

2 = tan A+B+C
2

(
1−

∑
tan A

2 tan B
2

)
+

∏
tan A

2 ,

tan A+B+C
2 = tan π−ε

2 = cot ε
2 .
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From (2.3), we have∏
tan

A

2
=

tanh r
k

sinh s
k

.

By (5.33), (5.35) and (2.2) and (2.3) it follows easily

1−
∑

tan
A

2
tan

B

2
= 2 tanh

r

k
tanh

R

k
sinh

s

k
.

Finally, putting all together yields

e1 = tanh
r

k

(
1 + 2 tanh

R

k
sinh

s

k
cot

ε

2

)
. (5.38)

Equations (5.34), (5.36) and (5.38) yield via x3 − e1x
2 + e2x− e3 = 0 the cubic

equation

x3 − tanh r
k

(
1 + 2 tanh R

k sinh s
k cot ε

2

)
x2+

+sinh2 s
k

(
1− 2 tanh r

k tanh R
k

)
x− sinh2 s

k tanh r
k = 0

(5.39)

This cubic (with roots tanh ra

k etc.) by letting l → ∞ reduces to the cubic
(5.28). This follow from the identity

sinh s
k · tanh r

k

sin ε
2

= 2
∏

cosh
a

2k

If k → ∞, then the right hand side tends to 2 and therefore the coefficient by
x2 in (5.39) goes to r + 4R which appears in (5.28). And similarly the other
coefficients.

Consider the discriminant of (5.39)

D =
∏(

tanh
ra

k
− tanh

rb

k

)2

.

Now, by applying (5.29) and (5.34), (5.36) and (5.38) we obtain the four–degree
polynomial (in fact six–degree polynomial) in sinh s

k for an expression D. By
the following legend

r ←→ tanh r
k

R ←→ tanh R
k

ε ←→ cot ε
2

s ←→ sinh s
k

(5.40)

we can write D as follows (after some computation); note that it has almost
double number of terms than the corresponding Euclidean discriminant

D = s2[(r2R2ε2 + 4r4R4ε2 − 4r3R3ε2 − 1 + 6rR− 12r2R2 + 8r3R3)s4

+r2Rε(1− 4rR + 4r2R2ε− 8r2R2ε2 + 9ε + 18rRε)s3

+r2(r2R2 − 10rR− 12r2R2ε2 − 2)s2

−6r4Rεs− r4].

13



(5.41)

By definition D ≥ 0, so degree–four polynomial in s (in fact in sinh s
k ), i.e.

polynomial in brackets in (5.41) is ≥ 0.
So the hyperbolic analogue of the ”fundamental triangle inequality” (5.27),

or rather degree–four polynomial inequality (5.30) is the quadratic (in s) poly-
nomial inequality D

s2 ≥ 0.

Theorem 5.1 (Hyperbolic ”fundamental triangle inequality”) For a hyperbolic
triangle that has the circumference of radius R, the incircle of radius r semiperime-
ter s and excess ε, we have

D

s2
≥ 0 (5.42)

where D is given by (5.41) together with the legend (5.40). When k →∞, (5.42)
reduces to (5.30).

Blundon’s hyperbolic inequality can also be derived as a Corollary of theorem
5.1.

The spherical version of the ”fundamental inequality” as well as the corre-
sponding spherical Blundon’s inequality can also be obtained, but we shall omit
them here.

In conclusion, we may say that all these triangle inequalities give more in-
formation and better insight to the geometry of 2– and 3– manifolds.
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