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Abstract

In 2001 Sir M. F. Atiyah formulated a conjecture C1 and later with
P. Sutcliffe two stronger conjectures C2 and C3. These conjectures, in-
spired by physics (spin-statistics theorem of quantum mechanics), are ge-
ometrically defined for any configuration of points in the Euclidean three
space. The conjecture C1 is proved for n = 3,4 and for general n only for
some special configurations (M. F. Atiyah, M. Eastwood and P. Norbury,
D.Dokovié). Interestingly the conjecture C2 (and also stronger C3) is not
yet proven even for arbitrary four points in a plane. So far we have ver-
ified the conjectures C2 and C3 for parallelograms, cyclic quadrilaterals
and some infinite families of tetrahedra.

We have also proposed a strengthening of conjecture C3 for configu-
rations of four points (Four Points Conjectures).

For almost collinear configurations (with all but one point on a line)
we propose several new conjectures (some for symmetric functions) which
imply C2 and C3. By using computations with multi-Schur functions
we can do verifications up to n = 9 of our conjectures. We can also
verify stronger conjecture of Pokovié¢ which imply C2 for his nonplanar
configurations with dihedral symmetry.

Finally we mention that by minimizing a geometrically defined energy,
figuring in these conjectures, one gets a connection to some complicated
physical theories, such as Skyrmions and Fullerenes.
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1 Introduction on Geometric Energies

In this Section we describe some geometric energies, introduced by Atiyah. To

construct first geometric energy consider n distinct ordered points, x; € R? for

i1 =1,...,n. For each pair ¢ # j define the unit vector
Xj — X

(1.1)

vy =
kg = xi
giving the direction of the line joining x; to x;. Now let ¢;; € CP! be the point
on the Riemann sphere associated with the unit vector v;;, via the identification
CP! = 2, realized as stereographic projection. Next, set p; to be the polynomial
in t with roots ¢;; (j # i), that is

Di :aiH(t_tij) (1.2)
J#i
where «; is a certain normalization coefficient. In this way we have constructed
n polynomials which all have degree n — 1, and so we may write

n
pi=>» mt
=1

Finally, let M,, be the n X n matrix with entries m;;, and let D,, be its deter-
minant

Dy = Dp(x1, .., X)) = det M,,. (1.3)

This geometrical construction is relevant to the Berry-Robbins problem, which
is concerned with specifying how a spin basis varies as n point particles move
in space, and supplies a solution provided it can be shown that D,, is always
non-zero. For n = 2,3,4 it can be proved that D,, # 0 (Atiyah n = 3, Eastwood
and Norbury n = 4) and numerical computations suggest that |D,| > 1 for all
n, with the minimal value |D,,| = 1 being attained by n collinear points.

The geometric energy is the n-point energy defined by

E, = —log|D,|, (1.4)

so minimal energy configurations maximize the modulus of the determinant.

This energy is geometrical in the sense that it only depends on the directions
of the lines joining the points, so it is translation, rotation and scale invariant.
Remarkably, the minimal energy configurations, studied numerically for all n <
32, are essentially the same as those for the Thomson problem.

2 Eastwood—Norbury formulas for Atiyah de-
terminants

In this section we first recall Eastwood—Norbury formula for Atiyah determinant
for three or four points in Euclidean three-space. In the case n = 3 the (non



normalized) Atiyah determinant reads as
D3 = d3(r12,713,723) + 8r12713723

where
ds(a,b,c)=(a+b—c)(b+c—a)(c+a—Db)

and r;; (1<i<j< 3) is the distance between the ith th

The normalized Atiyah determinant for 3 points is

and 7" point.

D3

8112713723

D3

and it is evident that |Ds| = Ds > 1.
In the case n = 4 the (non normalized) Atiyah determinant D4 has real part
given by a polynomial (with 248 terms) as follows:

R(Dy) = 647197137237147 24730 — 4d3(F12734, T13724, T14723) + As + 288V (2.5)

where
4 4
Ay = Z Z ri((rig 4 re)? = r3) | ds(rig, rae, )
=1 \ (1)i=1

(here {j,k} = {1,2,3,4} \ {l,7}) and V denotes the volume of the tetrahedron
with vertices our four points:

144V?2 = ryrdy(rfs +riy + 135 + 134 — riy — 15y) + vvo simitar cerme
—(r2yr34735 + three similar terms) (2:6)
We now state two formulas which will be used later:
1. Alternative form of Ay:
4
Ay = ; ((ds(ra, mju, mie) + 8rarjire + ra(ry — sz-k)—i- @7)

le(rf'l - Tfk) + Tkl(’"l%z - 7”1'23')) d3(Tij, Tik, Tjk)s
where for each | we write {1,2,3,4}\ {l} ={i < j < k}.
2. The sum of the second and the fourth term of ([ZH) can be rewritten as

144V? — 2d3(ri2734, 113724, T14723) =
= (r12 — r34)2(risr3, + 13,735 — 12573,) 4 two such terms +
+ 4712713723714724734—
- 7”%27"%37”%3 - 7"%27"%47"54 - 7”%37"%47"3)4 - 7"%37"%47”34-

(2.8)



It is well known that this quantity is always nonpositive.
The imaginary part (D4)) of Atiyah determinant can be written as a prod-
uct of 144V?2 with a polynomial (with integer coefficients) having 369 terms.
The normalized Atiyah determinant for 4 points is

D
D4 = 4—4
2(2) H Tij
1<i<j<4

The original Atiyah conjecture in our cases is equivalent to nonvanishing of
the determinants D3 and Dy.

A stronger conjecture of Atiyah and Sutcliffe ([4],Conjecture 2) states in our
cases that |D3| Z 87”127”137”23 (<:> |D3| Z 1) and |D4| Z 64T12T13T23T14T24T34
(& [Daf = 1).

From the formula (ZH) above, with the help of the simple inequality ds3(a, b, ¢)
< abe (for a,b,c > 0), Eastwood and Norbury got ”almost” the proof of the
stronger conjecture by exhibiting the inequality

R(Dy4) > 60712713723714724734.

To remove the word ”almost” seems to be not so easy (at present not yet done
even for planar configuration of four points).

A third conjecture (stronger than the second) of Atiyah and Sutcliffe (|41,
Conjecture 3) can be expressed, in the four point case, in terms of polynomials
in the edge lengths as

|Dy)? > H (d3(rij, rik, 7ji) + 8TijTikTjk) (2.9)
{i<j<k}C{1,2,3,4}

where the product runs over the four faces of the tetrahedron.
(cf. £tp://ftp.maths.adelaide.edu.au/pure/meastwood/atiyah.ps)

In the first part of this paper we study some infinite families of quadrilaterals
and tetrahedra and verify both Atiyah and Sutcliffe conjectures for several such
infinite families. In this version of the paper we propose a somewhat stronger
conjecture than ) which reads as follows:

Conjecture 2.1 (Four Points Conjectures)

R(Dy) — (44 3) - 288V2 >

>64 [ i+ > (4 + 18 rarruds(rig, v, i) (310)
1<4,5<4 {i<j<k}C{1,2,3,4}
where
d3(Tij, Tik, Tj ,
M , weak version
0= TijTikTjk

1 , strong version


ftp://ftp.maths.adelaide.edu.au/pure/meastwood/atiyah.ps

Proposition 2.2 Any of the Four Points Conjectures (ZI1) imply conjecture

E39).

Proof .

By using the inequality 1 > ds(a,b,c)/(abe), (a,b,c > 0) (see Appendix 2,
Proposition EI) we see that the strong version implies the weak version of
conjecture. We then rewrite the rhs of the weak version of [ZIM) as follows:

4 2
H . lz<d3(7"ij,ﬁkﬂ"jk) +8)
ij R
1<i,j<4 4 TijTikTjk
Finally, by the quadratic—geometric (QG) inequality we obtain

1/d (Pij, Tiks Tik) i 1 :

ij> Tiks Tk
> H Tij (H (—3 rij‘ri;:r-kj + 8>> = <H (ds(rij, TiksTjk) + 8rijrikrjk)>
1<i4,j<4 =1 J J =1

Thus we obtain:
4
[Daf? > [R(D4)® > [R(Da) — (4+3)-288V?> > H ds (rijrirj) + 8Tt

i.e. the inequality (Z3). [

Remark 2.3 In terms of trigonometry (see subsection ”Atiyah determinant for
triangles and quadrilaterals via trigonometry” on page2l), the weak Four Points
Conjecture can be written simply as

4
%(D4) - (4 + %) : 288V2 > H Tij <4Z C?)
=1

1<4,j<4
where
x® y® VAU
¢ = cos® — 5 + cos®? — 5 +COS2T’ 1=1,2,3,4.

and XW, YD 2O are the angles of the triangle opposite to the vertex l.

2.1 Atiyah—Sutcliffe conjecture for (vertically) upright tetra-
hedra (or pyramids)

We call a tetrahedron upright if some of its vertices (say 4) is equidistant from
all the remaining vertices (1, 2 and 3, which we can think as lying in a horizontal
plane.)



T2z = Q
T13:b
T2 = C

Tia =T =T34 =d

Note that then d > R = the circumradius of the base triangle 123, then by
Heron’s formula we have: R = abc/+/(a + b+ c)ds(a, b, c).

Here, as before, ds3(a,b,¢) = (a+b—c)(a—b+c)(—a+b+c), (a,b,c > 0).

The left hand side of the strong Four Points Conjecture EZT0 (but without %
term!) can be evaluated as follows, by using Eastwood-Norbury formula (3

LHS = R(Dy) —4-288V2 =
= 64 H Tij — 4d3(’l”12’l”34, 13724, T14T23) =+ A4 — 3 . 288V2

1<i<j<4
where
—4ds(r12734, 113724, T14723) = —4d3(a, b, ¢)d®
4 4
Ay = Z Z ra((ry + rw)® — i) ds(rig, ries k) | =
I=1 \ (1)i=1
— [c((b+d)* = d*) + b((c+ d)* — d*) + d((b+ ¢)* — a®)] d3(a,d,d)+
cyc(a,b,c)
+ [d((d + d)? — a®) + d((d + d)* — b*) + d((d + d)? — )] d3(a, b, c) =
= [4bcd + ((b+ ¢)? — a®)d + b*c + bc?](2a%d — a®)] + -+ -+
+[12d° - (a® + b? + ¢*)d]d3(a, b, ) (by D)
—3.288V72 =

= —6[(b% + c? — a®)ad?® + (? + a? — b?)b%d? + (a? + b? — c?)c2d? — a?b?c?](by E0)



Similarly the right hand side of the Conjecture EZT0

4
1
RHS = 64 H Tij + E (4+ Z) rarrklds(Tij, Tik, Tik)
1<i<j<4 =1

1
= 64abed® + (4 + Z) bed(2ad — a®) 4+ two such terms+

1
+ <4 + Z) d3ds(a, b, c)
Now we can rewrite the difference

LHS —RHS=1+11I

where
I B be?)(2a%d—a®)— (a2+b+ 2)da(a,b, )+ Ga2bPe? — 240 C_g
_g( c+bc®)(2ad—a’)— (a®+b°+c?)ds(a, b, c)d+6a"b"c” —2 PR A
and
1
I = (4 - Z) ds(a,b,c)d® + > ((b+c)* — a®)d(2a°d — a®)—
cyc
—6 Z(b2 +c? —a?)a*d® - ! Z bed(2a%d — a®) + Z4ﬂ
o 4 v at+b+ec

Then we can further simplify

I= {4abc(ab +ac+be) — (a® +b* + ¢?)ds(a, b, c) —
+6a%b*c? — Z a*b?c

sym

24a2b202}
— | d+
at+b+e

and

11 = d| Badya,b, )d® + (a+ b+ )  Labe— 4ds(a,b,e) ) d +24-0C 4
=d |—ds(a,b,c a ) | zabc — a,b,c —_
4 B\ 2 a5 a+b+c
1
+Zabc(a2+b2+02)—(a+b+c)<§ alb—at—bvt =t

sym

Lemma 2.4 We have the following strengthening of the basic inequality for our

function d3(a,b,¢c) = (a+b—c)la—b+c)(—a+b+c):
9a%b2c? (< 27a%b%c?

(a+b+c)(a®+b2+c%) '~ (a+b+c)?

ds(a,b,c) < < abe)



Proof .
We have

9a%b%c? — (a® + b2 + c*)(a + b+ ¢)dsz(a, b, c) =

=9a%b%c? — (a® + b? + ) (2a%b% + 2a%c% + 2022 —at + b + ¢t =
=3a%b%c® — a*?® — a?b* — a*? — Pt - v -t aS O+ B =
(a® —b?)[a?(a® — ) = b2 (b* — )] + 2(a®> = ) (B2 - *) > 0

(if we assume a > b > ¢ > 0)

(a special instance of a Schur inequality) [ ]
(Note that this result follows from the formula OG? = R? — (a? + b + ¢?)/9 for
the distance of the circumcenter and the centroid of a triangle.)

Now we have

Lemma 2.5 The quantity I is increasing w.r.t. d and it is positive for d > R.

Proof .
We prove that the coefficient of d in I is positive by using that (ab+ac+bc)(a+
b+ ¢) > 9abc and Lemma 27 .

The proof of positivity of I reduces to the positivity of the following quantity:

abc(ab + ac + be) — (a” + b° + ¢ )ds(a,b,c)|(a + 0+ c) — 24a”b"c” }*—
4dabc(ab b 2402+ c2)d b b 24a%b%c?)?
—(a+b+c)3(a®b + ab? + a®c + ac?® + bc + be? — 6abe)?ds(a, b, c)

which by substituting @ = b+ h and b = ¢ + k and then expanding has all
coefficients positive (and ranging from 1 to 32151). [ |

Lemma 2.6 The quantity 11 is increasing w.r.t. d and it is positive for d > R.

Proof .
Let II =d-111. Then

QUL — (Bdy(a,b,c)d — “etdy(a,b,c)) + L+ (abe — ds(a, b, )
The second term is positive by Proposition Bl For the first term we have:
§d3(a’a b7 C)d - %b-’_cc&(a’a b7 C) > %dg(d, ba C)R - %b-i_cd3(a7 ba C) >

(% - d3 (a‘7 ba C)) ll-‘r;)-i-c V d3 (a‘7 ba C) >0

by Lemma (Z3)).
The proof of positivity of I reduces to the positivity of the following quantity:

1 22,2
Z5d3(a, b,e)R? + (a+b+c) (gabc — 4ds(a, b, c)> R+ 24%4—
+3abe(a® + %+ %) — (a+b+c) (Esym a’b —a* —b* — 04)

which can be nicely visualized by Maple using tangential coordinates (a = v+w,
b=u+w, c=u+w). [ |



2.2 Atiyah—Sutcliffe conjectures for edge—tangential tetra-
hedra

By edge—tangential tetrahedron we shall mean any tetrahedron for which there
exists a sphere touching all its edges (i.e. its 1-skeleton has an inscribed sphere.)
For each i from 1 to 4 we denote by ¢; the length of the segment (lying on the
tangent line) with one endpoint the vertex and the other the point of contact
of the tangent line with a sphere.

4

rij =t + 15, (1§i<j§4)

Now we shall compute all the ingredients appearing in the Eastwood—Norbury
formula for Dy in terms of elementary symmetric functions of the (tangential)
variables tl, tQ, tg, t4 (I‘GC&H €1 = tl + tQ + t3 + t4, €y = tth + tltg + t1t4 + t2t3 +
t2t4 + t3t4, €3 = t1t2t3 + t1t2t4 + t1t3t4 + t2t3t4, €4 = t1t2t3t4).

64719713723714724734 = 64 H (ti + tj) = 645372_’1 =

1<i<j<4
e e4 O
=64| e1 ey e3 | = 64egezer — 64646% — 646%
0 1 €1

Here we have used Jacobi-Trudi formula for the triangular Schur function s3 21
(see [, (3.5)). Furthermore we have

—4d3(r127r34, 713724, 714723) = 128e4e2 — 32e4€3 — 3263
288V7 = 128eqe — 32¢3
In order to compute A4 we first compute, for fixed [ the following quantities
A ds(rij, rik, rjk) = Stitjty

Z i ((ry; + k) — JQk) = 4(3t(t1 + ta + tz + ta) + 2(tst; + it + t5te))ts.
(1)1

Thus we get:
Ay = 32(3€3 + dea)eqs = 96ese] + 128eyes.



Now we adjust terms in Dy, in order to get shorter expression, as follows
Dy = (64r12r13723714724734 — 2 - 288V 2)+
+(—4d3(r12734, 713724, T14723) — 288V %) + Ay + 4 - 288V
= (64eszege; — 6desed — 256eqeq) + (—32e4e3)+
+(96e4e? + 128e4eq) + 4 - 288V2
= 64eseqe; — 128eqeq + 115212
= 6des(eze; — 2eq) + 115202
= 64dez(2eq4 + mory) + 1152V2,
where mg11 = t%tgtg + - -+ denotes the monomial symmetric function associated

to the partition (2,1, 1).
In order to verify the third conjecture of Atiyah and Sutcliffe

|D4f? > H (d3(rijs Tik, Tjk) + 87Tkt jk)
{i<j<k}c{1,2,3,4}
we note first that
dg(?"ij, Tik, Tjk) =+ 8Tij7"ik7"jk = (8titjtk + S(tl =+ tj)(ti =+ tk)(tj =+ tk))
= S(ti +t; + tk)(tﬂfj + it + lfjtk)

and state the following:
Lemma 2.7 For any nonnegative real numbers ti,ta,t3,t4 > 0 the following
iequality

(tita + tats 4 tity + tols + toty + tats)? (2t1tatsts + mor1(t1, ta, t3,t4))* >

2 H{i<j<k}C{1,2,3,4} (ti + tj + tk)(titj + ity + tjtk)

(2.11)

holds true.

Proof of Lemma 7
The difference between the left hand side and the right hand side of the above
inequality ([ZI]), written in terms of monomial symmetric functions is equal to

LHS — RHS = mg321 + 3me222 + Msas + 2Msa01 + TMissee + 5mssszi+

+3mM444 + TMgaz1 + 8Magoe + 8Mmiy3zzz + 3mazzz > 0
||

Remark 2.8 One may think that the inequality in Lemma[2_] can be obtained
as a product of two simpler inequalities. This is not the case, because the fol-
lowing inequalities hold true:

(tita + tats + tita + tots + tots + tsts)® < H (ti 45 + te)
{i<j<k}cC{1,2,3,4}

(2t1t2t3t4 +m211(t17t27t37t4))2 2 H (titj + itk +tjtk)
{i<j<k}C{1,2,3,4}

10



Now we continue with verification of the third conjecture of Atiyah and Sutcliffe
for edge tangential tetrahedron:

|.D4|2 > (D4)2 > [6462(264 + mgll)]2

> 84 H (ti +t; + tk)(titj + ity + tjtk) (by Lemmaﬂ)
{i<j<k}cC{1,2,3,4}

= H (ds(rij, Tik, 7jk) + 8T TikT k)

{i<j<k}C{1,2,3,4}

so the strongest Atiyah—Sutcliffe conjecture is verified for edge—tangential tetra-
hedra.

2.3 Verification of the strong Four Points Conjecture for
edge—tangential tetrahedra

The strong Four Points Conjecture EZT0 for edge tangential tetrahedra is equiv-
alent to positivity of the following quantity:

4
§R(D4) — 64 HT‘ij - (4 + %)288‘/2 — 2(4 + %)Tilrjlrkl dg(T‘ij,T‘ik, T‘jk)
=1
= (—ds3(r127r34, 713724, T14723) + Ag) + 288V — (4 + 3)288V2
4

— 2(4 + Drarjri ds(ri, Ties k)

=1
= (—32m3111 — 32ma2z + 96ma111 + 320ma211) — 240ma211 + 120ma2
— (34mg111 + 136ma211 + 34mag9)
= 30ms111 + 54mage — 56ma011

In terms of augmented monomial symmetric functions

Aty to s, ta) = 77
oc€Sy

the last quantity is equal to
= 57’713111 + 97’7L222 - 147’7L2211 (Z 0 by Muirheads’s inequality)

Thus, the strong Four Points Conjecture is verified for the edge-tangential tetra-
hedra.

Note that the verification of this conjecture which is stronger than A—S
conjecture C3 is somewhat simpler (at least for edge—tangential tetrahedra).

2.4 Trirectangular tetrahedra

A tetrahedron is called trirectangular if it has a vertex at which all the face
angles are right angles. The opposite face to such a vertex we call a base. We
label the edge lengths as follows

11



T12 = C
13
23
T4 =
T24 =
T34 =

SIS S SIS

1

We have following obvious relations: a? = y?+22, b? = 22 +22, 2 = 22 +92.
By using them we can get

ds(a,b,c) = 2(ax® + by? + c2% — abc),
dg({E,y,C) = 2$y(I+y—C)7 (2 12)
ds(z,b,z) = 2zz(x + 2z — b), ‘
d3(a7 Y, Z) = 2y2(y +z - (1)

and
R(D4) — 64abcryz — 288V?2 =
= 4xyz Z 2a2°% + Z(Qab +cz + 2%)(x + y) — 10abe (2.13)

cyc cyc
where ), . has three terms ! corresponding to a cycle ((a,z) — (b,y) — (c, 2)).

By writing © +y =  + y — ¢ + ¢ and using the identity
2022 = Z(gc2 +y?)z = Z(:C +y)2% = Zzz(:v +y—co)+ Zax2
cyc cyc cyc cyc cyc
we get that the second cyclic sum is equal to
Z(Qab+cz+z2)(:v+y) = 6ab+Z(Qab+cz+2z2)(x+y—c)+2 Z az® (2.14)
cyc cyc cyc
By inserting this into [ZI3)) we get
R(Dy) —64abcayz —288V? = 4xyz(2ds(a, b, )+ Z(2ab+ cz+22%)(x+y—c))
cyc

Hence R(D4) > 64abcryz so the verification of the C2 of Atiyah—Sutcliffe for
trirectangular tetrahedra is finished.

1chc f([l, b,C,IE,y, Z) = f([l, b,c,m,y, Z) +f(b7 C, fl7y,2,m) +f(C, a, byszyy)

12



2.5 Atiyah—Sutcliffe conjectures for regular and semi-regular
tetrahedra

Semiregular (SR) tetrahedra are one of the simplest configurations of tetrahedra.
These tetrahedra have opposite edges equal and hence all faces are congruent.
Sometimes semi-regular tetrahedra are called isosceles tetrahedra.

23 =T14 = @
ri3 =" =0
g =T34 =¢C

By Z8) we get
288V% —4d3(riar34, 13724, T14723) = 0 (= 288V? = dd(r12734, 113724, T14723))
By &) we get

4

Ay = Z(dS(Tithlarkl) + 8ryririy)ds (ij, Tik, k)
=1

= 4ds(a, b, c)* + 32abcds(a, b, c)
The quantity in the weak Four Points Conjecture is

l.h.s —r.h.s =
4
3 1ds(rij, ik, k)
=As— (4+>)288V2 — A4 =BG Tk TGk) N o da(re 1
4 < +4> §< "1 Ttk rigTikT s (T, ik, k)

= 4d3(a,b,c)? + 32abcds(a, b, c) — (16 + 3)dsz(a?, b*, ¢*) — [16abec d3(a, b, c) + ds(a, b, c)?]

= 3(ds(a, b, 0)2 - dg(az, b2, 62)) + 16(abeds(a, b, c) — dg(az, b2, 62)) >0

by using the inequalities abc > dz(a,b,c) and d3(a,b,c)? > dz(a?, b?,c?) (see
Appendix 2, Proposition B} also see [I2] or [13]).
This proves the weak Four Points Conjecture for semiregular tetrahedra. W
The proof of the strong Four Points Conjecture for semiregular tetrahedra
reduces to the positivity of the following expression

4(ds(a, b, 0)2 - dg(az, b2, 62)) + 15(abcds(a, b, c) — dg(az, b2, c2)) >0

which is also true by the same argument.

13



2.6 Atiyah—Sutcliffe conjectures for parallelograms

Given a parallelogram with vertices 1, 2, 3 and 4 denote by a, b its side lengths
and by e, f its diagonals.

- T2 =T34 =a

b ro3 =T14 =0
b Toq = €
1 T13:f

For the numbers a, b, e, f we have the basic relation (”a parallelogram law”)

2+ 2 =2(a*+b?) (2.15)

By using this relation we can rewrite various quantities in the Eastwood-Norbury
formula.

Proposition 2.9 We have the following identities
1. ds(a,b,e) = (a+b—e)(a—b+e)(—a+b+e) = (a+b—e)(a+b—f)(a+b+f)

2. A= (a+b+e)ds(a,be)=(a+b+ f)ds(a,b, f) =
—(a+b+e)a+bt Platb—e)atb— f)=
= 20202 +2a%e? +2b%e? —a* —b* —e* = 2a2b% +2a% f2 + 202 f% —a* — bt — f4

3. dab+e?— f2 =2(a+b+f)(a+b—f), dab+ f?—e? = 2(a+b+e)(a+b—e)
4. ds(a®, 0%, ef) = (a® + b2 — ef)A
5. ds(a,b,e)ds(a,b, f) — ds(a?,b2,ef) = (2ab — 2ef — (a + b)(e + f))A
6. eds(a,b, f) + fds(a,b,e) = (a+b—e)(a+b— f)(e®+ f2+ (a+b)(e+ f))
7. (4ab+e* — f?)eds(a,b, )+ (4ab+ f2—€?) fds(a,b,e) = 2((a+b)(e+ f) —
2ef)A
Proof .

For 1. we write (a—b+e)(—a+b+e) = e?—(a—b)? = 2a2+20*> — f>—(a—b)* =
(a+b—f)a+b+ f). Identity 2. follows from 1. directly. For 3. we substitute
€2 = 2a” + 2b% — f2 and simplify. For 4. we compute and use 2.:

(a®=b>+ef)(—a’+b*4ef) = e f2—(a®—b%)? = €2(2a% 420> —e?)+2a*b* —a* —b* = A
For 5. we first use 1. and then 4.: d3(a,b,e)ds(a,b, f) —ds(a® b*, ef) = (a+b+

fa+b—e)(a+b—f)ds(a,b, f) — (a>+b%>—ef)A = [(a+b)%—(a+b)(e+ f)+ef]A
— (a2 4+ b2 —ef)A = [2ab+ 2ef — (a+b)(e + f)]A
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For 6. we use 1. twice.
For 7. we first use 3. and then 2.:

Lhs =2(a+b+ f)la+b— feds(a,b, ) +2(a+b+e)(a+b—e)fda,b,e)
=2[(a+b—fle+(a+b—e)f]A

|
Now we apply Eastwood-Norbury formula (note that 288V2 = 0, D4 = real)

Dy — 641_[7‘1']‘ = —4d3(a2, b2, 62) + Ay

where

Ay = 2[d3(a,b,e) + 8abc + e(e? — f2)|dz(a,b, f) + 2[d3(a,b, f) + 8abc + f(f? — €2)]d3(a, b, )
— o+ + I

where

IO = 4d3(a,b,e)d3(a,b, f)

I = 2[4abe + e(e? — f?)|d3(a,b, f) + 2[4abf + f(f? — €?)]d3(a, b, e)
=4((a+b)(e+ f)—2ef)A (by 7.)

Ir = 2[4abe ds(a,b, f) + 4abf ds(a, b, e)]
=8abla+b—e)a+b—f)e*+ f2+(a+b)(e+ f)) (by6.)

By using 5. we have

Dy — 641_[7‘1']‘ = 4(d3(a,b,e)d3(a,b, f) — dg(a2,b2,€f)) + I + I
=4((2ab+2¢ef — (a+b)(e + f))A+ ((a+b)(e+ f) —2ef)A) + I
=8abA+ 1, >0

This proves the Atiyah—Sutcliffe conjecture (C2) for parallelograms. The Atiyah—
Sutcliffe conjecture (C3) for parallelograms

D3 > (ds(a, b, e) + 8abe)?(ds(a, b, f) + Sabf)?
is equivalent to the positivity of

Dy —dz(a,b,e)ds(a,b, f) — 8[abf d3(a, b, e) + abe ds(a, b, f)] — 64a’b?ef >0
but we can prove even stronger statement

Dy — 2d3(a,b,e)ds(a,b, f) — 8[abf d3(a, b, e) + abe d3(a, b, f)] — 64a®b?ef =
= 8abA — 2d3(a,b,e)ds(a,b, f) =2[4ab— (a+b—e)(a+b— f)]A>0

because the triangle inequalities b < e + a and a < f + b imply
(a+b—e)a+b—f)<2a-2b=4ab.

Thus we have verified also C3 for parallelograms.
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Finally we verify our strong Four Point Conjecture for parallelograms as
follows

Dy — 64T ri; — (44 $)rarjruds(ri, i, rir)

= 8abA — L(I,/4)

8abla+b—e)a+b— f)la+b+e)la+b+ f)— %(62 + 24+ (a+b)(e+ f))

= %ab(a—l—b—e)(a—l—b— H6((a+b)2+ (a+b)(e+ f)+ef) — (2a® + 262 + (a + b)(e + f))]
= zabla+b—e)(a+b— f)[14(a® + b*) + 32ab+ 15(a + b)(e + f) + 16ef] > 0

2.7 Atiyah—Sutcliffe conjectures for ”wedge” tetrahedra

A tetrahedron with two pairs of opposite edges having the same length we simply
call a "wedge” tetrahedron.

T2 =2
T34 =Y
T3 =T24 = a

ro3 =T14 = b

If x = y = ¢ we get a semiregular
tetrahedron and if all points lie in
a plane then we get either a paral- 1
lelogram or an isosceles trapezium.

Again we compute the data appearing in the Eastwood—Norbury formula
—4d3(r12734, 713724, T14723) =
= —4dz(zy,a?, b?) (2.16)
= —4(zy — a® + b*)(zy + a® — b?)(a® + b? — xy)

and we have the basic inequalities

zy +b%>ad? zy+a® >0 a2 +07 >y (2.17)
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The positivity of the volume

144V? = zy — a® + b?)(zy + a® — b?)(2a* + 2b* — 2* — ¢?) (2.18)
gives us one more basic inequality

2a% + 20 > 2% +y? (2.19)
We have

Ay =2[a((b+2)* —a®) +b((a+ z)? —b2)+x((a—|—b) y?)|ds(a,b,y)

+2[a((b+y)* — a?) +b((a +y)? = b*) + y((a + b)* — 2?)]ds(a, b, )
(2.20)

By using identity
ds(a,b,c) = a(b? +c* — a®) +b(a* + ¢ — b?) + c(a® +b* — c?) — 2abc (2.21)
we can rewrite A4 as follows

Ay = 2[4abz + ds(a,b,z) — x(a® + b* — 22) + 2abx + z((a + b)* — )]d3(a, b,y)
+2[4aby + ds(a,b,y) — y(a® + b* — 2) + 2aby + y((a + b)? — 2?)]ds(a, b, z)
= 2[4abx + d3(a,b,x) — z((a — b)? — 2?) + z((a + b)? yz)]d (a b,y)
+2aby +ds(ab,3) ~ yl(a ~ D) ~ ) + yl(a-+)* ~ a)lds(a b, )
= {8abx + d3(a,b,x) + [d3(a, b, x) — 2x((a — b)? — )] +2z((a + b)% — y?)}ds(a, b, y)
+{8aby + dS(av b7 y) + [d3(a7 b7 y) - 2y( a— b) )] y((a’ + b) ,’Ez)}dg(a, b7 LL‘)
(2.22)

Now we compute

ds(a,b,x) — 2x((a — b)? — 2?) =
=(a+b—2)a—b+z)(—a+b+z)+22x(a—b+2z)(—a+b+x)
=(a+b+x)(a—b+z)(—a+b+x)

The contribution AL] of both square brackets in A4 is equal to

= [d3(a,b,z) — 2x((a — b)? — 2%)]d3(a, b, y)+

+[ds(a,b,y) — 2y((a — b)* — y*)]ds(a, b, z)

= (22 - (a—b)Q)( 2—(a—b)Q)[(a+b+x)(a+b—y)+(a+b+y)(a+b—x)]

= (2% - (a —0)*)(y* - (a - b)2)(2(a +b)? — 2zy)

= dab(z? — (a = b)*)(y* = (a — b)?) +2(2* — (a = b)*)(y* — (a — b)*)(a® + b* — xy)
(2.23)

At this point we have discovered the following beautiful identity

[22 = (a = b)*|ly* — (a — b)?] =
= (zy — a® + b?)(zy + a® — b%) + (a — b)2(2a? + 20% — 2% — y?) (2.24)
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By this identity we can write

AY = ab(@? — (a = b)*)(y* — (a —b)?)
+2(a — b)%(2a® + 2b — 2% — y?)(a® + b* — zy)
+ 2d3 (a‘za b2, :Ey)

Lemma 2.10 We have the following inequality for “wedge” tetrahedra
ds(a®, 0%, zy) < 2ab(a® — (a = 0)*)(y* — (a — b))

Proof .
Recall that

ds(a?,b?, xy) = (a® +0° — zy)(a® — b* +ay)(—a® + b + 2y)
Let @ > b. Then the triangle inequalities a < b+ x and ¢ < b+ y imply
(a —b)? < zyie. a®+b*> — zy < 2ab. Since 2a® + 2b% — 22 — y? > 0 (inequality
&T9)) then from our inequality 24) it follows that

(a* = 2b% + 2y)(—a® + b* + 27) < (22 — (a — b)*)(y* — (a — b)?)

By multiplying the last two inequalities Lemma follows. ]
As a consequence of Lemma we get immediately that

Ay > AL] > 4ds(a®, b, zy)

because the remaining terms in A4 are all nonnegative. This verifies the A—S
conjecture C2 for "wedge” tetrahedra.

Remark 2.11 Instead of splitting 2(a+b)* — 2zy = 4ab+ 2(a® +b* — xy) (used
above), we can use the identity

2(a+b)? — 2zy = 4(a® + b* — 2y) + 2(zy — (a — b)?)
to obtain explicit formula for AEL]:

Al

[4%(12 + b2 —2y) + 2(zy — (a — b)) [(zy — a® +b?)(zy + a® — b?)+
+(a —b)%(2a® + 2b% — 22 —y?)] =

= 4d3(a?,b%, zy) + 4(a® + b® — zy)(2a® + 2b* — 22 — y?)(a — b)*+
+2(zy — (a—b)*)(@* — (a = )*)(y* — (a — b)?)

which, without using Lemma 210, implies inequality
AL] > 4ds(a®, b, zy)

needed for the verification of A-S conjecture C2 for "wedge” tetrahedra.
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Now we state a final formula for ”wedge” tetrahedra:

First explicit formula for wedge tetrahedra:

R(Dy) = (ds(a,b,z) + 8abx)(ds(a,b,y) + 8aby) + ds(a, b, x)ds(a, b, y)+
+22((a + b)? — y?)ds(a,b,y) + 2y((a + b)? — 22)d3(a, b, z)+
+4(a® + b — zy)(2a® + 2b* — 22 — y?)(a — b)*+
+2(zy — (a = b)*)(2* — (a = 0)*)(y* — (a — )?)
+288V2

which implies a strengthened A-S conjecture C3 for wedge tetrahedra

R(D4) > (d3(a,b,x) + 8abx)(ds(a,b,y) + 8aby) + dz(a, b, v)dz(a, b, y) + 288V>
Z (d3 (CL, b7 .’,E) + 8aba:) (d3 (CL, b7 y) + Saby)

In the sequel we obtain an alternative formula for the real part of the Atiyah
determinant for a wedge tetrahedra.
We group terms in A, differently as follows:

Ay = 2[4abx + dsz(a,b, z) + z(4ab + 2% — y?)]d3(a, b, y)+
+2[40,by + d3 (CL, b7 y) + 117(401) + y2 - I2)]d3 (CL, b7 .’,E)

By letting
252 + 2% — 2% —y* =:2h (>0)
we can rewrite
4ab + 2* — y? = dab+ 2* + (2h + 2% — 2a* — 2b?) = 2(h + 2% — (a — b)?)
and similarly for
4ab+y* — 2* = 2(h + y* — (a — b)?)
Thus

Ag = 4ds(a,b,z)ds(a,b,y) + 8abx d3(a,b,y) + 8aby ds(a,b, )+
+4h(xz ds(a,b,y) + yds(a,b,x)) + 4A}

Ay =a(2® = (a—b)*)ds(a,b,y) +y(y* — (a — b)*)ds(a, b, )

va+b—y) +ylatb )

(@ —y)? +a(a+b—z)+yla+b-y)

xy — a?® + %) (zvy +a® — %) +2(a — b)2h)[(z —y) 2+ x(a+b—2) +yla+b—y)]
(2.25)

by our identity (ZZ4).
Note that

—144V? 4 2d3(a®, b*, 2y) = (vy — a® + b?)(xy + a® — b?)(x — y)?
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So

Al = (2d3(a?, b2, zy) — 144V?) + 2(a — b)?h[z(a + b —y) + y(a + b — z)]
¥ (zy — a® + b)) (zy + a2 — b)(z(a+b—2) +yla+b—1y))

By writing

4A) = 2AQ+2A’ =

=2(z% — (a—b)*)(y* — (a=b)?)[z(a+b—y) +yla+b—z)]+
+{4d3(a?, b? :vy)—288V2+4( b)2hlz(a+b—y)+yla+b—x)+
+2(zy —a +b2)(xy+a )( (a—i—b—:v)—i—y(a—i—b— y)} =

= 4ds(a®,b?, vy) — 288V2 + [2(22 — (a — b)?)(y? — (a — b)?) + 4(a — b)?h):
(zla+b—y)+yla+b—2x))+

+2(xy — a® + b)) (zy + a®> = b)) [z(a +b—2) + y(a+ b —y)]

we obtain the following explicit formula for the real part of Atiyah determinant
for ”wedge” tetrahedron:

Second explicit formula for wedge tetrahedra:

%(D4) = (d3 (a7 ba I) + SCLb.I) (d3 (CL, b7 y) + 8aby) + 3d3 (a7 ba :E)d3 (a7 ba y)+
+2z((a +b)* = y*)ds(a, b, y) + 2y((a + b)* — 2*)ds(a, b, z)+
2(x%y% — (a® — b)) [w(a +b—2) +yla+b—y)]+
+2[(a—b)*(x(a+b—y) + yla+b—=))](2a®° + 20> — 2* — ¢?)

which implies another strengthening of the Atiyah—Sutcliffe conjecture C3 for
”wedge” tetrahedra

R(D4) > (d3(a,

) + 8abx)(ds(a, b, y) + 8aby) + 3dz(a, b, x)d3(a, b,y)
- (d3( a, d b

b,

b7 .’,E) =+ 8aba:)( 3(@, 7y) + 8aby)

2.8 Atiyah determinant for triangles and quadrilaterals
via trigonometry

Denote the three points x1, z2, x3 simply by symbols 1,2,3 and let X, Y and
Z denote the angles of the triangle at vertices 1, 2 and 3 respectively. Then we
can express the Atiyah determinant Ds = ds3(ri2, 713, 723) + 8712713723 as follows
X Y Z
D3 = 4riar137a3 [ cos? = + cos® = + cos® = ).
2 2 2
This follows, by using cosine law and sum to product formula for cosine, from
the following identity

ds(a,b,c)+8abc = (a+b—c)(a—b+c)(—a+ b+ c) + 8abe
=a((b+c)? —a?) +b((c+a)? — b?) + c((a + b)? — 2).

Now we shall translate the Eastwood—Norbury formula for (planar quadrilater-
als) into a trigonometric form. Denote the four points x1, x2, 3, x4 simply by
symbols 1,2, 3,4 and denote by

(X(l),Y(l),Z(l)), (X(2),Y(2), Z(2)), (X(3)7y(3), Z(?’)), (X(4),Y(4), Z(4))
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the angles of the triangles 234, 341, 412, 123 in this cyclic order (i.e. the angle
of a triangle 412 at vertex 2 is Z®) etc.).

Next we denote by ¢;, (1 <1 < 4), the sums of cosines squared of half-angles
of the I-th triangle i.e.:

X0 Yy VAU
¢ = cos® — + cos®? — 4 cos®’ —, 1=1,2,3,4.
2 2 2
Similarly, we denote by ¢, (1 <1 < 4), the sum of cosines squared of half-angles
at the [-th vertex of our quadrilateral thus

R ) 7(2) ) Y (3) ) x@
c1 = cos” —— + cos —+ cos
2 2
73) Yy @
¢y = cos® =— + cos? + cos?
2 2
7/(4) ) y @) )

C3 = cos® — + cos 5 + cos

VAQ) ) vy (2)

-~ 2 2
¢4 = cOs” —— 4+ cos
2 2

w N —
= — ~

—+ cos

Then the term A4 in the Eastwood—Norbury formula can be rewritten as

4

Ay = Z(4Tzi7”1j7”zka) “Ariiriri(c — 2)

=1
4

= 16712713723714724734 E ci(a —2).
=1

where for each | we write {1,2,3,4}\ {I} = {i < j < k}.

In order to rewrite the term —4ds(ri27r34, 113724, 714723) into a trigonometric
form we recall a theorem of M6bius ([I0]) which claims that for any quadrilateral
1234 in a plane the products r12734, 13724 and r14723 are proportional to the

sides of a triangle whose angles are the differences of angles in the quadrilateral
1234:

X =<134 - <124
Y = <214 — 1234
Z = <413 — <423

Thus
—4d3(r127r34, 713724, T14723) = — 167127137237 14724734 (¢ — 2)
where
2 X 2 Y 24

¢ = CoS 3+cos §+cos 5.
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Thus we have obtained a trigonometric formula for Atiyah determinant of
quadrilaterals

R(Dy)

4
1 - (64 —16(c—2)+ 16 (e — 2)>

1<i<j<4 =1
4
=16 J[ = <6—c+2a(q—2)>
1<i<j<4 =1

Now we shall verify Atiyah—Sutcliffe conjecture for cyclic quadrilaterals.

3
Ptolemy’s theorem
2

1 T

4

In this case, by a well known Ptolemy’s theorem, we see that
—4d3(r12734, 713724, 714723) =0 (& c=2)

By using the equality of angles Z(?) = X1 zG) = x?) 74 = x©) 71 =
X® and YO +Y®) = 7 = Y® £ Y™ (angles with vertex on a circle’s
circumference with the same endpoints are equal or supplement of each other)we
obtain

¢ = cos? X2(1) + sin? Y;) + cos? ;1) =c¢; —cosY D,
Co = cos? X2(2) + sin? Y;) + cos? Z;) = C2 — COS Y(2)7
3 = cos? X2(3) + sin? Y;) + cos? Z;B) = c3 — Co8 Y(?’),
€4 = cos? v + sin? Y;) + cos? 2;4) =cy—cos Y™,

Now we have

%(Dzl) = H Tij 64 + 16 Z C; — COS Y(l))(cl — 2))
1<i<j<4
> T 64+162cl—1(cl—2)>
1<i<j<4
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(here we have used that 2 < ¢;(< 9) for each I = 1,2,3,4)

4 4
> I (64+162(q—2 +16ch—22>

1<i<j<4 1=1 1

Y

1
4 4 2
H Tij 64—1—1620[—2 +4<ch—2>

1<i<j<4 =1
(by quadratic—arithmetic inequality)

= I » <8+Z4:cl—2> +3<Z(q—2)>2
(

1<i<j<4 =1

Z Cl> +3 (Z(Cl — 2))
=1 =1

= | I r

1<i<j<4
A 2
> H Tij ECl > 164/c1cacsey H
1<i<j<4 =1 1<i<j<4

by A-G inequality.
Finally,

|D4? = |R(D4)|* > 4*c1cacs04 H r2

)
1<i<j<4

I

I
zw

(Arijriprige) = H (d3(rij, rik, rjr) + 8rijTikTjk)
1 =1

where for each | we write {1,2,3,4}\{l} = {¢ < j < k}. This finishes verification
of Atiyah—Sutcliffe conjectures for cyclic quadrilaterals.

Proposition 2.12 The weak Four Points Conjecture for cyclic quadrilaterals
holds true.

Proof .
From the formula obtained above we proceed along a different path
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R(D4) = H Tij <64 +16 Z (¢ —cos YD) (¢ — 2))
1<i<j<4
4
= H Tij <4Z 4—|—4 CZ—CObY(l))(Cl—2):|>
1<i<j<4 1=1
4
= H T <4 et + (e —2)[3(c; — 2) + 4(1 — cos Y(l))]}>
1<i<j<4 I=1
4
> H Tij (42 c ) (because 2 < ¢; for each I =1,2,3,4)
1<i<j<4 I=1
= [T 124: (dB(Tijﬂ“z'kaTjk) + 87‘ij?‘ik?‘jk)2
Y\ 4 — TijTik Tk

and this verifies the weak Four Points Conjecture for cyclic quadrilaterals. m

3 Almost collinear configurations. Pokovié’s ap-
proach

3.1 Type (A) configurations

By a type (A) configurations of N points 1, . . ., zy we shall mean the case when
N — 1 of the points x1, ...,z are collinear. Set n = N — 1. In ([{]) Pokovié
has proved, for configurations of type (A), both the Atiyah conjecture (Theorem
2.1) and the first Atiyah—Sutcliffe conjecture (Theorem 3.1). By using Cartesian
coordinates, with z; = (a;,0), a1 < as < -+ < an and zy = xp41 = (0,0) (with
b = 1), the normalized Atiyah matrix M, 11 = M,11(A1,...,A,) (denoted by
P in [ when b = —1) is given by

1 A1 0o .- 0 0

0 1 Ao oo 0 0

0 0 1 0 0

Mn+l = .
0 0 1 An
(=", (=1)"len,_q —er 1 |

where A\; = a1 + /a3 + 0% < Ay =az+ /a3 + b2 <--- < A\, = a, ++/a2 + b2
(with b = 1) are positive real numbers and where e, = eg(A1,..., ), 1 <k < n,
is the k—th elementary symmetric function of A1, Aa,..., A,. Its determinant
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satisfies the inequality

Dn 1+ Anel + )\n)\n7162 + -+ )\n)\nfl o 'Alen
L+er(A2,. . 02 +ea(M\2, .. 02) + - +en(M], ..., 02)

[Tima (1 + A7)
equivalent to the first Atiyah—Sutcliffe conjecture ([4],Conjecture 2). The second

Atiyah—Sutcliffe conjecture (H],Conjecture 3) for configurations of type (A) is
equivalent to the following inequality

vl

D1y A2 [T Do Akt Akt -5 An) (3.26)
k=1

For n = 2 this inequality takes the form
14 A2er (A1, A2) + At dzea(A1, A2) = (1 4+ Azer(A2))(1 + Arer (A1)
ie.
14 Aoer (A1, A2) + A daea(A, X)) > (14 A2)(1 + A2). (3.27)

This reduces to (A2 — A1)\ > 0, so it is true.

Even for n = 3 the inequality (B26) is quite messy thanks to nonsymmetric
character of both sides. Knowing that sometimes it is easier to solve a more
general problem we followed that path (although we didn’t solve the problem in
full generality). So let us start with the case n = 2. If we look at the following
inequality

L+ X1(& + &) + X1 X > (1+ Xq&)(1 + Xo&o)

which is clearly true if X7 > X5 > 0 and &1,& > 0 we obtain the inequality
B27) simply by a specialization X1 = & = A\, Xo = & = 1. So we proceed
as follows:

Let &1,...,&0, X1,...,Xpn,n > 1 be two sets of commuting indeterminates.
For any [,1 <1 <n and any sequences 1 <41 <--- <3 <n,1<j1,...,50<n

we define polynomials W/ = ‘IJé‘ll'.'.'.?L € Q& ..., &, X1, ..., X,] as follows:

l
vl = Zek(gjlvgjzv"'7€jz)Xi1Xi2"'Xikv (l 2 1)7 \I]g =1 (] = O)
k=0

where ey, is the k-th elementary symmetric function.
In particular we have

\% =1+§X5,

W =14 (&, + ) Xy 4+ €5,65, Xi, Xi,

VRS =14 (&, + &y + &) Xy + (6285 + 60 & + €526) Xiy Xip +
+ §j1§j2§j3Xi1Xi2Xi37

etc.
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The polynomials \I/I] are symmetric w.r.t. &,,&,,...,&;, but nonsymmetric
w.r.t. Xi, Xi,,...,X;,. By specializing X;’s to assume real values such that
X, > X5, > ... > X;, > 0 then we obtain polynomials in &;’s satisfying the
following simple but important property.

Proposition 3.1 (Partition property)
Let (I1,...,I) and (Ji,...,Js) be ordered set partitions of respective sets I =

S I,and J=\J_, J, such that |I,| = |J,|, 1 < p < s. Then the inequality
p=1-"P p=1%P p p

S
I I
vy > H vy
p=1
holds coefficientwise w.r.t. &;’s.

Proof .
Proof is evident from the definition of ¥/ and the monotonicity of X;’s. [ ]
For the powers (\I!I])m we have the following conjecture.

Conjecture 3.2 (Weighted Multiset Partition Conjecture)

For given natural number m and sets I and J, |I| = |J|, of natural numbers let
(I,...,Is) and (J1,...,Js) be the partitions of the multiset I"™ consisting of m
copies of all elements of I and similarly for J™.

(i) Then the inequality
m u Ip
(w)" =117,
p=1

holds coefficientwise w.r.t. &;’s.

(ii) The difference
(w)" -] vy,
p=1

is multi-Schur positive with respect to partial alphabets corresponding to
the atoms of the intersection lattice of the set system {J1,...,Js}.

For example, by Partition property, we have the following inequalities

Ui > Uil

EIE

L (1<k<n)

which imply the following inequality

(i) =TT ] vy

k=1 k=1

EDEN

n
n
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By Partition property we also have the following inequality
n
> ] wr
k=1
The last two inequalities suggest the validity of the following inequality

) = I v

which is far from obvious (see Conjecture below) although it would be a
simple consequence of our Weighted Multiset Partition Conjecture.

This last conjectural inequality is interesting because it generalizes some spe-
cial cases of not yet proven conjectures of Atiyah and Sutcliffe on configurations
of points in three dimensional Euclidean space.

Our conjecture reads as follows:

;m;w

Conjecture 3.3 Foranyn>1,let X1 > Xo>...>2 X, >0, &,&,...,&, >
0, be nonnegative real numbers. Then we have coefficientwise (w.r.t. &1,8a, ..., &n)
inequality
n ~
12 n 12~~~k~~~n
( 12.. n H 12---k--m

where 12---k---n denotes the sequence 12--- (k —1)(k +1)---n. The equality
obuviously holds true iff X1 = Xo=--- = X,,.

This Conjecture implies the strongest Atiyah—Sutcliffe’s conjecture for al-
most collinear configurations of points (all but one point are collinear, called

type(A) in [7]).
To illustrate the Conjecture (B3) we consider first the casesn = 2 and n = 3.

Case n = 2: We have
Ui3=1+4 (& + &)X + 66X Xo =
=1+6X1 +LXo + 66X X0 + (X1 — X2)6 =
= (1+&X1)(1+ &Xa) +6(Xy — Xa) >
> (1+&X1)(1+&X2) = U103

Case n = 3: We first write 133 in two different ways:
Ui3E = &(X1 — Xo) + U3 and W13 = (X1 — X2) + W33

Note that \Tlﬁg is obtained from W123 by replacing the linear term & X3
by &2 X5, hence all its coefficients are nonnegative.
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The left hand side of the Conjecture B3) L3 can be rewritten as follows:
Ly = (U133)*= (&2(X1 — Xa) + W13 U133
= &(X1 — X2) U133 + Ui 013
= &(X1 — X2) Vi3 + WIB(G (X0 — Xa2) + U13))
= Ly(Xy — Xp) + U330 33

where L = &W133 + 53@3% is a positive polynomial.

Now we have
L3> Ly := \Tfﬁ%@iﬁg
By using the formula
U153 = U3 + ©Xo 05 = (W5 — DUIE + U3
we can rewrite Eg as
L= [(U13 - U1}) + w3wif] wig}
= §163X1 (X2 — X3)‘T’%§§ + W%%@%@%ﬁ)
The last term in parenthesis can be written as
V3Ti%= wi303 + wh(U3E - u3)
= U3033 4 £,63X2(X2 — X3) U3,
so we get
Ly = LY(Xz — X3) + U3 013033
where LY denotes the positive polynomial
Lf = & X1 013 + L& X U301,
We now have an explicit formula for Lg:
Ly = Ly(X1 — Xo) + LY (X — X3) + 013013033

with L§, LY positive polynomials, which together with X7 > Xo > X3(>
0) implies that

Ly > Ry = V3013038

and the Conjecture B3)) (n = 3) is proved.

28



In fact we have proven an instance n = 3 Z3 > Rj3 of a stronger conjecture

which we are going to formulate now. Let 2 < k < n. We define the modified

polynomials W1Z-k-n a5 follows:

UlZkm o 6 (X — X)) + UlZn

obtained from W13-" by replacing only one term &, X7 by £ X2, hence \TJ}%::’,&::Z

are still positive. Let us introduce the following notation: B

n n
Lo=Tl 93k Ra= T w300
k=2 k=1
Then clearly L, := (¥i%-n)n=1 > L,. Now our stronger conjecture reads as
Conjecture 3.4
L,>R, (n>1)
with equality iff Xo = X3 =--- = X,,.

More generally, we conjecture that the difference L, — R, is a polynomial
in the differences X — X3, X3 — X4, ..., X,,_1 — X, with coefficients in
ZZO[Xla e aXnvé.lv cee 7671]

Proposition 3.5
Ln=L (X1 —X5)+ Ly
for some positive polynomial L.
Proof of Proposition
Ly = (Wi35)" 1 = (&(X1 — Xa) + WIET) (Ui310)" 2
= &(X1 = Xo) (VIR + BB (€ (X0 — Xo) + VIR (W)
= &(X1 — Xo) (U1320)" 7 + (X0 — Xo) U1 (W13 2
+ W (W)

' n—1 k T12...5..n n\n— n 312...5..n
=i §k+1(Hj:2 ‘1’123n)(‘1’%§n) M) (X1 — Xo) + szz \Ijl2in

|
Now we turn to study the quotient
Lo _ (Up)"!
Rn -
1...k..n
k=1
by studying the growth behaviour of quotients of its factors Wi/ \111%:

w.r.t. any of its arguments X,., 1 <r < n.
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In the following theorem we obtain an explicit formula for the numerators

of the derivatives w.r.t. X, (1 <7 < n,r # k) of the quantities ¥} "/\Iflgz

From this formulas we get some monotonicity properties which énable us to
state some new (refined) conjectures later on.

Theorem 3.6 Let
Ay = 0x, Wpp - Wkt Pt gy Wik (1<r <), (3.28)
Then we have the following explicit formulas
(1) for anyr, 1 <r < k(< n) we have

A - gkz SggzlJ i— 1) X Xl_;’_l XkXJ‘i‘
0<i<r<j<n
+ Z eie;k)Xf...XinH...XT...Xk...Xj(Xk_Xj+l)

0<i<r,k<j<n
(ii) for any r, (1 <)k <r <n we have

A, = — 3 SE’;)N e XE XX K X X
0<i<r<j<n

+ 3 eWe X XX X X X (X — Xp)
0<i<k,r<j<n

where sg\ ) denotes the \—th Schur function of &1, .., €k—1,Ek+1s - - - En (Ek

omitted).
Proof of Theorem B.6l
(i) For any r, 1 < r < k(< n) we find explicitly a formula as follows.
We shall use notations X; ; := X;1X5---X;, for multilinear monomials and
e; = ei(&1,.. -, &n), el(-k) = e;(&,...,&k, ... &) for the elementary symmetric
functions (here k is fixed). Then we can rewrite our basic quantities
U= eXy (3.29)
=0
k—1 n—1
. X
LA D DL RS IL
i=0 i=k
N S (3.30)

For the derivatives we get immediately
1 n 1 r—1
l..n _ _~ . L l.n _ . .
Ox Vi = 5 Zelxl,,z - % <\111n ;ele,,l> (3.31)
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1

n—1
Ox, Wi = X, Zegk)Xu + = Z e X1 (X — Xi) (3.32)

LA PO

T

1

r—1
n k
e (‘I’iiiiiiiin > e ’Xu) (3:33)
i=0
By plugging B31) and B33) into BZ) we obtain
r—1
XrAp = \I}}:::Z <Z egk)X1~~i> \Illm

i=0

ESEDS
33
—

(]
-
o
S
fa
s
~_
|

and after simple cancelation, by invoking ([B30) we get

= (X0 eiX1y) (X e X)) -
( )(
(Z}:rl e X+ 2 e e X (X - Xk)) (E;& €z'X1..i)

i.e.

1
XA = Z (ejel(-k)—€i€§-k))X14.iX1.4j+X— Z eiegk)Xl‘.in‘.j(Xk—Xj+1)

0<i<r<j<n k 0<i<r,k<j<n
If we use a simple identity e; = e( + §kej 1, we can identify the quantity
k k k k k k k k
i) — sl = () 4 el el — (69 + el =
k) k)

( (
e’ el k
](]g)l %k) |§k = S;iijfi—lgk
€1 €

Thus in this case (1 < r < k) we obtain a formula

Ap= &Y st XF XX X Xyt

0<i<r<j<n

+Z eiegk)Xf"'Xi2Xz‘+1"')?T"')?k"'Xj(Xk_Xj+1)
0<i<r,k<j<n

(where e(k) = e(k) =e;(&,. .. NI ,&n)) in terms of Schur functions (of argu-

ments 51, . ,fk, ..., &) corresponding to a transpose (2¢177%71) of a partition
(5 — 1,7) (cf. Jacobi-Trudi formula, I 3.5 in [9]).

(ii) For any r, (1 <)k < r < n. In this case we use

1 n—1

Ox, W i = XerjZ 5 X141
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n—1

k—1
1
EED I NEE S oS e

i=k

k—1
1
<ZX1 K Xk _Xz-i-l +Z€(k)X1 z)
=0

=0

S
=

ESED]
3

By plugging this into ([B28) we get

<.

n k—1 n—1
XkX’I"AT = Zerl,,j < egk)Xl z Xk - Xz+1) + Z egk)Xl__iJrl) —
j=r i=0 =0

r—1 n—1
Zerl..j+Z€jX1..j (Z el(-k)Xl..iH)

i=r—1
r—2 re1 o1
- <Z 65 X1, ”1) ejXi.5] — <Z ein.,i) Z eg‘k)Xl,»jH +
=0 j=r i=0 J
+ ZZ 'E )e]Xlzle(Xk — Xi-i—l)
i=0 j=r
r—1 n
(Zeg)le z) Z Xl .j (Ze X1, z) Ze X, i+
=1 j=r
k—1 n
+ Z 1( )erl» X1 (Xk — Xig1)
i=0 j=r

By using a formula for elementary symmetric functions (e; = egk) + Skel(-li)l) we
can write in terms of Schur functions (of arguments &1,...,&k—1,&k+1,---,&n),
where )\ is a conjugate of \.

k) (k)
k k) (k k) (k k k
5 )16J_eze§ )1 = 657)165- )—eg )65‘7)1 - J(k)l (k) = _Sgiiz‘ﬂ’—l = _ng)fl,i)’
z 1
Thus we obtain a formula
A= — Z SE?)flyi)/Xf"'XiQXiJrl"')?k"')?r"'XjﬁL

0<i<r<j<n

+Z egk)ejxf...Xl?XiH...)?k...)A(T...Xj(XjH,Xk)
0<i<k,r<j<n

Corollary 3.7 (X,—monotonicity)
Let X1 > -+ > X, >0, &,...,&, >0 be as before. Then
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(i) for anyr, 1 <r <k (<n) we have

1..n 1. 741 r+1 ..n
\Ill...n > \Ill r r+1 ..n
\IJIEn - \I/l r+1 r4+1 ’l;n

1..k..n 1... 7 r+1 ..%k.n

(ii) for anyr, (1 <) k <r (< n) we have

1..n l..r—1r—1 ..n
\Ill n \Ill r—1 n
\I/llfn \Illlf r—1r—1..n

1..k..n l..k..r—1 r n

Now we illustrate how to use Corollary B to prove our Conjecture for
n=2,3,4 and 5.
Case n =2

i v :

Case n =3

Q2 :

123,123 223 5123 223\1y223

QB o \11123\11123 \11123\11123 \11123\11123 (by (Z))
- 121323 — 22,513 \y23 22\Jy13\y23
\1112\1113\1123 \1112\1113\1123 \1112\1113\1123
222,223 22215222
\11123\11123 \11123\11123

> =1 (by (i)
NEEASEN S S A S A L
Casen=4

123433 2244 (22242
Q4 = (W1354) > ... U251 (P1351) (>1)
T plBgldgBdgsd = 1 = peadgeedgp22d g2t =
W55 W5y Vs Wasy Raviadrnden

234
This last inequality follows from the following symmetric function identity:

W%%%i(w%%%i)Q _ \11224\1/224\11224‘11224 —

123 134 234 —

124
X2 X{maoos + 2X3 X 3mago1 + X5 X2 maoo + 3X2XFmao11 + X3 Xamaoy
+4X3Xama111 + X3mon + X2(3X2 + 2X4)ma111 + Xomin

where my = my(&1,&2,&3,&4) are the monomial symmetric functions.
Casen=>5

1..5\4 22244 7,224442
Q5 = (¥1:5) -... (V15345 V15345) (>1)
=5 Ts = 2 22y 24 02ady,22aay224d 2
- ‘I’iﬁi’, Wi931 VT35 V1545 V1345 V2315

The last inequality is equivalent to an explicit symmetric function identity with
all coefficients (w.r.t. monomial basis) positive.

Now we state our stronger conjecture.
Conjecture 3.8 (for symmetric functions)

Let X1 > Xo> -2 X, >0and &,...,&, > 0. Then the inequalities
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(a) For n even

n/2 2 n
\112244 nn \112244 2k 2k 2k..n—2 n—2 n 2244n2n2n
12...n-1n 1234 n—1n Cn—1n
k=1 k=1
(b) Forn odd
2
[n/2] n
\112244 2k 2k 2k..n—1 n—1 2244n1n1
1234 n—1 n n

k=1 il

hold true coefficientwise (m—positivity).

Now we motivate another inequalities for symmetric functions which also
refine the strongest Atiyah—Sutcliffe conjecture for configurations of type (A).
Let n = 3. We apply Corollary B by using steps (i) only.

123,123 113\y123 112\3,123 112,122
\11123\11123 \11123\11123 \IJ123\IJ123 \11123\11123 >1

9= YruEeE © VRVEVE © URUEVE - URURUE ©

The last inequality is equivalent to nonnegativity of the expression
Uip3Wiss — W WEWES (= X (X1 — X2)?616283 > 0).

Similarly, for n = 4, the symmetric function inequality stronger than Q4 > 1
would be the following

1123 1,1223 71,1233 123,123 3,123,123
\111234\111234\111234 2 \11123\11124\11134\11234

Now we state a general conjecture for symmetric functions which imply the
strongest Atiyah—Sutcliffe conjecture for almost collinear type (A) configura-
tions.

Conjecture 3.9 Let X1 > --- > X, >, &,...&, > 0. Then the following
inequality for symmetric functions in &1, ...,&,

112..n—13,1223..n—1 12..n—2 n—1 n—1 12.n—1g1 2..n—1 12.n-1
Vo3, Z V1231 Z "‘IJ12...272 2712 >V 5 Z 11 22 n Yy 32 1

i.€.

n—1 n
1 2.k . -1
R g I
k=1 k=1
holds true coefficientwise (m—positivity).

Remark 3.10 Conjectures [Z8 and [T9 seems to hold also for the Schur basis
of symmetric functions in &1,...,&,.
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We have checked this Conjecture B up to n = 5 by using Maple and sym-
metric function package SF of J. Stembridge. For n bigger than five the com-
putations are extremely intensive and hopefully in the near future would be

possible by using more powerful computers.

Note that the right hand side of the Conjecture B3 involves symmetric func-
tions of partial alphabets &1,&a,...,&k—1,&k+1,--.,&. But the left hand side
doesn’t have this ”defect”. Our objective now is to give explicit formula for the
right hand side in terms of the elementary symmetric functions of the full alpha-
bet &1,&s,...,&,. This we are going to achieve by using resultants as follows.

Lemma 3.11 For any k, (1 <k <n), we have

n—1
1...k..n—1 __ . n—1—j
\Ijl k - Zaﬂgk
j=0

where

an—1=1+Xre1 + X1 Xoeo+ ...+ X1+ Xjy 1651,
X1 —-X1Xoer — ... — X1 X169,

8
3
no

I

ag = (—l)nile e X1

i.e.

n—1
an—1-j = (—1) Z X1 Xiei—j
i=

Proof of Lemma B.T11
By definition we have
n—1
gLl = NT e xgel)
1...k..n v
1=0
where el(-k) is the i—th elementary function of &,...,&—1,&k+1,.--
from the decomposition
n n—1
_ k) 4i
et [Ja+gn =T[a+g0 =Mt
j=1 i#k i=0
we get
el = e; — e 16k + eiabl — -+ (—1)i€L

By substituting this into equation B34 the Lemma BTl follows.
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Then, by Lemma BT the right hand side

ﬁqjl2

can be understood as a resultant R, = Res(f,g) of the following two polyno-
mials

?T')?T‘
=
S

<.

f?‘r
3
H
Q

n—

1
fl@) =) a7

j=0
g(x) = H r—§)= Z
i=1 7=0

The Sylvester formula

1 —e1 e —es ... (=",
1 —€1 €2 —e€3
R, — 1 —€1 . A B
"l ay @ as an | C D
an al ag e Ap,
ap a1 ag tee (079

can be simplified as

=|A]-|D-CA™'B|=|D-CA'B].
The entries of the n x n matrix A := D — CA~'B are given by
)yt Z X1 Xiyijer, 0<i<j<n-—1
Siv = k=j+1
i —

—1)j—iZX1---Xk+i_jek, 0<j<i<n-—1

For example, for n = 3

1 Xies + X1 Xoe3 —Xie3

As=| —X; 1+ Xieq X1 Xoe3

X1 X —X1—X1Xoer 14 Xje1 + X1Xoeo

By elementary operations we get

1 * *
\IJ%%% Xl(XQ — X1)€3
A3 = 0 \IJ}%% Xl(XQ — Xl)eg = 199
122 X2 =X, V123
0 Xo—Xy N
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Similarly, for n = 4 we obtain

Wi53% —X1(X1 — Xo)es — X1 Xa2(X1 — X3)ea X1(X1 — Xa)ea
Ay=| —(X1-X2) VATEH —X1X2(X2 — X3)ea
X1 (X2 — X3) —(X1 — X3) - X1 (X2 — X3)ex VAT
In general

A, = det(8;;)1<ij<n1

where
(=1)" Z X1 Xpgimjm1 (Xi = Xpqimjler , 1 <i<j<n—1
o k=j+1
5= Wy tiom =7

ij

J
(=1 ZXI v Xppicjo1 Xy — Xi)er ,1<j<i<n—1
k=0

Corollary 3.12 The conjecturelT is equivalent to a Hadamard type inequality,
holding coefficientwise, for the (non Hermitian) matriz (0j;)1<ij<n—1, i-e.

H 8); > det(d7)

4 Verification of the Pokovié’s strengthening of
the Atiyah—Sutcliffe Conjecture (C2) for some
nonplanar configurations with dihedral sym-

metry

Here we basically follow Pokovié’s [§], where only Atiyah conjecture C1 was
proved, make some additional refinements including a proof of Atiyah—Sutcliffe

conjecture C2.
Let N = m + n points be such that

1. The first m points z1,...,x,, lie on a line L.

2. The remaining n points y; = Tm4j+1 (j = 0,1,...,n — 1) are the vertices
oif a regular n—gon whose plane is perpendicular to L and whose centroid
lies on L.

We may assumeL:Rx{O}CRx(C R? and write z; = (a;,0), 1 <i < m,
a1 < ...<ayand y; = (0,b;), b :—575262”i/",0§j§n—1.
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We set
AN = a; + 1+a12

Recall that a1 < -+ < a,, and, consequently 0 < Ay < --- < A,. Then the
associated polynomials p; (up to scalar factors) are given by

pi(fﬂgy): m— zyz 1( )\n n) 1§z§m

bs —b; " )
pm+j+1($7y)—H<$+|b . | >'H(y—)\ibjx),0§j<n
i=1

s#j
By noting that

by — b; = 2i€™* sin mi=s)
n

(in Dokovi¢ &3+ should be replaced by £5°) we obtain

bs — bj

. 1 — byb;
o (o)

[bs = by
and
y— Nbjx = —bj(—b_jy—l—)\ix)
Note also that
(¢ sgn(s —j)ls=1,....5—1,j+1,....n}={"™*/ "k =1,... . n—1}

Thus, after dehomogenizing the polynomials p; by setting x = 1, we obtain (up
to scalar factors) the following polynomials:

Pi(y) =yt (1= M\yh), 1<i < my;

Poyjri(y) = f(€1y), 0<j<n

where

n—1 m
f) = [[w—iem™) [Jw+N\)
s=1 i=1

(in Pokovi¢ the last n polynomials are reordered)

The main result of Pokovié¢ is the Theorem 3.1 where he proved Atiyah con-
jecture for configurations described above, by explicitly computing the determi-
nant of the coefficients matrix P of the polynomials {px(y)|k = 1,...,m +n}

N
in terms of the coefficients of

N-1 _
= 37 BNt
k=0
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His formula reads as follows:
. n—1
[det(P)| =n"/2 T fi
k=0
where

fk = Z H )\%—jn—k Ek+sn7 0<k<n.
s>0 \j=1

We shall now present an amazingly simple formula for coeflicients of the poly-
nomial

n—1 n—1
h(y) = H(y _ ieﬂ'zs/n) _ Z cjynflfj
s=1 7=0

Proposition 4.1 let v, := cot (g—z) Then

J
co=1,¢;=J[w Q<ji<n-1)
k=1

Proof .
Put & = —ie™* /" k=1,...,n—1. Then
c¢; = the j-th elementary symmetric function of &1,...,&,—1

= 6;‘(517 s afnfl)

Let us first compute the power sums
n—1 n—1

ps = Zgz _ (—Z)S Z eﬂ'zsk/n — (_i)s(ewis/n _ eﬂ'is)/(l _ eﬂ'is)

k=1 k=1

1 s even

S cot($2) = (1) s, 5 odd

|
—N
—
[
— =
S—
FERN
v |

The proof will be by induction. For j = 1wehavec; =&+ +&—1 =p1 = 71-
Suppose that the proposition is true for all £ < i. Then by Newton formula for
symmetric functions

J [7/2]
jej = Z(—l)kilpkejfk = Z (par—1€j—2141 — D2ej—21)
k=1 =1
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we obtain by writing ¢;_o141 = ¢j—21yj—21+1

[3/2]
jei= > (=)' M 1yjaa — (=1)7) ¢jw

=1
[3/2]

= Z (=D (a1 —2141 — 1)z
=1
[3/2]

= Z (=)' (yar—1 + Vj—2141)7iCj—2u
=1
[3/2]

= Z (P2i-1¢j—21 — pai—27j—2+1¢j—21)7; (here pg := —1)
=1
[3/2]

= Z (P2i-1¢j—21 — P21-2Cj—2141)7;
=1
[3/2]

= Z (P21—10j717(2171) - P2l—20j717(2172))7j

=1
[(G—1)/2]
= (=pocj—1+ Z (P21-1Cj—1-(21-1) — P21Cj—1-21))V;
1=1
(cj—1+ (= Dej-1);
= J¢i—17 = J¢

1%

Here in () we have used the cotangent addition formula cot(a)cot(f8) — 1 =
(cot a + cot ) cot(a + 3) and in (x*) Newton formula for ¢ — 1 which holds by
induction hypothesis. The proposition is thus proved. [ |

For our dihedral configurations we can state the stronger conjecture of Atiyah
and Sutcliffe ([§], Conjecture 2.) as follows

n—1 n
n# [T £ = 26 TJ (1 + 23" (4.35)
k=0

=0

fe=> [ T] —inrBrrsn, (0<k<n) (4.36)
s>0 \j=1

From the factorization

m

f@)=n@) [+

i=1

we can write
n—1
E, = E ciEk_;
i=0
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in terms of elementary symmetric functions Ey, = ex(A1, ..., Ap,) of our positive
quantities 0 < Ay < --- < A, with coefficients ¢; given in Proposition BT
(note that ¢ =1 < ¢; < -+ < Clnst > - > ¢p—1 = 1 (unimodality) and
Ci = Cp—1—; (symmetry)).

Now we shall prove a generalization of the Pokovi¢’s conjecture which ap-
parently strengthens ([E30).

Theorem 4.2 We have:

n

n—1 n—1 m -1
1 fk > Ck Z H /\mijl
k=0 k=0 1=0 \j=0
n—1 n—1 m
2 [T o= e [T+ 2D)"
k=0 k=0 =1
Proof .
Let us write
Je = Z eri
1=0
N n—1
Let us substitute Fyys, = ZciEk_iJrsn into @30). Then for fixed & (0 <
i=0

k<n—1)and given ! (0 <1< m) we seek s > 0 and 7, 0 < i < n such that
l=k—1+sn,ie.l—k=sn—10<14i<n We conclude that s and ¢ are
uniquely determined by a division algorithm (with nonpositive remainder):

l—k
Sk -— ’V—-‘, ik:skn—l—k.

n

Hence
Sk
or = [ [ M jnrcan
j=1
with s and 7 just defined. It is easy to see that
l , , :
S,=5|=|— and iy =ig+kfor0<k<n—ip—1
n

and

sp=8g—1landigy=i9g+k—nforn—ig<k<n-1.
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Lemma 4.3 For each [, 0 <1 < m, we have
n—1 -1 n—1
[Ten=117 11
k=0 =0 =0

Proof (of Lemma).

n—1 n—ig—1 S0 n—1 n—1 sp—1 10—1
_ n n
R R I I R | e I
k=0 k=0 Jj=1 k=1to k=n—ip j=1
n—1so—1 n—ig—1
_ n n
ST e T e I o
k=0 j=1 k=0 k=0

We put now N =n+m

- )\n ” /\zz-i—n son—(n—ig—1) H Ck
k=
= A A1 A Hck
|
Proof (of Theorem).
We shall use the Holder inequality
1
n—1 m n—1 n
Il 7 = H <Z SDklEl> > Y <H <me1>
k=0 k=0 1=0 \k=1
m [—1 n—1 % "
= Z H Am—j H ¢ | E (by lemma)
1=0 j=0 j=0
n—1 m -1 "
= o | | 2 T1An-sE
j=0 1=0 j=0

Thus 1. is proved. To obtain 2. we apply Dokovié¢ proof of Atiyah conjecture
for type A configurations

m
=0

(c.f. section 3.) [ |

-1
A JE1>H (1+22)
0

Jj=

5 Appendix

After the first version of this paper was finished, in the meantime, we have
discovered formulas for the partial derivatives, of the quantities ¥}/ \Ill""f"'”
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with respect to variables &, (Note that in Theorem B we have given formulas
w.r.t. variables X,!).

Lemma 5.1 For 2 < r < n the partial derivative w.r.t. & of the quotient
Win /U3 s given by

(W2:0) O, (\I/é n) D siXa(Xo - X)X Xiga (X1 — Xigo)
>3]
where sgj is the congugated Schur function s;; = $;;(§2y- -, &—1,& 415+, En)

corresponding to a two—rowed partition A = (i > j).
In particular for X1 > -+ > X, > 0 the function W17 /W3-" js monotonically
increasing w.r.t. the variable &,. (for r =1, too).

Proof .
By using the formula Ui-" = ¥~ 1 4 X6 021 we get

e, (U1 1) W57 — ‘I’}:::Z%(‘Pézzzﬁ) =

=X 02 (Ul X U ) — (Ul X g e ) X Uden

...... 1..7..n

\Ilg n 1 XQ(\III n— 2+X1§1\I}2 n 1)\113 n

= X, (020 2)° X, Wl n 2 g

With e; = ez(-lr) =ei(&,.. ., 61,611, .. .,&) denoting the i—th elementary
symmetric function of the truncated alphabet A1) = {&, ... & 1,&41,...,&n}
we have further

=X E eie;Xo iy1Xo. jr1 | — Xo E eie; X1, X3. jy2
1,5 4]
= eierl i+1X2 1 — E e;ie; X1, X2 jt2
%]

€ €z+1
Xi1.it1 X2 jy1

;e
= Z ci ZH X1(X2. )2 X 41 Xip1 (X1 — Xigo)
i>7
Now by Jacobi—Trudy formula we can write eei e;“ as the conjugated
Jj—1 J
. 1 . . S
Schur function sj; = SIEJ-T) corresponding to a partition (i > j). [ |

Corollary 5.2 (£,-monotonicity)
We have the following inequality:

1...n 1..n—1
\Ijl..,n > \Ill...nfl
\112..,71 — \112...7171

2..n 2..n—1
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Proof .
By Lemma BTl by letting &, | 0 we get

LESAVA Saeiiea iyl Sl PSS ot VA -t
|
By using this Corollary we state a strengthening of our Conjecture
Conjecture 5.3
9 n—1 ~
1.n\n— 2..n—1 L.k...
(v v [T e
k=2
We also have formulas for partial derivative of the quotient W}--7/ glk.n

1l..k..m
w.r.t. variable &, 2 < r < n, which are more complicated than for k =1 (given

in LemmaBTl). Without loss of generality we take r = n and proceed as follows:

Oe, (U1:3) Wy

Lken e, (k) =

= X3y (Wheken g xyg ke ) o (W10 4 X6, W) Wk
z
k

on—1 _ \Ill...n—quQ...E...n
.n—1 1.n—1 1...k...n—l)

=X; |:<\112'~~£—1 +X2§k\1139 n_l) \Ifl"'E"'"—i_

1..n—2 2..n—1 2..k.n
- (\111 Fomo1 T Xlgkqjx.@,,,nfl) qjl...%...n—l}

=X |:\I/2~~~1l—1 \Ill"'E"'n_l _ \Ill...lz—? \112%71 +

1...k..n—1 1...k..n—1 N 1...k..n—1 1...k... n—1
1..%.n—1 2..n—1 2. k.n
XoU3-m LSRN - X 0 R LS
T (X207 1. Fm—1 L Bom—1 1.k.m—1
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Now we first compute

ESEDS
3
|

T \112 n—1 \Ill""f"'"*l_\lll"'f*Q \112
L= ¥ k-1 1. k-1 %

0
k—1 n—2 k—2
— e; X1+ Zerl..j < e;Xo 11+ Z eiX ,E,,i+2> =

j=0 j=k = i=k—1
n—2 k—1
= eie (X2 i+1X1.5 — Xy 51X J)
i=k—1 j=0
n—2k—2
+Z €j€i (Xl Foger Xzt — X1 X 1+1) +
j=k i=0
n—2 n—2
+ €€ (X2 a1 Xy f j+1 X1-~jX2..E..i+2)
i=k—1 j=k
By replacing, in the middle sum, j with ¢ + 1 and ¢ with j — 1, and observing
that then X z+2X X1 H—lX? g = —(Xgni_,_le“j — X2..E..i+2X1~~j) the
contribution of the ﬁrst two sums is
n—2 k—1 e,
) +1
Z Z “ . Xz,,E,,iﬂ(Xk — Xit2) X1
i=k—1 j=0

The third sum can similarly be transformed to the following form:

€; €;
S X e (K - X)X
= j—1 €
k<j<i<n—2
Hence
I = Z 51 X5 7i01 KXmaxgi+1.6y — Xir2)X1.5 (=0)

0<j,max{j,k—1}<i<n—2

By a similar manipulation we can obtain the expression for the quantity

2..n—1 2. %..n 3..n 1..k..n—1 _
=X Ve TRV YR T
=X — Xo+ S Xy e X1 (X — X)) 20

i=1 j<min{k—1,i}
where s}, is conjugated Schur function s;; = s’ (k") . We see that
...... n ...n _ _
(i) e | oot | = Xln -
l..k.n
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has both positive and negative terms. And we have not been able to apply it
so far.

Now we illustrate use of &~monotonicity (in addition to X-monotonicity)
for proving once more the case n = 4 of our Conjecture

(Pi330° W3S Wi Widd
RIS IIWIE  WEWAEE Wil Wad T
1 WS W
TOUE Wi g
1 \112234 \112233

(by £&4—monotonicity)

(by X;—monotonicity twice and X —monotonicity)

> 128 1231 > (hy ¢3-monotonicity)
Z 323 ¢234 g3 = 3 y
Va3 Uiys Wios
223 ;2233 2233
> 1 Wigy Uigsy  Wigs 1

23 23 223 T \p23\{y23 —
\1123 \1114 \11124 \IJQB\I/14

Similarly the cases n = 5,6,7 of Conjecture would be, by using &-
monotonicity and X-monotonicity, consequences of the following inequalities

Qn>1

where

). 2234422344 234115234y 2244
Q5 - \1112345\1112345 \11234\11135\111245

A 2234455233455 /2345y 2345 [y 2345
Qs = U155456 V123456/ V2345 V516 1556

). — 2234556 ;2334566 ;2344566 234564523456 \Jy23456 234566
Q7 - \111234567\111234567\111234567 \Ij23456\1113457\1112467\11123567

5.1 Computer verification of the Conjecture 3.3 (and hence
of the Atiyah—Sutcliffe conjecture C3) for almost collinear
9 + 1 configuration.

Let us now explain our computer verification of the inequality @9 > 1 where

. \11223456778\11233456788\11223456678\11234456788
Q _ 123456789 * 123456789 * 123456789 * 123456789
9= [y 2345678J,2345678],2345678[; 2345678 [; 22346788

2345678 * 1345679 * 1245689 * 1235789 ~ 12346789

which refines the case n = 9 of the Conjecture We have observed first that
Qg is symmetric in partial alphabets

A ={&,62,8,8 ), A2 =1{63,84.66,&7}, Az ={&)

then by introducing the elementary symmetric functions {e1,es, e3,e4} of Ay
and {f1, f2, f3, fa} of Ay we first computed the products

2345678 ;2345678 2345678 ;2345678
\112345678\111345679 and \111245689\111235789

in terms of {e1,es,es,e4, f1, f2, f3, f1,€5}. Then by successive application of
Stembridge’s Maple SF package we expressed the difference A := numer(Qg) —
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denom(ég) in terms of the Schur functions of both alphabets A; and As. Then
we factored each coefficient in such a multi-Schur expansion and into non-
monomial factors we substituted Xo = X35+ ho, X5 = Xy + hs, ..., X7 =
Xg + h7. Then the computation showed that the coefficients of all monomi-
als in Xg, ha, ..., h7 were nonnegative. The factoring out the trivial monomial
factors in X, ..., Xg (which are trivially nonnegative) was crucial because oth-
erwise the expansion of multi—-Schur function coefficients in terms of increments
ha, ..., h7y may not be feasible.

6 Appendix 2

Here we first recall a remarkable inequality of I. Schur (c.f. J. Michael Steele:
The Cauchy—Schwarz Master Class, Cambridge University Press, 2004.)
For all values x,y,z > 0 and all a > 0 we have

Ia(:v,y,z) = Zxa(x —y)(.’IJ _Z) =
=z —y)le—-2)+y*(y—2)y—2)+2%(z—z)(z —y) =0

with equality iff either x+ = y = z or two of the variables are equal and the
third is zero. Note that I, is a symmetric function. For a proof we can assume
0 <z <y <z Then clearly z%(x — y)(x — z) > 0 and by grouping the other
two terms we get (z — y)[z%(z — z) — y“(y — x)] > 0 by observing that z > y
and z —x >y — .

Now we state and prove several properties of a function

d3(z,y,2) = (x+y —2) @ —y+2) (-2 +y+2) (2,9,2>0)

which frequently appears in the main part of this paper.
We note that the area A = A(a, b, ¢) of a triangle with sides lengths a, b, ¢ is
given, according to the Heron-s formula:

(442 = (a+b+c)a+b—c)la—b+c)(—a+b+c)
= (a—|—b+0)d3(a,b,c)
= 2a2b? + 2a%c? + 2b%c2 — gt — bt — 4

Properties of the function ds:

Proposition 6.1 We have the following identities and inequalities:

1. zyz —ds(z,y,2) => z(z —y)(z—2) >0

2. d3(:v,y,z)2 - d3($2,y2,22) =
=Yy —yzr+ 22— ) + (Na(y? —yz+ 22 —2%)" > 0

3. d3($7y7 2)2 - d3($2,y2, 22) =
= 82%y222 — 2(axyz + 23 + 3 + 23)d3(w,y,2) > 0
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4' (LL' +y+ Z)2d3($7 Y, 2)2 - 3($2 + y2 + 22)d3(.’li2, y27 22) =
=43 a2 (22 —yH)(2® - 22) >0

5. (x4y+2)(X+Y+Z)ds(z,y, 2)d3(X,Y, Z)=3(a X +yY +22)ds(z X, yY,2Z) =
23222 (% — ) X2 (X7 = 22)+ X2 (X2 = Y2)2 (a2 — 22)) + (a2 (Y — 22) +
y2(Z2 _ XQ) + 22(X2 _ Y2))2 Z 0

Proof .

All identities 1.-5. can be easily checked by expansion. The inequality in
1. follows from Schur’s inequality (a = 1), in 2. it is evident since the rhs is
the sum of four squares (see [B]). Case 3. follows from 2. Case 4. follows
from Schur’s inequality (o = 2). Case 5. follows from a generalization of the
case o = 2 of Schur’s inequality:

(29,2 X, Y, Z) = Sz — ) X(X - 7) =
=2z —XX-2)+yly—2)YY - 2)+2(z—2)Z(Z-Y) >0

(by lettingy=2+h,z2=y+k, Y=X+H, Z=Y+ K, hk,HK>0). 1
Corollary 6.2 From the Proposition we get the following inequalities:
ds(z,y,2) <zyz (from 1.)

and a stronger inequality ds(z,vy, 2) < 422y?2?/(zyz + 2% + y> + 23) (from 3.)
From 2. we have the inequality

d3($7 Y, 2)2 2 d3($27 y27 22)
which can also be obtained from 4. (which implies famous Finsler—Hadwiger
inequality) by using the inequality (x +y + 2)? < 3(2? + y? + 22).
The inequality 5. , with the help of Chebyshev inequality
@+y+2)(X+Y+2)<3@X+yY+22) (a<y<z X<Y<2Z)
gives us the following inequality (which seems to be new):
d3($,y,2)d3(X, Yu Z) 2 d3($X7 yY’a ZZ)

(when 0 <z <y<z 0<X<Y<Z)

Remark 6.3 If a,b, c are side lengths of a triangle then inequality ds(a,b,c) <
abc follows also directly from the following identity

abc—ds(a,b,c) = %[(—a+b+c)(b—c)2+(a—b+c)(a—c)2—|—(a+b—c)(a—b)2]

from which we also have the following inequality

8(abc — d3(a,b,c))® > ds(a,b,c)(a —b)*(a— c)*(b— c)?
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