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Abstract

In 2001 Sir M. F. Atiyah formulated a conjecture C1 and later with
P. Sutcliffe two stronger conjectures C2 and C3. These conjectures, in-
spired by physics (spin-statistics theorem of quantum mechanics), are ge-
ometrically defined for any configuration of points in the Euclidean three
space. The conjecture C1 is proved for n = 3, 4 and for general n only for
some special configurations (M. F. Atiyah, M. Eastwood and P. Norbury,
D.D-- oković). Interestingly the conjecture C2 (and also stronger C3) is not
yet proven even for arbitrary four points in a plane. So far we have ver-
ified the conjectures C2 and C3 for parallelograms, cyclic quadrilaterals
and some infinite families of tetrahedra.

We have also proposed a strengthening of conjecture C3 for configu-
rations of four points (Four Points Conjectures).

For almost collinear configurations (with all but one point on a line)
we propose several new conjectures (some for symmetric functions) which
imply C2 and C3. By using computations with multi-Schur functions
we can do verifications up to n = 9 of our conjectures. We can also
verify stronger conjecture of D-- oković which imply C2 for his nonplanar
configurations with dihedral symmetry.

Finally we mention that by minimizing a geometrically defined energy,
figuring in these conjectures, one gets a connection to some complicated
physical theories, such as Skyrmions and Fullerenes.

1

http://lanl.arxiv.org/abs/math/0609174v1


1 Introduction on Geometric Energies

In this Section we describe some geometric energies, introduced by Atiyah. To
construct first geometric energy consider n distinct ordered points, xi ∈ R3 for
i = 1, ..., n. For each pair i 6= j define the unit vector

vij =
xj − xi

|xj − xi|
(1.1)

giving the direction of the line joining xi to xj . Now let tij ∈ CP1 be the point
on the Riemann sphere associated with the unit vector vij , via the identification
CP1 ∼= S2, realized as stereographic projection. Next, set pi to be the polynomial
in t with roots tij (j 6= i), that is

pi = αi

∏

j 6=i

(t − tij) (1.2)

where αi is a certain normalization coefficient. In this way we have constructed
n polynomials which all have degree n − 1, and so we may write

pi =

n∑

j=1

mijt
j−1.

Finally, let Mn be the n × n matrix with entries mij , and let Dn be its deter-
minant

Dn = Dn(x1, ...,xn) = det Mn. (1.3)

This geometrical construction is relevant to the Berry-Robbins problem, which
is concerned with specifying how a spin basis varies as n point particles move
in space, and supplies a solution provided it can be shown that Dn is always
non-zero. For n = 2, 3, 4 it can be proved that Dn 6= 0 (Atiyah n = 3, Eastwood
and Norbury n = 4) and numerical computations suggest that |Dn| ≥ 1 for all
n, with the minimal value |Dn| = 1 being attained by n collinear points.

The geometric energy is the n-point energy defined by

En = − log |Dn|, (1.4)

so minimal energy configurations maximize the modulus of the determinant.
This energy is geometrical in the sense that it only depends on the directions

of the lines joining the points, so it is translation, rotation and scale invariant.
Remarkably, the minimal energy configurations, studied numerically for all n ≤
32, are essentially the same as those for the Thomson problem.

2 Eastwood–Norbury formulas for Atiyah de-

terminants

In this section we first recall Eastwood–Norbury formula for Atiyah determinant
for three or four points in Euclidean three–space. In the case n = 3 the (non
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normalized) Atiyah determinant reads as

D3 = d3(r12, r13, r23) + 8r12r13r23

where

d3(a, b, c) = (a + b − c)(b + c − a)(c + a − b)

and rij (1 ≤ i < j ≤ 3) is the distance between the ith and jth point.
The normalized Atiyah determinant for 3 points is

D3 =
D3

8r12r13r23

and it is evident that |D3| = D3 ≥ 1.
In the case n = 4 the (non normalized) Atiyah determinant D4 has real part

given by a polynomial (with 248 terms) as follows:

ℜ(D4) = 64r12r13r23r14r24r34−4d3(r12r34, r13r24, r14r23)+A4 +288V 2 (2.5)

where

A4 =

4∑

l=1




4∑

(l 6=)i=1

rli((rlj + rlk)2 − r2
jk)


 d3(rij , rik, rjk)

(here {j, k} = {1, 2, 3, 4} \ {l, i}) and V denotes the volume of the tetrahedron
with vertices our four points:

144V 2 = r2
12r

2
34(r

2
13 + r2

14 + r2
23 + r2

24 − r2
12 − r2

34) + two similar terms

−(r2
12r

2
13r

2
23 + three similar terms)

(2.6)

We now state two formulas which will be used later:

1. Alternative form of A4:

A4 =
4∑

l=1

(
(d3(ril, rjl, rkl) + 8rilrjlrkl + ril(r

2
il − r2

jk)+

rjl(r
2
jl − r2

ik) + rkl(r
2
kl − r2

ij)
)
d3(rij , rik, rjk),

(2.7)

where for each l we write {1, 2, 3, 4} \ {l} = {i < j < k}.

2. The sum of the second and the fourth term of (2.5) can be rewritten as

144V 2 − 2d3(r12r34, r13r24, r14r23) =
= (r12 − r34)

2(r2
13r

2
24 + r2

14r
2
23 − r2

12r
2
34) + two such terms +

+ 4r12r13r23r14r24r34−
− r2

12r
2
13r

2
23 − r2

12r
2
14r

2
24 − r2

13r
2
14r

2
34 − r2

23r
2
24r

2
34.

(2.8)
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It is well known that this quantity is always nonpositive.
The imaginary part ℑ(D4)) of Atiyah determinant can be written as a prod-

uct of 144V 2 with a polynomial (with integer coefficients) having 369 terms.
The normalized Atiyah determinant for 4 points is

D4 =
D4

2(4

2)
∏

1≤i<j≤4

rij

.

The original Atiyah conjecture in our cases is equivalent to nonvanishing of
the determinants D3 and D4.

A stronger conjecture of Atiyah and Sutcliffe ([4],Conjecture 2) states in our
cases that |D3| ≥ 8r12r13r23 (⇔ |D3| ≥ 1) and |D4| ≥ 64r12r13r23r14r24r34

(⇔ |D4| ≥ 1).
From the formula (2.5) above, with the help of the simple inequality d3(a, b, c)

≤ abc (for a, b, c ≥ 0), Eastwood and Norbury got ”almost” the proof of the
stronger conjecture by exhibiting the inequality

ℜ(D4) ≥ 60r12r13r23r14r24r34.

To remove the word ”almost” seems to be not so easy (at present not yet done
even for planar configuration of four points).

A third conjecture (stronger than the second) of Atiyah and Sutcliffe ([4],
Conjecture 3) can be expressed, in the four point case, in terms of polynomials
in the edge lengths as

|D4|2 ≥
∏

{i<j<k}⊂{1,2,3,4}

(d3(rij , rik, rjk) + 8rijrikrjk) (2.9)

where the product runs over the four faces of the tetrahedron.
(cf. ftp://ftp.maths.adelaide.edu.au/pure/meastwood/atiyah.ps)

In the first part of this paper we study some infinite families of quadrilaterals
and tetrahedra and verify both Atiyah and Sutcliffe conjectures for several such
infinite families. In this version of the paper we propose a somewhat stronger
conjecture than (2.9) which reads as follows:

Conjecture 2.1 (Four Points Conjectures)

ℜ(D4) − (4 + 3
4 ) · 288V 2 ≥

≥ 64
∏

1≤i,j≤4

rij +
∑

{i<j<k}⊂{1,2,3,4}

(4 + 1
4δ)rilrjlrkld3(rij , rik, rjk) (2.10)

where

δ =






d3(rij , rik, rjk)

rijrikrjk
, weak version

1 , strong version
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Proposition 2.2 Any of the Four Points Conjectures (2.10) imply conjecture
(2.9).

Proof .
By using the inequality 1 ≥ d3(a, b, c)/(abc), (a, b, c > 0) (see Appendix 2,
Proposition 6.1) we see that the strong version implies the weak version of
conjecture. We then rewrite the rhs of the weak version of (2.10) as follows:

∏

1≤i,j≤4

rij

(
1

4

4∑

l=1

(
d3(rij , rik, rjk)

rijrikrjk
+ 8

)2
)

Finally, by the quadratic–geometric (QG) inequality we obtain

≥
∏

1≤i,j≤4

rij

(
4∏

l=1

(
d3(rij , rik, rjk)

rijrikrjk
+ 8

)) 2
4

=

(
4∏

l=1

(d3(rij , rik, rjk) + 8rijrikrjk)

) 1
2

Thus we obtain:

|D4|2 ≥ |ℜ(D4)|2 ≥ |ℜ(D4)−(4+ 3
4 )·288V 2|2 ≥

4∏

l=1

(d3(rijrikrjk)+8rijrikrjk)

i.e. the inequality (2.9).

Remark 2.3 In terms of trigonometry (see subsection ”Atiyah determinant for
triangles and quadrilaterals via trigonometry” on page 20), the weak Four Points
Conjecture can be written simply as

ℜ(D4) − (4 + 3
4 ) · 288V 2 ≥




∏

1≤i,j≤4

rij



(

4

4∑

l=1

c2
l

)

where

cl := cos2
X(l)

2
+ cos2

Y (l)

2
+ cos2

Z(l)

2
, l = 1, 2, 3, 4.

and X(l), Y (l), Z(l) are the angles of the triangle opposite to the vertex l.

2.1 Atiyah–Sutcliffe conjecture for (vertically) upright tetra-
hedra (or pyramids)

We call a tetrahedron upright if some of its vertices (say 4) is equidistant from
all the remaining vertices (1, 2 and 3, which we can think as lying in a horizontal
plane.)
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r23 = a
r13 = b
r12 = c
r14 = r24 = r34 = d

Note that then d ≥ R = the circumradius of the base triangle 123, then by
Heron’s formula we have: R = abc/

√
(a + b + c)d3(a, b, c).

Here, as before, d3(a, b, c) = (a + b − c)(a − b + c)(−a + b + c), (a, b, c > 0).
The left hand side of the strong Four Points Conjecture 2.10 (but without 3

4
term!) can be evaluated as follows, by using Eastwood-Norbury formula (2.5)

LHS = ℜ(D4) − 4 · 288V 2 =

= 64
∏

1≤i<j≤4

rij − 4d3(r12r34, r13r24, r14r23) + A4 − 3 · 288V 2

where

−4d3(r12r34, r13r24, r14r23) = −4d3(a, b, c)d3

A4 =

4∑

l=1




4∑

(l 6=)i=1

rli((rlj + rlk)2 − r2
jk)d3(rij , rik, rjk)


 =

=
∑

cyc(a,b,c)

[
c((b + d)2 − d2) + b((c + d)2 − d2) + d((b + c)2 − a2)

]
d3(a, d, d)+

+
[
d((d + d)2 − a2) + d((d + d)2 − b2) + d((d + d)2 − c2)

]
d3(a, b, c) =

= [4bcd + ((b + c)2 − a2)d + b2c + bc2](2a2d − a3)] + · · ·+

+[12d3 − (a2 + b2 + c2)d]d3(a, b, c) (by 2.7)

−3 · 288V 2 =
= −6[(b2 + c2 − a2)a2d2 + (c2 + a2 − b2)b2d2 + (a2 + b2 − c2)c2d2 − a2b2c2](by 2.6)
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Similarly the right hand side of the Conjecture 2.10

RHS = 64
∏

1≤i<j≤4

rij +

4∑

l=1

(
4 +

1

4

)
rilrjlrkld3(rij , rik, rjk)

= 64abcd3 +

(
4 +

1

4

)
bcd(2a2d − a3) + two such terms+

+

(
4 +

1

4

)
d3d3(a, b, c)

Now we can rewrite the difference

LHS − RHS = I + II

where

I =
∑

cyc

(b2c+bc2)(2a2d−a3)−(a2+b2+c2)d3(a, b, c)d+6a2b2c2−24
a2b2c2

a + b + c
d

and

II =

(
4 − 1

4

)
d3(a, b, c)d3 +

∑

cyc

((b + c)2 − a2)d(2a2d − a3)−

−6
∑

cyc

(b2 + c2 − a2)a2d2 − 1

4

∑

cyc

bcd(2a2d − a3) + 24
a2b2c2

a + b + c
d

Then we can further simplify

I =

[
4abc(ab + ac + bc) − (a2 + b2 + c2)d3(a, b, c) − 24a2b2c2

a + b + c

]
d+

+6a2b2c2 −
∑

sym

a3b2c

and

II = d

[
15

4
d3(a, b, c)d2 + (a + b + c)

(
7

2
abc − 4d3(a, b, c)

)
d + 24

a2b2c2

a + b + c
+

+
1

4
abc(a2 + b2 + c2) − (a + b + c)

(
∑

sym

a3b − a4 − b4 − c4

)]

Lemma 2.4 We have the following strengthening of the basic inequality for our
function d3(a, b, c) = (a + b − c)(a − b + c)(−a + b + c):

d3(a, b, c) ≤ 9a2b2c2

(a + b + c)(a2 + b2 + c2)
(≤ 27a2b2c2

(a + b + c)3
≤ abc)
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Proof .
We have

9a2b2c2 − (a2 + b2 + c2)(a + b + c)d3(a, b, c) =
= 9a2b2c2 − (a2 + b2 + c2)(2a2b2 + 2a2c2 + 2b2c2 − a4 + b4 + c4) =
= 3a2b2c2 − a4b2 − a2b4 − a4c2 − a2c4 − b4c2 − b2c4 + a6 + b6 + c6 =
(a2 − b2)[a2(a2 − c2) − b2(b2 − c2)] + c2(a2 − c2)(b2 − c2) ≥ 0
(if we assume a ≥ b ≥ c ≥ 0)

(a special instance of a Schur inequality)
(Note that this result follows from the formula OG2 = R2 − (a2 + b2 + c2)/9 for
the distance of the circumcenter and the centroid of a triangle.)

Now we have

Lemma 2.5 The quantity I is increasing w.r.t. d and it is positive for d ≥ R.

Proof .
We prove that the coefficient of d in I is positive by using that (ab+ac+bc)(a+
b + c) ≥ 9abc and Lemma 2.4 .

The proof of positivity of I reduces to the positivity of the following quantity:

{[4abc(ab + ac + bc) − (a2 + b2 + c2)d3(a, b, c)](a + b + c) − 24a2b2c2}2−
−(a + b + c)3(a2b + ab2 + a2c + ac2 + b2c + bc2 − 6abc)2d3(a, b, c)

which by substituting a = b + h and b = c + k and then expanding has all
coefficients positive (and ranging from 1 to 32151).

Lemma 2.6 The quantity II is increasing w.r.t. d and it is positive for d ≥ R.

Proof .
Let II = d · III. Then

∂III
∂d =

(
15
2 d3(a, b, c)d − a+b+c

2 d3(a, b, c)
)

+ 7(a+b+c)
2 (abc − d3(a, b, c))

The second term is positive by Proposition 6.1. For the first term we have:

15
2 d3(a, b, c)d − a+b+c

2 d3(a, b, c) ≥ 15
2 d3(a, b, c)R − a+b+c

2 d3(a, b, c) ≥

( 15abc
(a+b+c)3/2 −

√
d3(a, b, c))a+b+c

2

√
d3(a, b, c) ≥ 0

by Lemma (2.4).
The proof of positivity of II reduces to the positivity of the following quantity:

15

4
d3(a, b, c)R2 + (a + b + c)

(
7

2
abc − 4d3(a, b, c)

)
R + 24

a2b2c2

a + b + c
+

+ 1
4abc(a2 + b2 + c2) − (a + b + c)

(∑
sym a3b − a4 − b4 − c4

)

which can be nicely visualized by Maple using tangential coordinates (a = v+w,
b = u + w, c = u + v).
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2.2 Atiyah–Sutcliffe conjectures for edge–tangential tetra-
hedra

By edge–tangential tetrahedron we shall mean any tetrahedron for which there
exists a sphere touching all its edges (i.e. its 1–skeleton has an inscribed sphere.)
For each i from 1 to 4 we denote by ti the length of the segment (lying on the
tangent line) with one endpoint the vertex and the other the point of contact
of the tangent line with a sphere.

rij = ti + tj , (1 ≤ i < j ≤ 4)

Now we shall compute all the ingredients appearing in the Eastwood–Norbury
formula for D4 in terms of elementary symmetric functions of the (tangential)
variables t1, t2, t3, t4 (recall e1 = t1 + t2 + t3 + t4, e2 = t1t2 + t1t3 + t1t4 + t2t3 +
t2t4 + t3t4, e3 = t1t2t3 + t1t2t4 + t1t3t4 + t2t3t4, e4 = t1t2t3t4).

64r12r13r23r14r24r34 = 64
∏

1≤i<j≤4

(ti + tj) = 64s3,2,1 =

= 64

∣∣∣∣∣∣

e3 e4 0
e1 e2 e3

0 1 e1

∣∣∣∣∣∣
= 64e3e2e1 − 64e4e

2
1 − 64e2

3

Here we have used Jacobi–Trudi formula for the triangular Schur function s3,2,1

(see [9], (3.5)). Furthermore we have

−4d3(r12r34, r13r24, r14r23) = 128e4e2 − 32e4e
2
1 − 32e2

3

288V 2 = 128e4e2 − 32e2
3

In order to compute A4 we first compute, for fixed l the following quantities

d3(rij , rik, rjk) = 8titjtk
4∑

(l 6=)i=1

rli((rlj + rlk)2 − r2
jk) = 4(3tl(t1 + t2 + t3 + t4) + 2(titj + titk + tjtk))tl.

Thus we get:

A4 = 32(3e2
1 + 4e2)e4 = 96e4e

2
1 + 128e4e2.

9



Now we adjust terms in D4, in order to get shorter expression, as follows

D4 = (64r12r13r23r14r24r34 − 2 · 288V 2)+
+(−4d3(r12r34, r13r24, r14r23) − 288V 2) + A4 + 4 · 288V 2

= (64e3e2e1 − 64e4e
2
1 − 256e4e2) + (−32e4e

2
1)+

+(96e4e
2
1 + 128e4e2) + 4 · 288V 2

= 64e3e2e1 − 128e4e2 + 1152V 2

= 64e2(e3e1 − 2e4) + 1152V 2

= 64e2(2e4 + m211) + 1152V 2,

where m211 = t21t2t3 + · · · denotes the monomial symmetric function associated
to the partition (2, 1, 1).

In order to verify the third conjecture of Atiyah and Sutcliffe

|D4|2 ≥
∏

{i<j<k}⊂{1,2,3,4}

(d3(rij , rik, rjk) + 8rijrikrjk)

we note first that

d3(rij , rik, rjk) + 8rijrikrjk = (8titjtk + 8(ti + tj)(ti + tk)(tj + tk))

= 8(ti + tj + tk)(titj + titk + tjtk)

and state the following:

Lemma 2.7 For any nonnegative real numbers t1, t2, t3, t4 ≥ 0 the following
inequality

(t1t2 + t1t3 + t1t4 + t2t3 + t2t4 + t3t4)
2(2t1t2t3t4 + m211(t1, t2, t3, t4))

2 ≥
≥∏{i<j<k}⊂{1,2,3,4}(ti + tj + tk)(titj + titk + tjtk)

(2.11)

holds true.

Proof of Lemma 2.7.
The difference between the left hand side and the right hand side of the above
inequality (2.11), written in terms of monomial symmetric functions is equal to

LHS − RHS = m6321 + 3m6222 + m543 + 2m5421 + 7m5322 + 5m5331+

+3m444 + 7m4431 + 8m4422 + 8m4332 + 3m3333 ≥ 0

Remark 2.8 One may think that the inequality in Lemma 2.7 can be obtained
as a product of two simpler inequalities. This is not the case, because the fol-
lowing inequalities hold true:

(t1t2 + t1t3 + t1t4 + t2t3 + t2t4 + t3t4)
2

≤
∏

{i<j<k}⊂{1,2,3,4}

(ti + tj + tk)

(2t1t2t3t4 + m211(t1, t2, t3, t4))
2

≥
∏

{i<j<k}⊂{1,2,3,4}

(titj + titk + tjtk)

10



Now we continue with verification of the third conjecture of Atiyah and Sutcliffe
for edge tangential tetrahedron:

|D4|2 ≥ (D4)
2 ≥ [64e2(2e4 + m211)]

2

≥ 84
∏

{i<j<k}⊂{1,2,3,4}

(ti + tj + tk)(titj + titk + tjtk) (by Lemma 2.7)

=
∏

{i<j<k}⊂{1,2,3,4}

(d3(rij , rik, rjk) + 8rijrikrjk)

so the strongest Atiyah–Sutcliffe conjecture is verified for edge–tangential tetra-
hedra.

2.3 Verification of the strong Four Points Conjecture for
edge–tangential tetrahedra

The strong Four Points Conjecture 2.10 for edge tangential tetrahedra is equiv-
alent to positivity of the following quantity:

ℜ(D4) − 64
∏

rij − (4 + 3
4 )288V 2 −

4∑

l=1

(4 + 1
4 )rilrjlrkl d3(rij , rik, rjk)

= (−d3(r12r34, r13r24, r14r23) + A4) + 288V 2 − (4 + 3
4 )288V 2

−
4∑

l=1

(4 + 1
4 )rilrjlrkl d3(rij , rik, rjk)

= (−32m3111 − 32m222 + 96m3111 + 320m2211) − 240m2211 + 120m222

− (34m3111 + 136m2211 + 34m222)
= 30m3111 + 54m222 − 56m2211

In terms of augmented monomial symmetric functions

m̃λ(t1, t2, t3, t4) =
∑

σ∈S4

tσ.λ

the last quantity is equal to

= 5m̃3111 + 9m̃222 − 14m̃2211 (≥ 0 by Muirheads’s inequality)

Thus, the strong Four Points Conjecture is verified for the edge–tangential tetra-
hedra.

Note that the verification of this conjecture which is stronger than A–S
conjecture C3 is somewhat simpler (at least for edge–tangential tetrahedra).

2.4 Trirectangular tetrahedra

A tetrahedron is called trirectangular if it has a vertex at which all the face
angles are right angles. The opposite face to such a vertex we call a base. We
label the edge lengths as follows

11



r12 = c
r13 = b
r23 = a
r14 = x
r24 = y
r34 = z

We have following obvious relations: a2 = y2+z2, b2 = x2 +z2, c2 = x2+y2.
By using them we can get

d3(a, b, c) = 2(ax2 + by2 + cz2 − abc),
d3(x, y, c) = 2xy(x + y − c),
d3(x, b, z) = 2xz(x + z − b),
d3(a, y, z) = 2yz(y + z − a)

(2.12)

and

ℜ(D4) − 64abcxyz − 288V 2 =

= 4xyz
∑

cyc

2ax2 +
∑

cyc

(2ab + cz + z2)(x + y) − 10abc (2.13)

where
∑

cyc has three terms 1 corresponding to a cycle ((a, x) → (b, y) → (c, z)).
By writing x + y = x + y − c + c and using the identity

∑

cyc

c2z =
∑

cyc

(x2 + y2)z =
∑

cyc

(x + y)z2 =
∑

cyc

z2(x + y − c) +
∑

cyc

ax2

we get that the second cyclic sum is equal to

∑

cyc

(2ab+cz+z2)(x+y) = 6ab+
∑

cyc

(2ab+cz+2z2)(x+y−c)+2
∑

cyc

ax2 (2.14)

By inserting this into (2.13) we get

ℜ(D4)−64abcxyz−288V 2 = 4xyz(2d3(a, b, c)+
∑

cyc

(2ab+cz+2z2)(x+y−c))

Hence ℜ(D4) ≥ 64abcxyz so the verification of the C2 of Atiyah–Sutcliffe for
trirectangular tetrahedra is finished.

1
∑

cyc f(a, b, c, x, y, z) = f(a, b, c, x, y, z) + f(b, c, a, y, z, x) + f(c, a, b, z, x, y)
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2.5 Atiyah–Sutcliffe conjectures for regular and semi–regular
tetrahedra

Semiregular (SR) tetrahedra are one of the simplest configurations of tetrahedra.
These tetrahedra have opposite edges equal and hence all faces are congruent.
Sometimes semi–regular tetrahedra are called isosceles tetrahedra.

r23 = r14 = a
r13 = r24 = b
r12 = r34 = c

By (2.8) we get

288V 2−4d3(r12r34, r13r24, r14r23) = 0 (⇒ 288V 2 = 4d3(r12r34, r13r24, r14r23))

By (2.7) we get

A4 =

4∑

l=1

(d3(ril, rjl, rkl) + 8rilrjlrkl)d3(rij , rik, rjk)

= 4d3(a, b, c)2 + 32abc d3(a, b, c)

The quantity in the weak Four Points Conjecture is

l.h.s − r.h.s =

= A4 −
(

4 +
3

4

)
288V 2 −

4∑

l=1

(
4 +

1

4

d3(rij , rik, rjk)

rilrjlrkl

)
rijrikrjkd3(rij , rik, rjk)

= 4d3(a, b, c)2 + 32abc d3(a, b, c) − (16 + 3)d3(a
2, b2, c2) − [16abc d3(a, b, c) + d3(a, b, c)2]

= 3(d3(a, b, c)2 − d3(a
2, b2, c2)) + 16(abc d3(a, b, c) − d3(a

2, b2, c2)) ≥ 0

by using the inequalities abc ≥ d3(a, b, c) and d3(a, b, c)2 ≥ d3(a
2, b2, c2) (see

Appendix 2, Proposition 6.1; also see [12] or [13]).
This proves the weak Four Points Conjecture for semiregular tetrahedra.
The proof of the strong Four Points Conjecture for semiregular tetrahedra

reduces to the positivity of the following expression

4(d3(a, b, c)2 − d3(a
2, b2, c2)) + 15(abc d3(a, b, c) − d3(a

2, b2, c2)) ≥ 0

which is also true by the same argument.
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2.6 Atiyah–Sutcliffe conjectures for parallelograms

Given a parallelogram with vertices 1, 2, 3 and 4 denote by a, b its side lengths
and by e, f its diagonals.

r12 = r34 = a
r23 = r14 = b
r24 = e
r13 = f

For the numbers a, b, e, f we have the basic relation (”a parallelogram law”)

e2 + f2 = 2(a2 + b2) (2.15)

By using this relation we can rewrite various quantities in the Eastwood-Norbury
formula.

Proposition 2.9 We have the following identities

1. d3(a, b, e) = (a+b−e)(a−b+e)(−a+b+e) = (a+b−e)(a+b−f)(a+b+f)

2. ∆ := (a + b + e)d3(a, b, e) = (a + b + f)d3(a, b, f) =
= (a + b + e)(a + b + f)(a + b − e)(a + b − f) =
= 2a2b2+2a2e2+2b2e2−a4−b4−e4 = 2a2b2+2a2f2+2b2f2−a4−b4−f4

3. 4ab+e2−f2 = 2(a+b+f)(a+b−f), 4ab+f2−e2 = 2(a+b+e)(a+b−e)

4. d3(a
2, b2, ef) = (a2 + b2 − ef)∆

5. d3(a, b, e)d3(a, b, f) − d3(a
2, b2, ef) = (2ab − 2ef − (a + b)(e + f))∆

6. ed3(a, b, f) + fd3(a, b, e) = (a + b− e)(a + b− f)(e2 + f2 + (a + b)(e + f))

7. (4ab+ e2− f2)ed3(a, b, f)+ (4ab+ f2− e2)fd3(a, b, e) = 2((a+ b)(e+ f)−
2ef)∆

Proof .
For 1. we write (a−b+e)(−a+b+e) = e2−(a−b)2 = 2a2+2b2−f2−(a−b)2 =
(a + b− f)(a + b + f). Identity 2. follows from 1. directly. For 3. we substitute
e2 = 2a2 + 2b2 − f2 and simplify. For 4. we compute and use 2.:

(a2−b2+ef)(−a2+b2+ef) = e2f2−(a2−b2)2 = e2(2a2+2b2−e2)+2a2b2−a4−b4 = ∆

For 5. we first use 1. and then 4.: d3(a, b, e)d3(a, b, f)−d3(a
2, b2, ef) = (a+ b+

f)(a+b−e)(a+b−f)d3(a, b, f) − (a2+b2−ef)∆ = [(a+b)2−(a+b)(e+f)+ef ]∆
− (a2 + b2 − ef)∆ = [2ab + 2ef − (a + b)(e + f)]∆
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For 6. we use 1. twice.
For 7. we first use 3. and then 2.:

l.h.s. = 2(a + b + f)(a + b − f)ed3(a, b, f) + 2(a + b + e)(a + b − e)fd(a, b, e)
= 2[(a + b − f)e + (a + b − e)f ]∆

Now we apply Eastwood-Norbury formula (note that 288V 2 = 0, D4 = real)

D4 − 64
∏

rij = −4d3(a
2, b2, c2) + A4

where

A4 = 2[d3(a, b, e) + 8abc + e(e2 − f2)]d3(a, b, f) + 2[d3(a, b, f) + 8abc + f(f2 − e2)]d3(a, b, e)
= I0 + I1 + I2

where

I0 = 4d3(a, b, e)d3(a, b, f)
I1 = 2[4abe + e(e2 − f2)]d3(a, b, f) + 2[4abf + f(f2 − e2)]d3(a, b, e)

= 4((a + b)(e + f) − 2ef)∆ (by 7.)
I2 = 2[4abe d3(a, b, f) + 4abf d3(a, b, e)]

= 8ab(a + b − e)(a + b − f)(e2 + f2 + (a + b)(e + f)) (by 6.)

By using 5. we have

D4 − 64
∏

rij = 4(d3(a, b, e)d3(a, b, f) − d3(a
2, b2, ef)) + I1 + I2

= 4((2ab + 2ef − (a + b)(e + f))∆ + ((a + b)(e + f) − 2ef)∆) + I2

= 8ab∆ + I2 ≥ 0

This proves the Atiyah–Sutcliffe conjecture (C2) for parallelograms. The Atiyah–
Sutcliffe conjecture (C3) for parallelograms

D2
4 ≥ (d3(a, b, e) + 8abe)2(d3(a, b, f) + 8abf)2

is equivalent to the positivity of

D4 − d3(a, b, e)d3(a, b, f)− 8[abf d3(a, b, e)+ abe d3(a, b, f)]− 64a2b2ef ≥ 0

but we can prove even stronger statement

D4 − 2d3(a, b, e)d3(a, b, f) − 8[abf d3(a, b, e) + abe d3(a, b, f)] − 64a2b2ef =
= 8ab∆ − 2d3(a, b, e)d3(a, b, f) = 2[4ab − (a + b − e)(a + b − f)]∆ ≥ 0

because the triangle inequalities b < e + a and a < f + b imply

(a + b − e)(a + b − f) < 2a · 2b = 4ab.

Thus we have verified also C3 for parallelograms.
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Finally we verify our strong Four Point Conjecture for parallelograms as
follows

D4 − 64
∏

rij −
∑

(4 + 1
4 )rilrjlrkld3(rij , rjl, rik)

= 8ab∆ − 1
4 (I2/4)

= 8ab(a + b − e)(a + b − f)[(a + b + e)(a + b + f) − 1
16 (e2 + f2 + (a + b)(e + f))]

= 1
2ab(a + b − e)(a + b − f)[16((a + b)2 + (a + b)(e + f) + ef) − (2a2 + 2b2 + (a + b)(e + f))]

= 1
2ab(a + b − e)(a + b − f)[14(a2 + b2) + 32ab + 15(a + b)(e + f) + 16ef ] ≥ 0

2.7 Atiyah–Sutcliffe conjectures for ”wedge” tetrahedra

A tetrahedron with two pairs of opposite edges having the same length we simply
call a ”wedge” tetrahedron.

r12 = x
r34 = y
r13 = r24 = a
r23 = r14 = b

If x = y = c we get a semiregular
tetrahedron and if all points lie in
a plane then we get either a paral-
lelogram or an isosceles trapezium.

Again we compute the data appearing in the Eastwood–Norbury formula

−4d3(r12r34, r13r24, r14r23) =
= −4d3(xy, a2, b2)
= −4(xy − a2 + b2)(xy + a2 − b2)(a2 + b2 − xy)

(2.16)

and we have the basic inequalities

xy + b2 ≥ a2, xy + a2 ≥ b2, a2 + b2 ≥ xy (2.17)
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The positivity of the volume

144V 2 = xy − a2 + b2)(xy + a2 − b2)(2a2 + 2b2 − x2 − y2) (2.18)

gives us one more basic inequality

2a2 + 2b2 ≥ x2 + y2 (2.19)

We have

A4 = 2[a((b + x)2 − a2) + b((a + x)2 − b2) + x((a + b)2 − y2)]d3(a, b, y)
+2[a((b + y)2 − a2) + b((a + y)2 − b2) + y((a + b)2 − x2)]d3(a, b, x)

(2.20)

By using identity

d3(a, b, c) = a(b2 + c2 − a2) + b(a2 + c2 − b2) + c(a2 + b2 − c2)− 2abc (2.21)

we can rewrite A4 as follows

A4 = 2[4abx + d3(a, b, x) − x(a2 + b2 − x2) + 2abx + x((a + b)2 − y2)]d3(a, b, y)
+2[4aby + d3(a, b, y) − y(a2 + b2 − y2) + 2aby + y((a + b)2 − x2)]d3(a, b, x)

= 2[4abx + d3(a, b, x) − x((a − b)2 − x2) + x((a + b)2 − y2)]d3(a, b, y)
+2[4aby + d3(a, b, y) − y((a − b)2 − y2) + y((a + b)2 − x2)]d3(a, b, x)

= {8abx + d3(a, b, x) + [d3(a, b, x) − 2x((a − b)2 − x2)] + 2x((a + b)2 − y2)}d3(a, b, y)
+{8aby + d3(a, b, y) + [d3(a, b, y) − 2y((a − b)2 − y2)] + 2y((a + b)2 − x2)}d3(a, b, x)

(2.22)

Now we compute

d3(a, b, x) − 2x((a − b)2 − x2) =
= (a + b − x)(a − b + x)(−a + b + x) + 2x(a − b + x)(−a + b + x)
= (a + b + x)(a − b + x)(−a + b + x)

The contribution A
[ ]
4 of both square brackets in A4 is equal to

A
[ ]
4 := [d3(a, b, x) − 2x((a − b)2 − x2)]d3(a, b, y)+

+ [d3(a, b, y) − 2y((a − b)2 − y2)]d3(a, b, x)
= (x2 − (a − b)2)(y2 − (a − b)2)[(a + b + x)(a + b − y) + (a + b + y)(a + b − x)]
= (x2 − (a − b)2)(y2 − (a − b)2)(2(a + b)2 − 2xy)
= 4ab(x2 − (a − b)2)(y2 − (a − b)2) + 2(x2 − (a − b)2)(y2 − (a − b)2)(a2 + b2 − xy)

(2.23)

At this point we have discovered the following beautiful identity

[x2 − (a − b)2][y2 − (a − b)2] =
= (xy − a2 + b2)(xy + a2 − b2) + (a − b)2(2a2 + 2b2 − x2 − y2)

(2.24)
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By this identity we can write

A
[ ]
4 = 4ab(x2 − (a − b)2)(y2 − (a − b)2)

+ 2(a − b)2(2a2 + 2b2 − x2 − y2)(a2 + b2 − xy)
+ 2d3(a

2, b2, xy)

Lemma 2.10 We have the following inequality for ”wedge” tetrahedra

d3(a
2, b2, xy) ≤ 2ab(x2 − (a − b)2)(y2 − (a − b)2)

Proof .
Recall that

d3(a
2, b2, xy) = (a2 + b2 − xy)(a2 − b2 + xy)(−a2 + b2 + xy)

Let a ≥ b. Then the triangle inequalities a ≤ b + x and a ≤ b + y imply
(a− b)2 ≤ xy i.e. a2 + b2 − xy ≤ 2ab. Since 2a2 + 2b2 − x2 − y2 ≥ 0 (inequality
(2.19)) then from our inequality (2.24) it follows that

(a2 − 2b2 + xy)(−a2 + b2 + xy) ≤ (x2 − (a − b)2)(y2 − (a − b)2)

By multiplying the last two inequalities Lemma follows.
As a consequence of Lemma we get immediately that

A4 ≥ A
[ ]
4 ≥ 4d3(a

2, b2, xy)

because the remaining terms in A4 are all nonnegative. This verifies the A–S
conjecture C2 for ”wedge” tetrahedra.

Remark 2.11 Instead of splitting 2(a+ b)2−2xy = 4ab+2(a2 + b2−xy) (used
above), we can use the identity

2(a + b)2 − 2xy = 4(a2 + b2 − xy) + 2(xy − (a − b)2)

to obtain explicit formula for A
[ ]
4 :

A
[ ]
4 =

[4(a2 + b2 − xy) + 2(xy − (a − b)2)][(xy − a2 + b2)(xy + a2 − b2)+
+(a − b)2(2a2 + 2b2 − x2 − y2)] =
= 4d3(a

2, b2, xy) + 4(a2 + b2 − xy)(2a2 + 2b2 − x2 − y2)(a − b)2+
+2(xy − (a − b)2)(x2 − (a − b)2)(y2 − (a − b)2)

which, without using Lemma 2.10, implies inequality

A
[ ]
4 ≥ 4d3(a

2, b2, xy)

needed for the verification of A–S conjecture C2 for ”wedge” tetrahedra.
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Now we state a final formula for ”wedge” tetrahedra:

First explicit formula for wedge tetrahedra:

ℜ(D4) = (d3(a, b, x) + 8abx)(d3(a, b, y) + 8aby) + d3(a, b, x)d3(a, b, y)+
+2x((a + b)2 − y2)d3(a, b, y) + 2y((a + b)2 − x2)d3(a, b, x)+
+4(a2 + b2 − xy)(2a2 + 2b2 − x2 − y2)(a − b)2+
+2(xy − (a − b)2)(x2 − (a − b)2)(y2 − (a − b)2)
+288V 2

which implies a strengthened A–S conjecture C3 for wedge tetrahedra

ℜ(D4) ≥ (d3(a, b, x) + 8abx)(d3(a, b, y) + 8aby) + d3(a, b, x)d3(a, b, y) + 288V 2

≥ (d3(a, b, x) + 8abx)(d3(a, b, y) + 8aby)

In the sequel we obtain an alternative formula for the real part of the Atiyah
determinant for a wedge tetrahedra.

We group terms in A4 differently as follows:

A4 = 2[4abx + d3(a, b, x) + x(4ab + x2 − y2)]d3(a, b, y)+
+2[4aby + d3(a, b, y) + x(4ab + y2 − x2)]d3(a, b, x)

By letting

2s2 + 2b2 − x2 − y2 =: 2h (≥ 0)

we can rewrite

4ab + x2 − y2 = 4ab + x2 + (2h + x2 − 2a2 − 2b2) = 2(h + x2 − (a − b)2)

and similarly for

4ab + y2 − x2 = 2(h + y2 − (a − b)2)

Thus

A4 = 4d3(a, b, x)d3(a, b, y) + 8abx d3(a, b, y) + 8aby d3(a, b, x)+
+4h(xd3(a, b, y) + y d3(a, b, x)) + 4A′

4

where

A′
4 = x(x2 − (a − b)2)d3(a, b, y) + y(y2 − (a − b)2)d3(a, b, x)

= (x2 − (a − b)2)(y2 − (a − b)2)[x(a + b − y) + y(a + b − x)]
= (x2 − (a − b)2)(y2 − (a − b)2)[(x − y)2 + x(a + b − x) + y(a + b − y)]
= [(xy − a2 + b2)(xy + a2 − b2) + 2(a − b)2h][(x − y)2 + x(a + b − x) + y(a + b − y)]

(2.25)

by our identity (2.24).
Note that

−144V 2 + 2d3(a
2, b2, xy) = (xy − a2 + b2)(xy + a2 − b2)(x − y)2
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So

A′
4 = (2d3(a

2, b2, xy) − 144V 2) + 2(a − b)2h[x(a + b − y) + y(a + b − x)]
+ (xy − a2 + b2)(xy + a2 − b2)(x(a + b − x) + y(a + b − y))

By writing

4A′
4 = 2A′

4 + 2A′
4 =

= 2(x2 − (a − b)2)(y2 − (a − b)2)[x(a + b − y) + y(a + b − x)]+
+{4d3(a

2, b2, xy) − 288V 2 + 4(a − b)2h[x(a + b − y) + y(a + b − x)]+
+2(xy − a2 + b2)(xy + a2 − b2)(x(a + b − x) + y(a + b − y))} =
= 4d3(a

2, b2, xy) − 288V 2 + [2(x2 − (a − b)2)(y2 − (a − b)2) + 4(a − b)2h]·
·(x(a + b − y) + y(a + b − x))+
+2(xy − a2 + b2)(xy + a2 − b2)[x(a + b − x) + y(a + b − y)]

we obtain the following explicit formula for the real part of Atiyah determinant
for ”wedge” tetrahedron:

Second explicit formula for wedge tetrahedra:

ℜ(D4) = (d3(a, b, x) + 8abx)(d3(a, b, y) + 8aby) + 3d3(a, b, x)d3(a, b, y)+
+2x((a + b)2 − y2)d3(a, b, y) + 2y((a + b)2 − x2)d3(a, b, x)+
2(x2y2 − (a2 − b2))[x(a + b − x) + y(a + b − y)]+
+2[(a − b)2(x(a + b − y) + y(a + b − x))](2a2 + 2b2 − x2 − y2)

which implies another strengthening of the Atiyah–Sutcliffe conjecture C3 for
”wedge” tetrahedra

ℜ(D4) ≥ (d3(a, b, x) + 8abx)(d3(a, b, y) + 8aby) + 3d3(a, b, x)d3(a, b, y)
≥ (d3(a, b, x) + 8abx)(d3(a, b, y) + 8aby)

2.8 Atiyah determinant for triangles and quadrilaterals
via trigonometry

Denote the three points x1, x2, x3 simply by symbols 1, 2, 3 and let X , Y and
Z denote the angles of the triangle at vertices 1, 2 and 3 respectively. Then we
can express the Atiyah determinant D3 = d3(r12, r13, r23)+8r12r13r23 as follows

D3 = 4r12r13r23

(
cos2

X

2
+ cos2

Y

2
+ cos2

Z

2

)
.

This follows, by using cosine law and sum to product formula for cosine, from
the following identity

d3(a, b, c) + 8abc = (a + b − c)(a − b + c)(−a + b + c) + 8abc
= a((b + c)2 − a2) + b((c + a)2 − b2) + c((a + b)2 − c2).

Now we shall translate the Eastwood–Norbury formula for (planar quadrilater-
als) into a trigonometric form. Denote the four points x1, x2, x3, x4 simply by
symbols 1, 2, 3, 4 and denote by

(X(1), Y (1), Z(1)), (X(2), Y (2), Z(2)), (X(3), Y (3), Z(3)), (X(4), Y (4), Z(4))
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the angles of the triangles 234, 341, 412, 123 in this cyclic order (i.e. the angle
of a triangle 412 at vertex 2 is Z(3) etc.).

Next we denote by cl, (1 ≤ l ≤ 4), the sums of cosines squared of half-angles
of the l–th triangle i.e.:

cl := cos2
X(l)

2
+ cos2

Y (l)

2
+ cos2

Z(l)

2
, l = 1, 2, 3, 4.

Similarly, we denote by ĉl, (1 ≤ l ≤ 4), the sum of cosines squared of half-angles
at the l–th vertex of our quadrilateral thus

ĉ1 = cos2
Z(2)

2
+ cos2

Y (3)

2
+ cos2

X(4)

2

ĉ2 = cos2
Z(3)

2
+ cos2

Y (4)

2
+ cos2

X(1)

2

ĉ3 = cos2
Z(4)

2
+ cos2

Y (1)

2
+ cos2

X(2)

2

ĉ4 = cos2
Z(1)

2
+ cos2

Y (2)

2
+ cos2

X(3)

2

Then the term A4 in the Eastwood–Norbury formula can be rewritten as

A4 =

4∑

l=1

(4rlirljrlk ĉl) · 4rijrikrjk(cl − 2)

= 16r12r13r23r14r24r34

4∑

l=1

ĉl(cl − 2).

where for each l we write {1, 2, 3, 4} \ {l} = {i < j < k}.

In order to rewrite the term −4d3(r12r34, r13r24, r14r23) into a trigonometric
form we recall a theorem of Möbius ([10]) which claims that for any quadrilateral
1234 in a plane the products r12r34, r13r24 and r14r23 are proportional to the
sides of a triangle whose angles are the differences of angles in the quadrilateral
1234:

X = ∢134 − ∢124
Y = ∢214 − ∢234
Z = ∢413 − ∢423

Thus

−4d3(r12r34, r13r24, r14r23) = −16r12r13r23r14r24r34(c − 2)

where

c = cos2
X

2
+ cos2

Y

2
+ cos2

Z

2
.
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Thus we have obtained a trigonometric formula for Atiyah determinant of
quadrilaterals

ℜ(D4) =
∏

1≤i<j≤4

rij

(
64 − 16(c − 2) + 16

4∑

l=1

ĉl(cl − 2)

)

= 16
∏

1≤i<j≤4

rij

(
6 − c +

4∑

l=1

ĉl(cl − 2)

)

Now we shall verify Atiyah–Sutcliffe conjecture for cyclic quadrilaterals.

Ptolemy’s theorem

r12r34 + r23r14 = r13r24

In this case, by a well known Ptolemy’s theorem, we see that

−4d3(r12r34, r13r24, r14r23) = 0 (⇔ c = 2)

By using the equality of angles Z(2) = X(1), Z(3) = X(2), Z(4) = X(3), Z(1) =
X(4) and Y (1) + Y (3) = π = Y (2) + Y (4) (angles with vertex on a circle’s
circumference with the same endpoints are equal or supplement of each other)we
obtain

ĉ1 = cos2
X(1)

2
+ sin2 Y (1)

2
+ cos2

Z(1)

2
= c1 − cosY (1),

ĉ2 = cos2
X(2)

2
+ sin2 Y (2)

2
+ cos2

Z(2)

2
= c2 − cosY (2),

ĉ3 = cos2
X(3)

2
+ sin2 Y (3)

2
+ cos2

Z(3)

2
= c3 − cosY (3),

ĉ4 = cos2
X(4)

2
+ sin2 Y (4)

2
+ cos2

Z(4)

2
= c4 − cosY (4).

Now we have

ℜ(D4) =




∏

1≤i<j≤4

rij



(

64 + 16

4∑

l=1

(cl − cosY (l))(cl − 2)

)

≥




∏

1≤i<j≤4

rij



(

64 + 16

4∑

l=1

(cl − 1)(cl − 2)

)
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(here we have used that 2 ≤ cl(≤ 9
4 ) for each l = 1, 2, 3, 4)

≥




∏

1≤i<j≤4

rij




(

64 + 16

4∑

l=1

(cl − 2) + 16

4∑

l=1

(cl − 2)2

)

≥




∏

1≤i<j≤4

rij







64 + 16

4∑

l=1

(cl − 2) + 4

(
4∑

l=1

(cl − 2)

)2




(by quadratic–arithmetic inequality)

=




∏

1≤i<j≤4

rij





(

8 +

4∑

l=1

(cl − 2)

)2

+ 3

(
4∑

l=1

(cl − 2)

)2



=




∏

1≤i<j≤4

rij








(

4∑

l=1

cl

)2

+ 3

(
4∑

l=1

(cl − 2)

)2




≥




∏

1≤i<j≤4

rij




(

4∑

l=1

cl

)2

≥ 16
√

c1c2c3c4

∏

1≤i<j≤4

rij

by A–G inequality.
Finally,

|D4|2 = |ℜ(D4)|2 ≥ 44c1c2c3c4

∏

1≤i<j≤4

r2
ij

=

4∏

l=1

(4rijrikrjkcl) =

4∏

l=1

(d3(rij , rik, rjk) + 8rijrikrjk)

where for each l we write {1, 2, 3, 4}\{l} = {i < j < k}. This finishes verification
of Atiyah–Sutcliffe conjectures for cyclic quadrilaterals.

Proposition 2.12 The weak Four Points Conjecture for cyclic quadrilaterals
holds true.

Proof .
From the formula obtained above we proceed along a different path
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ℜ(D4) =




∏

1≤i<j≤4

rij



(

64 + 16

4∑

l=1

(cl − cosY (l))(cl − 2)

)

=




∏

1≤i<j≤4

rij



(

4
4∑

l=1

[
4 + 4(cl − cosY (l))(cl − 2)

])

=




∏

1≤i<j≤4

rij




(

4

4∑

l=1

[
c2
l + (cl − 2)[3(cl − 2) + 4(1 − cosY (l))]

])

≥




∏

1≤i<j≤4

rij




(

4

4∑

l=1

c2
l

)
(because 2 ≤ cl for each l = 1, 2, 3, 4)

=
∏

rij

(
1

4

4∑

l=1

(
d3(rij , rik, rjk) + 8rijrikrjk

rijrikrjk

)2
)

and this verifies the weak Four Points Conjecture for cyclic quadrilaterals.

3 Almost collinear configurations. D-- oković’s ap-
proach

3.1 Type (A) configurations

By a type (A) configurations of N points x1, . . . , xN we shall mean the case when
N − 1 of the points x1, . . . , xN are collinear. Set n = N − 1. In ([7]) D-- oković
has proved, for configurations of type (A), both the Atiyah conjecture (Theorem
2.1) and the first Atiyah–Sutcliffe conjecture (Theorem 3.1). By using Cartesian
coordinates, with xi = (ai, 0), a1 < a2 < · · · < an and xN = xn+1 = (0, b)′ (with
b = 1), the normalized Atiyah matrix Mn+1 = Mn+1(λ1, . . . , λn) (denoted by
P in [7] when b = −1) is given by

Mn+1 =




1 λ1 0 · · · 0 0
0 1 λ2 · · · 0 0
0 0 1 0 0
...

...
...

. . .
...

...
0 0 1 λn

(−1)nen (−1)n−1en−1 · · · · · · −e1 1




where λ1 = a1 +
√

a2
1 + b2 < λ2 = a2 +

√
a2
2 + b2 < · · · < λn = an +

√
a2

n + b2

(with b = 1) are positive real numbers and where ek = ek(λ1, . . . , λn), 1 ≤ k ≤ n,
is the k–th elementary symmetric function of λ1, λ2, . . . , λn. Its determinant
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satisfies the inequality

Dn = 1 + λne1 + λnλn−1e2 + · · · + λnλn−1 · · ·λ1en

≥ 1 + e1(λ
2
1, . . . , λ

2
n) + e2(λ

2
1, . . . , λ

2
n) + · · · + en(λ2

1, . . . , λ
2
n)

=
∏n

i=1(1 + λ2
i )

equivalent to the first Atiyah–Sutcliffe conjecture ([4],Conjecture 2). The second
Atiyah–Sutcliffe conjecture ([4],Conjecture 3) for configurations of type (A) is
equivalent to the following inequality

[Dn+1(λ1, . . . , λn)]n−1 ≥
n∏

k=1

Dn(λ1, . . . , λk−1, λk+1, . . . , λn) (3.26)

For n = 2 this inequality takes the form

1 + λ2e1(λ1, λ2) + λ1λ2e2(λ1, λ2) ≥ (1 + λ2e1(λ2))(1 + λ1e1(λ1)

i.e.

1 + λ2e1(λ1, λ2) + λ1λ2e2(λ1, λ2) ≥ (1 + λ2
2)(1 + λ2

1). (3.27)

This reduces to (λ2 − λ1)λ1 ≥ 0, so it is true.
Even for n = 3 the inequality (3.26) is quite messy thanks to nonsymmetric

character of both sides. Knowing that sometimes it is easier to solve a more
general problem we followed that path (although we didn’t solve the problem in
full generality). So let us start with the case n = 2. If we look at the following
inequality

1 + X1(ξ1 + ξ2) + X1X2ξ1ξ2 ≥ (1 + X1ξ1)(1 + X2ξ2)

which is clearly true if X1 ≥ X2 ≥ 0 and ξ1, ξ2 ≥ 0 we obtain the inequality
(3.27) simply by a specialization X1 = ξ1 = λ2, X2 = ξ2 = λ1. So we proceed
as follows:

Let ξ1, . . . , ξn, X1, . . . , Xn, n ≥ 1 be two sets of commuting indeterminates.
For any l, 1 ≤ l ≤ n and any sequences 1 ≤ i1 ≤ · · · ≤ il ≤ n, 1 ≤ j1, . . . , jl ≤ n
we define polynomials ΨI

J = Ψi1...il
j1...jl

∈ Q[ξ1, . . . , ξn, X1, . . . , Xn] as follows:

ΨI
J :=

l∑

k=0

ek(ξj1 , ξj2 , . . . , ξjl
)Xi1Xi2 · · ·Xik

, (l ≥ 1), Ψ∅
∅ := 1 (j = 0)

where ek is the k-th elementary symmetric function.
In particular we have

Ψi
j = 1 + ξjXi,

Ψi1i2
j1j2

= 1 + (ξj1 + ξj2)Xi1 + ξj1ξj2Xi1Xi2 ,

Ψi1i2i3
j1j2j3

= 1 + (ξj1 + ξj2 + ξj3)Xi1 + (ξj1ξj2 + ξj1ξj3 + ξj2ξj3)Xi1Xi2+

+ ξj1ξj2ξj3Xi1Xi2Xi3 ,
etc.
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The polynomials ΨI
J are symmetric w.r.t. ξj1 , ξj2 , . . . , ξjl

, but nonsymmetric
w.r.t. Xi1 , Xi2 , . . . , Xil

. By specializing Xi’s to assume real values such that
Xi1 ≥ Xi2 ≥ . . . ≥ Xil

≥ 0 then we obtain polynomials in ξj ’s satisfying the
following simple but important property.

Proposition 3.1 (Partition property)
Let (I1, . . . , Is) and (J1, . . . , Js) be ordered set partitions of respective sets I =⋃s

p=1 Ip and J =
⋃s

p=1 Jp such that |Ip| = |Jp|, 1 ≤ p ≤ s. Then the inequality

ΨI
J ≥

s∏

p=1

Ψ
Ip

Jp

holds coefficientwise w.r.t. ξj’s.

Proof .
Proof is evident from the definition of ΨI

J and the monotonicity of Xi’s.
For the powers

(
ΨI

J

)m
we have the following conjecture.

Conjecture 3.2 (Weighted Multiset Partition Conjecture)
For given natural number m and sets I and J , |I| = |J |, of natural numbers let
(I1, . . . , Is) and (J1, . . . , Js) be the partitions of the multiset Im consisting of m
copies of all elements of I and similarly for Jm.

(i) Then the inequality

(
ΨI

J

)m ≥
s∏

p=1

Ψ
Ip

Jp

holds coefficientwise w.r.t. ξj ’s.

(ii) The difference

(
ΨI

J

)m −
s∏

p=1

Ψ
Ip

Jp

is multi–Schur positive with respect to partial alphabets corresponding to
the atoms of the intersection lattice of the set system {J1, . . . , Js}.

For example, by Partition property, we have the following inequalities

Ψ1...n
1...n ≥ Ψk

kΨ1..k̂..n
1..k̂..n

, (1 ≤ k ≤ n)

which imply the following inequality

(
Ψ1...n

1...n

)n ≥
n∏

k=1

Ψk
k

n∏

k=1

Ψ1..k̂..n
1..k̂..n
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By Partition property we also have the following inequality

Ψ1...n
1...n ≥

n∏

k=1

Ψk
k

The last two inequalities suggest the validity of the following inequality

(
Ψ1...n

1...n

)n−1 ≥
n∏

k=1

Ψ1..k̂..n
1..k̂..n

which is far from obvious (see Conjecture 3.3 below) although it would be a
simple consequence of our Weighted Multiset Partition Conjecture.

This last conjectural inequality is interesting because it generalizes some spe-
cial cases of not yet proven conjectures of Atiyah and Sutcliffe on configurations
of points in three dimensional Euclidean space.

Our conjecture reads as follows:

Conjecture 3.3 For any n ≥ 1, let X1 ≥ X2 ≥ . . . ≥ Xn ≥ 0, ξ1, ξ2, . . . , ξn ≥
0, be nonnegative real numbers. Then we have coefficientwise (w.r.t. ξ1, ξ2, . . . , ξn)
inequality

(
Ψ12···n

12···n

)n−1 ≥
n∏

k=1

Ψ12···k̂···n
12···k̂···n

where 12 · · · k̂ · · ·n denotes the sequence 12 · · · (k − 1)(k + 1) · · ·n. The equality
obviously holds true iff X1 = X2 = · · · = Xn.

This Conjecture implies the strongest Atiyah–Sutcliffe’s conjecture for al-
most collinear configurations of points (all but one point are collinear, called
type(A) in [7]).

To illustrate the Conjecture (3.3) we consider first the cases n = 2 and n = 3.

Case n = 2: We have

Ψ12
12= 1 + (ξ1 + ξ2)X1 + ξ1ξ2X1X2 =

= 1 + ξ1X1 + ξ2X2 + ξ1ξ2X1X2 + (X1 − X2)ξ2 =

= (1 + ξ1X1)(1 + ξ2X2) + ξ2(X1 − X2) ≥
≥ (1 + ξ1X1)(1 + ξ2X2) = Ψ1

1Ψ
2
2.

Case n = 3: We first write Ψ123
123 in two different ways:

Ψ123
123 = ξ2(X1 − X2) + Ψ̂123

123 and Ψ123
123 = ξ3(X1 − X2) + Ψ̂123

123.

Note that Ψ̂123
123 is obtained from Ψ123

123 by replacing the linear term ξ2X1

by ξ2X2, hence all its coefficients are nonnegative.
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The left hand side of the Conjecture (3.3) L3 can be rewritten as follows:

L3 = (Ψ123
123)

2= (ξ2(X1 − X2) + Ψ̂123
123)Ψ

123
123

= ξ2(X1 − X2)Ψ
123
123 + Ψ̂123

123Ψ
123
123

= ξ2(X1 − X2)Ψ
123
123 + Ψ̂123

123(ξ3(X1 − X2) + Ψ̂123
123)

= L′
3(X1 − X2) + Ψ̂123

123Ψ̂
123
123

where L′
3 = ξ2Ψ

123
123 + ξ3Ψ̂

123
123 is a positive polynomial.

Now we have

L3 ≥ L̂3 := Ψ̂123
123Ψ̂

123
123.

By using the formula

Ψ̂123
123 = Ψ12

13 + ξ2X2Ψ
13
13 = (Ψ2

2 − 1)Ψ13
13 + Ψ12

13

we can rewrite L̂3 as

L̂3=
[
(Ψ12

13 − Ψ13
13) + Ψ2

2Ψ
13
13

]
Ψ̂123

123

= ξ1ξ3X1(X2 − X3)Ψ̂
123
123 + Ψ13

13(Ψ
2
2Ψ̂

123
123)

The last term in parenthesis can be written as

Ψ2
2Ψ̂

123
123= Ψ12

12Ψ
23
23 + Ψ1

2(Ψ
22
23 − Ψ23

23)

= Ψ12
12Ψ

23
23 + ξ2ξ3X2(X2 − X3)Ψ

1
2,

so we get

L̂3 = L′′
3(X2 − X3) + Ψ12

12Ψ
13
13Ψ

23
23

where L′′
3 denotes the positive polynomial

L′′
3 = ξ1ξ3X1Ψ̂

123
123 + ξ2ξ3X2Ψ

1
2Ψ

13
13.

We now have an explicit formula for L3:

L3 = L′
3(X1 − X2) + L′′

3(X2 − X3) + Ψ12
12Ψ

13
13Ψ

23
23

with L′
3, L

′′
3 positive polynomials, which together with X1 ≥ X2 ≥ X3(≥

0) implies that

L3 ≥ R3 := Ψ12
12Ψ

13
13Ψ

23
23

and the Conjecture (3.3) (n = 3) is proved.
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In fact we have proven an instance n = 3 L̂3 ≥ R3 of a stronger conjecture
which we are going to formulate now. Let 2 ≤ k ≤ n. We define the modified
polynomials Ψ̂12...k...n

12...k...n as follows:

Ψ̂12...k...n
12...k...n := ξk(X2 − X1) + Ψ12...n

12...n

obtained from Ψ12...n
12...n by replacing only one term ξkX1 by ξkX2, hence Ψ̂12...k...n

12...k...n

are still positive. Let us introduce the following notation:

L̂n :=

n∏

k=2

Ψ̂12...k...n
12...k...n ; Rn :=

n∏

k=1

Ψ12...k̂...n
12...k̂...n

.

Then clearly Ln := (Ψ12...n
12...n)n−1 ≥ L̂n. Now our stronger conjecture reads as

Conjecture 3.4

L̂n ≥ Rn (n ≥ 1)

with equality iff X2 = X3 = · · · = Xn.

More generally, we conjecture that the difference L̂n − Rn is a polynomial
in the differences X2 − X3, X3 − X4, . . ., Xn−1 − Xn with coefficients in
Z≥0[X1, . . . , Xn, ξ1, . . . , ξn].

Proposition 3.5

Ln = L′
n(X1 − X2) + L̂n

for some positive polynomial L′
n.

Proof of Proposition 3.5.

Ln = (Ψ12···n
12···n)n−1 = (ξ2(X1 − X2) + Ψ̂12···n

12···n)(Ψ12···n
12···n)n−2

= ξ2(X1 − X2)(Ψ
12···n
12···n)n−2 + Ψ̂12···n

12···n(ξ3(X1 − X2) + Ψ̂123···n
123···n)(Ψ12···n

12···n)n−3

= ξ2(X1 − X2)(Ψ
12···n
12···n)n−2 + ξ3(X1 − X2)Ψ̂

12···n
12···n(Ψ12···n

12···n)n−3+

+ Ψ̂12···n
12···nΨ̂123···n

123···n(Ψ12···n
12···n)n−3

...

= (
∑n−1

k=1 ξk+1(
∏k

j=2 Ψ̂12...j...n
12...j...n)(Ψ12...n

12...n)n−k)(X1 − X2) +
∏n

j=2 Ψ̂12...j...n
12...j...n.

Now we turn to study the quotient

Ln

Rn
=

(Ψ1...n
1...n)n−1

n∏

k=1

Ψ1...k̂...n
1...k̂...n

by studying the growth behaviour of quotients of its factors Ψ1...n
1...n/Ψ1...k̂...n

1...k̂...n
w.r.t. any of its arguments Xr, 1 ≤ r ≤ n.
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In the following theorem we obtain an explicit formula for the numerators

of the derivatives w.r.t. Xr, (1 ≤ r ≤ n, r 6= k) of the quantities Ψ1...n
1...n/Ψ1...k̂...n

1...k̂...n
.

From this formulas we get some monotonicity properties which enable us to
state some new (refined) conjectures later on.

Theorem 3.6 Let

∆r := ∂XrΨ
1...n
1...n · Ψ1...k̂...n

1...k̂...n
− Ψ1...n

1...n · ∂Xr Ψ1...k̂...n
1...k̂...n

, (1 ≤ r ≤ n). (3.28)

Then we have the following explicit formulas

(i) for any r, 1 ≤ r < k(≤ n) we have

∆r = ξk

∑

0≤i<r≤j≤n

s
(k)
(2i1j−i−1)X

2
1 · · ·X2

i Xi+1 · · · X̂k · · ·Xj+

+
∑

0≤i<r,k≤j<n

eie
(k)
j X2

1 · · ·X2
i Xi+1 · · · X̂r · · · X̂k · · ·Xj(Xk − Xj+1)

(ii) for any r, (1 ≤)k < r ≤ n we have

∆r = −




∑

0≤i<r≤j≤n

s
(k)

(2i1j−i−1)X
2
1 · · ·X2

i Xi+1 · · · X̂k · · · X̂r · · ·Xj+

+
∑

0≤i<k,r≤j<n

e
(k)
i ejX

2
1 · · ·X2

i Xi+1 · · · X̂k · · · X̂r · · ·Xj(Xj+1 − Xk)




where s
(k)
λ denotes the λ–th Schur function of ξ1, . . . , ξk−1, ξk+1, . . . , ξn (ξk

omitted).

Proof of Theorem 3.6.
(i) For any r, 1 ≤ r < k(≤ n) we find explicitly a formula as follows.

We shall use notations X1..i := X1X2 · · ·Xi, for multilinear monomials and

ei := ei(ξ1, . . . , ξn), e
(k)
i = ei(ξ1, . . . , ξ̂k, . . . ξn) for the elementary symmetric

functions (here k is fixed). Then we can rewrite our basic quantities

Ψ1...n
1...n :=

n∑

i=0

eiX1..i (3.29)

Ψ1...k̂...n
1...k̂...n

:=

k−1∑

i=0

e
(k)
i X1..i +

1

Xk

n−1∑

i=k

e
(k)
i X1..i+1 =

=

n−1∑

i=0

e
(k)
i X1..i +

1

Xk

n−1∑

i=k

e
(k)
i X1..i(Xi+1 − Xk)

(3.30)

For the derivatives we get immediately

∂XrΨ
1...n
1...n =

1

Xr

n∑

i=r

eiX1..i =
1

Xr

(
Ψ1...n

1...n −
r−1∑

i=0

eiX1..i

)
(3.31)
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∂XrΨ
1...k̂...n
1...k̂...n

=
1

Xr

n−1∑

i=r

e
(k)
i X1..i +

1

XkXr

n−1∑

i=k

e
(k)
i X1..i(Xi+1 − Xk) (3.32)

=
1

Xr

(
Ψ1...k̂...n

1...k̂...n
−

r−1∑

i=0

e
(k)
i X1..i

)
(3.33)

By plugging (3.31) and (3.33) into (3.28) we obtain

Xr∆r = Ψ1...n
1...n

(
r−1∑

i=0

e
(k)
i X1..i

)
− Ψ1...k̂...n

1...k̂...n

(
r−1∑

i=0

eiX1..i

)
=

and after simple cancelation, by invoking (3.30) we get

=
(∑n

j=r ejX1..j

)(∑r−1
i=0 e

(k)
i X1..i

)
−(∑n−1

j=r e
(k)
j X1..j + 1

Xk

∑n−1
j=k e

(k)
j X1..j(Xj+1 − Xk)

)(∑r−1
i=0 eiX1..i

)

i.e.

Xr∆r =
∑

0≤i<r≤j≤n

(eje
(k)
i −eie

(k)
j )X1..iX1..j +

1

Xk

∑

0≤i<r,k≤j<n

eie
(k)
j X1..iX1..j(Xk −Xj+1)

If we use a simple identity ej = e
(k)
j + ξke

(k)
j−1, we can identify the quantity

eje
(k)
i − eie

(k)
j = (e

(k)
j + ξke

(k)
j−1)e

(k)
i − (e

(k)
i + ξke

(k)
i−1)e

(k)
j =

=

∣∣∣∣∣
e
(k)
j−1 e

(k)
j

e
(k)
i−1 e

(k)
i

∣∣∣∣∣ ξk = s
(k)
2i1j−i−1ξk

Thus in this case (1 ≤ r < k) we obtain a formula

∆r = ξk

∑

0≤i<r≤j≤n

s
(k)
(j−1,i)X

2
1 · · ·X2

i Xi+1 · · · X̂k · · ·Xj+

+
∑

0≤i<r,k≤j<n

eie
(k)
j X2

1 · · ·X2
i Xi+1 · · · X̂r · · · X̂k · · ·Xj(Xk − Xj+1)

(where e
(k)
j = e

(k)
j = ej(ξ1, . . . , ξ̂k, . . . , ξn)) in terms of Schur functions (of argu-

ments ξ1, . . . , ξ̂k, . . . , ξn) corresponding to a transpose (2i1j−i−1) of a partition
(j − 1, i) (cf. Jacobi–Trudi formula, I 3.5 in [9]).

(ii) For any r, (1 ≤)k < r ≤ n. In this case we use

∂XrΨ
1...k̂...n
1...k̂...n

=
1

XkXr

n−1∑

j=r−1

e
(k)
j X1..j+1
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Ψ1...k̂...n
1...k̂...n

=
k−1∑

i=0

e
(k)
i X1..i +

1

Xk

n−1∑

i=k

e
(k)
i X1..i+1 =

=
1

Xk

(
k−1∑

i=0

X1..i(Xk − Xi+1) +

n−1∑

i=0

e
(k)
i X1..i

)

By plugging this into (3.28) we get

XkXr∆r =




n∑

j=r

ejX1..j




(

k−1∑

i=0

e
(k)
i X1..i(Xk − Xi+1) +

n−1∑

i=0

e
(k)
i X1..i+1

)
−

−




r−1∑

j=0

ejX1..j +

n∑

j=r

ejX1..j



(

n−1∑

i=r−1

e
(k)
i X1..i+1

)

=

(
r−2∑

i=0

e
(k)
i X1..i+1

)


n∑

j=r

ejX1..j


−

(
r−1∑

i=0

eiX1..i

)


n−1∑

j=r−1

e
(k)
j X1..j+1


+

+

k−1∑

i=0

n∑

j=r

e
(k)
i ejX1..iX1..j(Xk − Xi+1)

=

(
r−1∑

i=1

e
(k)
i−1X1..i

)


n∑

j=r

ejX1..j


−

(
r−1∑

i=0

eiX1..i

)


n∑

j=r

e
(k)
j−1X1..j


+

+

k−1∑

i=0

n∑

j=r

e
(k)
i ejX1..iX1..j(Xk − Xi+1)

By using a formula for elementary symmetric functions (ei = e
(k)
i + ξke

(k)
i−1) we

can write in terms of Schur functions (of arguments ξ1, . . . , ξk−1, ξk+1, . . . , ξn),
where λ′ is a conjugate of λ.

e
(k)
i−1ej−eie

(k)
j−1 = e

(k)
i−1e

(k)
j −e

(k)
i e

(k)
j−1 = −

∣∣∣∣∣
e
(k)
j−1 e

(k)
j

e
(k)
i−1 e

(k)
i

∣∣∣∣∣ = −s
(k)
2i1j−i−1 = −s

(k)
(j−1,i)′

Thus we obtain a formula

∆r = −




∑

0≤i<r≤j≤n

s
(k)
(j−1,i)′X

2
1 · · ·X2

i Xi+1 · · · X̂k · · · X̂r · · ·Xj+

+
∑

0≤i<k,r≤j<n

e
(k)
i ejX

2
1 · · ·X2

i Xi+1 · · · X̂k · · · X̂r · · ·Xj(Xj+1 − Xk)




Corollary 3.7 (Xr–monotonicity)
Let X1 ≥ · · · ≥ Xn ≥ 0, ξ1, . . . , ξn ≥ 0 be as before. Then
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(i) for any r, 1 ≤ r < k (≤ n) we have

Ψ1...n
1...n

Ψ1...k̂...n
1...k̂...n

≥ Ψ1... r+1 r+1 ...n
1... r r+1 ...n

Ψ1... r+1 r+1 ...k̂...n

1... r r+1 ...k̂...n

(ii) for any r, (1 ≤) k < r (≤ n) we have

Ψ1...n
1...n

Ψ1...k̂...n
1...k̂...n

≥ Ψ1... r−1 r−1 ...n
1... r−1 r ...n

Ψ1...k̂... r−1 r−1 ...n

1...k̂... r−1 r ...n

Now we illustrate how to use Corollary 3.7 to prove our Conjecture 3.3 for
n = 2, 3, 4 and 5.
Case n = 2

Q2 :=
Ψ12

12

Ψ1
1Ψ

2
2

≥ Ψ22
12

Ψ2
1Ψ

2
2

= 1 (by (i))

Case n = 3

Q3 :=
Ψ123

123Ψ
123
123

Ψ12
12Ψ

13
13Ψ

23
23

≥ Ψ223
123Ψ

123
123

Ψ22
12Ψ

13
13Ψ

23
23

≥ Ψ223
123Ψ

223
123

Ψ22
12Ψ

13
13Ψ

23
23

(by (i))

≥ Ψ222
123Ψ

223
123

Ψ22
12Ψ

22
13Ψ

23
23

≥ Ψ222
123Ψ

222
123

Ψ22
12Ψ

22
13Ψ

23
23

= 1 (by (ii))

Case n = 4

Q4 :=
(Ψ1234

1234)
3

Ψ123
123Ψ

124
124Ψ

134
134Ψ

234
234

≥ · · · ≥ Ψ2244
1234(Ψ

2224
1234)

2

Ψ224
123Ψ

224
124Ψ

224
134Ψ

224
234

(≥ 1)

This last inequality follows from the following symmetric function identity:

Ψ2244
1234(Ψ

2224
1234)

2 − Ψ224
123Ψ

224
124Ψ

224
134Ψ

224
234 =

X2
2X4

4m2222 + 2X2
2X3

4m2221 + X2
2X2

4m222 + 3X2
2X2

4m2211 + X2
2X4m221

+4X2
2X4m2111 + X2

2m211 + X2(3X2 + 2X4)m1111 + X2m111

where mλ = mλ(ξ1, ξ2, ξ3, ξ4) are the monomial symmetric functions.
Case n = 5

Q5 :=
(Ψ1...5

1...5)
4

∏5
k=1 Ψ1...k̂...5

1...k̂...5

≥ · · · ≥ (Ψ22244
12345Ψ

22444
12345)

2

Ψ2244
1234Ψ

2244
1235Ψ

2244
1245Ψ

2244
1345Ψ

2244
2345

(≥ 1)

The last inequality is equivalent to an explicit symmetric function identity with
all coefficients (w.r.t. monomial basis) positive.

Now we state our stronger conjecture.

Conjecture 3.8 (for symmetric functions)
Let X1 ≥ X2 ≥ · · · ≥ Xn ≥ 0 and ξ1, . . . , ξn ≥ 0. Then the inequalities
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(a) For n even

Ψ2 2 4 4...n n
1 2 ... n−1 n




n/2∏

k=1

Ψ2 2 4 4...2k 2k 2k...n−2 n−2 n
1 2 3 4 ... n−1 n




2

≥
n∏

k=1

Ψ2 2 4 4...n−2 n−2 n

1 2 ... k̂ ... n−1 n

(b) For n odd




⌊n/2⌋∏

k=1

Ψ2 2 4 4...2k 2k 2k...n−1 n−1
1 2 3 4 ... n−1 n




2

≥
n∏

k=1

Ψ2 2 4 4...n−1 n−1

1 2 ... k̂ ... n

hold true coefficientwise (m–positivity).

Now we motivate another inequalities for symmetric functions which also
refine the strongest Atiyah–Sutcliffe conjecture for configurations of type (A).
Let n = 3. We apply Corollary 3.7 by using steps (ii) only.

Q3 :=
Ψ123

123Ψ
123
123

Ψ12
12Ψ

13
13Ψ

23
23

≥ Ψ113
123Ψ

123
123

Ψ12
12Ψ

13
13Ψ

13
23

≥ Ψ112
123Ψ

123
123

Ψ12
12Ψ

12
13Ψ

13
23

≥ Ψ112
123Ψ

122
123

Ψ12
12Ψ

12
13Ψ

12
23

≥ 1

The last inequality is equivalent to nonnegativity of the expression

Ψ112
123Ψ

122
123 − Ψ12

12Ψ
12
13Ψ

12
23 (= X1(X1 − X2)

2ξ1ξ2ξ3 ≥ 0).

Similarly, for n = 4, the symmetric function inequality stronger than Q4 ≥ 1
would be the following

Ψ1123
1234Ψ

1223
1234Ψ

1233
1234 ≥ Ψ123

123Ψ
123
124Ψ

123
134Ψ

123
234

Now we state a general conjecture for symmetric functions which imply the
strongest Atiyah–Sutcliffe conjecture for almost collinear type (A) configura-
tions.

Conjecture 3.9 Let X1 ≥ · · · ≥ Xn ≥, ξ1, . . . ξn ≥ 0. Then the following
inequality for symmetric functions in ξ1, . . . , ξn

Ψ112...n−1
123...n Ψ1223...n−1

1234...n · · ·Ψ12...n−2 n−1 n−1
12...n−2 n−1 n ≥ Ψ1 2...n−1

1 2...n−1Ψ
1 2...n−1
1 2...n−2 n · · ·Ψ1 2...n−1

2 3...n−1

i.e.

n−1∏

k=1

Ψ1 2...k k ...n
1 2...k k+1...n ≥

n∏

k=1

Ψ1 2 ... n−1

1 2...k̂...n

holds true coefficientwise (m–positivity).

Remark 3.10 Conjectures 3.8 and 3.9 seems to hold also for the Schur basis
of symmetric functions in ξ1, . . . , ξn.
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We have checked this Conjecture 3.9 up to n = 5 by using Maple and sym-
metric function package SF of J. Stembridge. For n bigger than five the com-
putations are extremely intensive and hopefully in the near future would be
possible by using more powerful computers.

Note that the right hand side of the Conjecture 3.9 involves symmetric func-
tions of partial alphabets ξ1, ξ2, . . . , ξk−1, ξk+1, . . . , ξn. But the left hand side
doesn’t have this ”defect”. Our objective now is to give explicit formula for the
right hand side in terms of the elementary symmetric functions of the full alpha-
bet ξ1, ξ2, . . . , ξn. This we are going to achieve by using resultants as follows.

Lemma 3.11 For any k, (1 ≤ k ≤ n), we have

Ψ1...k...n−1

1...k̂...n
=

n−1∑

j=0

ajξ
n−1−j
k

where

an−1 = 1 + X1e1 + X1X2e2 + . . . + X1 · · ·Xn−1en−1,
an−2 = −X1 − X1X2e1 − . . . − X1 · · ·Xn−1en−2,
· · ·
a0 = (−1)n−1X1 · · ·Xn−1

i.e.

an−1−j = (−1)j
n−1∑

i=j

X1 · · ·Xiei−j

Proof of Lemma 3.11.
By definition we have

Ψ1...n−1

1...k̂...n
=

n−1∑

i=0

X1 · · ·Xie
(k)
i (3.34)

where e
(k)
i is the i–th elementary function of ξ1, . . . , ξk−1, ξk+1, . . . , ξn. Now

from the decomposition

(1 + ξkt)−1
n∏

j=1

(1 + ξjt) =
∏

j 6=k

(1 + ξjt) =

n−1∑

i=0

e
(k)
i ti

we get

e
(k)
i = ei − ei−1ξk + ei−2ξ

2
k − · · · + (−1)iξi

k

By substituting this into equation (3.34) the Lemma 3.11 follows.
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Then, by Lemma 3.11, the right hand side

Rn =

n∏

k=1

Ψ1 2 ... k ... n−1

1 2 ... k̂ ... n
=

n∏

k=1




n−1∑

j=0

ajξ
n−1−j
k




can be understood as a resultant Rn = Res(f, g) of the following two polyno-
mials

f(x) =

n−1∑

j=0

ajx
n−1−j

g(x) =
n∏

i=1

(x − ξi) =
n∑

j=0

(−1)jejx
n−j

The Sylvester formula

Rn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −e1 e2 −e3 . . . (−1)nen

1 −e1 e2 −e3 . . .
. . .

1 −e1 · · ·
a0 a1 a2 · · · an

a0 a1 a2 · · · an

. . .

a0 a1 a2 · · · an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
=:

∣∣∣∣
A B
C D

∣∣∣∣
)

can be simplified as

= |A| · |D − CA−1B| = |D − CA−1B|.
The entries of the n × n matrix ∆ := D − CA−1B are given by

δij =






(−1)j−i−1
n∑

k=j+1

X1 · · ·Xk+i−jek, 0 ≤ i < j ≤ n − 1

(−1)j−i

j∑

k=0

X1 · · ·Xk+i−jek, 0 ≤ j ≤ i ≤ n − 1

For example, for n = 3

∆3 =

∣∣∣∣∣∣∣∣

1 X1e2 + X1X2e3 −X1e3

−X1 1 + X1e1 X1X2e3

X1X2 −X1 − X1X2e1 1 + X1e1 + X1X2e2

∣∣∣∣∣∣∣∣

By elementary operations we get

∆3 =

∣∣∣∣∣∣∣∣

1 ∗ ∗
0 Ψ112

123 X1(X2 − X1)e3

0 X2 − X1 Ψ122
123

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣
Ψ112

123 X1(X2 − X1)e3

X2 − X1 Ψ122
123

∣∣∣∣∣
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Similarly, for n = 4 we obtain

∆4 =

∣∣∣∣∣∣∣∣

Ψ1123
1234 −X1(X1 − X2)e3 − X1X2(X1 − X3)e4 X1(X1 − X2)e4

−(X1 − X2) Ψ1223
1234 −X1X2(X2 − X3)e4

X1(X2 − X3) −(X1 − X3) − X1(X2 − X3)e1 Ψ1233
1234

∣∣∣∣∣∣∣∣

In general

∆n = det(δ′ij)1≤i,j≤n−1

where

δ′ij =






(−1)j−i
n∑

k=j+1

X1 · · ·Xk+i−j−1(Xi − Xk+i−j)ek , 1 ≤ i < j ≤ n − 1

Ψ1 ... i i ... n
1 2 ... n , i = j

(−1)j−i

j∑

k=0

X1 · · ·Xk+i−j−1(Xk+i−j − Xi)ek , 1 ≤ j < i ≤ n − 1

Corollary 3.12 The conjecture 3.9 is equivalent to a Hadamard type inequality,
holding coefficientwise, for the (non Hermitian) matrix (δ′ij)1≤i,j≤n−1, i.e.

n−1∏

i=1

δ′ii ≥ det(δ′ij)

4 Verification of the D-- oković’s strengthening of

the Atiyah–Sutcliffe Conjecture (C2) for some
nonplanar configurations with dihedral sym-
metry

Here we basically follow D-- oković’s [8], where only Atiyah conjecture C1 was
proved, make some additional refinements including a proof of Atiyah–Sutcliffe
conjecture C2.

Let N = m + n points be such that

1. The first m points x1, . . . , xm lie on a line L.

2. The remaining n points yj = xm+j+1 (j = 0, 1, ..., n − 1) are the vertices
oif a regular n–gon whose plane is perpendicular to L and whose centroid
lies on L.

We may assume L = R × {0} ⊂ R × C = R3 and write xi = (ai, 0), 1 ≤ i ≤ m,
a1 ≤ . . . ≤ am and yj = (0, bj), bj = −ξj , ξ = e2πi/n, 0 ≤ j ≤ n − 1.
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We set

λi = ai +
√

1 + a2
i

Recall that a1 < · · · < am and, consequently 0 < λ1 < · · · < λm. Then the
associated polynomials pi (up to scalar factors) are given by

pi(x, y) = xm−iyi−1(xn − λn
i yn), 1 ≤ i ≤ m

pm+j+1(x, y) =
∏

s6=j

(
x +

bs − bj

|bs − bj |
y

)
·

m∏

i=1

(y − λibjx), 0 ≤ j < n

By noting that

bs − bj = 2iξ
j+s
2 sin

π(j − s)

n

(in D-- oković ξj+s should be replaced by ξ
j+s
2 ) we obtain

x +
bs − bj

|bs − bj|
y =

(
−bjy − iξ

s−j
2 sgn(s − j)

) 1 − bsbj

|bs − bj|

and

y − λibjx = −bj(−bjy + λix)

Note also that

{ξ s−j
2 sgn(s − j)|s = 1, . . . , j − 1, j + 1, . . . , n} = {eπik/n|k = 1, . . . , n − 1}

Thus, after dehomogenizing the polynomials pi by setting x = 1, we obtain (up
to scalar factors) the following polynomials:

P̃i(y) = yi−1(1 − λn
i yn), 1 ≤ i ≤ m;

P̃m+j+1(y) = f(ξ−1y), 0 ≤ j < n

where

f(y) =

n−1∏

s=1

(y − ieπis/n)

m∏

i=1

(y + λi)

(in D-- oković the last n polynomials are reordered)
The main result of D-- oković is the Theorem 3.1 where he proved Atiyah con-

jecture for configurations described above, by explicitly computing the determi-
nant of the coefficients matrix P̃ of the polynomials {p̃k(y)|k = 1, . . . , m + n︸ ︷︷ ︸

N

}

in terms of the coefficients of

f(y) =

N−1∑

k=0

ẼkyN−1−k
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His formula reads as follows:

∣∣∣det(P̃ )
∣∣∣ = nn/2

n−1∏

k=0

fk

where

fk =
∑

s≥0




s∏

j=1

λn
N−jn−k


 Ẽk+sn, 0 ≤ k < n.

We shall now present an amazingly simple formula for coefficients of the poly-
nomial

h(y) :=

n−1∏

s=1

(y − ieπis/n) =

n−1∑

j=0

cjy
n−1−j

Proposition 4.1 let γk := cot
(

kπ
2n

)
. Then

c0 = 1, cj =

j∏

k=1

γk (1 ≤ j ≤ n − 1)

Proof .
Put ξk = −ieπik/n, k = 1, . . . , n − 1. Then

cj = the j–th elementary symmetric function of ξ1, . . . , ξn−1

= ej(ξ1, . . . , ξn−1)

Let us first compute the power sums

ps =

n−1∑

k=1

ξs
k = (−i)s

n−1∑

k=1

eπisk/n = (−i)s(eπis/n − eπis)/(1 − eπis)

=

{
(−1)

s
2
−1, s even

(−1)
s−1

2 cot( sπ
2n ) = (−1)

s−1

2 γs, s odd

The proof will be by induction. For j = 1 we have c1 = ξ1+· · ·+ξn−1 = p1 = γ1.
Suppose that the proposition is true for all k < i. Then by Newton formula for
symmetric functions

jej =

j∑

k=1

(−1)k−1pkej−k =

⌈j/2⌉∑

l=1

(p2l−1ej−2l+1 − p2lej−2l)
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we obtain by writing cj−2l+1 = cj−2lγj−2l+1

jej =

⌈j/2⌉∑

l=1

(
(−1)l−1γ2l−1γj−2l+1 − (−1)l−1

)
cj−2l

=

⌈j/2⌉∑

l=1

(−1)l−1(γ2l−1γj−2l+1 − 1)cj−2l

∗
=

⌈j/2⌉∑

l=1

(−1)l−1(γ2l−1 + γj−2l+1)γjcj−2l

=

⌈j/2⌉∑

l=1

(p2l−1cj−2l − p2l−2γj−2l+1cj−2l)γj (here p0 := −1)

=

⌈j/2⌉∑

l=1

(p2l−1cj−2l − p2l−2cj−2l+1)γj

=

⌈j/2⌉∑

l=1

(p2l−1cj−1−(2l−1) − p2l−2cj−1−(2l−2))γj

= (−p0cj−1 +

⌈(j−1)/2⌉∑

l=1

(p2l−1cj−1−(2l−1) − p2lcj−1−2l))γj

∗∗
= (cj−1 + (j − 1)cj−1)γj

= jcj−1γj = jcj

Here in (∗) we have used the cotangent addition formula cot(α) cot(β) − 1 =
(cotα + cotβ) cot(α + β) and in (∗∗) Newton formula for i − 1 which holds by
induction hypothesis. The proposition is thus proved.

For our dihedral configurations we can state the stronger conjecture of Atiyah
and Sutcliffe ([8], Conjecture 2.) as follows

n
n
2

n−1∏

k=0

fk ≥ 2(n
2)

n∏

i=0

(1 + λ2
i )

n (4.35)

where

fk =
∑

s≥0




s∏

j=1

λn
N−jn−kẼk+sn, (0 ≤ k < n)


 (4.36)

From the factorization

f(y) = h(y)

m∏

i=1

(y + λi)

we can write

Ẽk =
n−1∑

i=0

ciEk−i
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in terms of elementary symmetric functions Ek = ek(λ1, . . . , λm) of our positive
quantities 0 < λ1 < · · · < λm with coefficients ci given in Proposition 4.1
(note that c0 = 1 ≤ c1 ≤ · · · ≤ c⌊n−1

2
⌋ ≥ · · · ≥ cn−1 = 1 (unimodality) and

ci = cn−1−i (symmetry)).
Now we shall prove a generalization of the D-- oković’s conjecture which ap-

parently strengthens (4.35).

Theorem 4.2 We have:

1.
n−1∏

k=0

fk ≥
n−1∏

k=0

ck




m∑

l=0




l−1∏

j=0

λm−jEl








n

2.

n−1∏

k=0

fk ≥
n−1∏

k=0

ck

m∏

i=1

(1 + λ2
i )

n

Proof .
Let us write

fk =

m∑

l=0

ϕklEl

Let us substitute Ẽk+sn =

n−1∑

i=0

ciEk−i+sn into (4.36). Then for fixed k (0 ≤

k < n − 1) and given l (0 ≤ l ≤ m) we seek s ≥ 0 and i, 0 ≤ i < n such that
l = k − 1 + sn, i.e. l − k = sn − i, 0 ≤ i < n. We conclude that s and i are
uniquely determined by a division algorithm (with nonpositive remainder):

sk :=

⌈
l − k

n

⌉
, ik = skn − l − k.

Hence

ϕkl =

sk∏

j=1

λn
N−jn−kcik

with sk and ik just defined. It is easy to see that

sk = s0

(
=

⌈
l

n

⌉)
and ik = i0 + k for 0 ≤ k ≤ n − i0 − 1

and

sk = s0 − 1 and ik = i0 + k − n for n − i0 ≤ k ≤ n − 1.
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Lemma 4.3 For each l, 0 ≤ l ≤ m, we have

n−1∏

k=0

ϕkl =

l−1∏

j=0

λn
m−j

n−1∏

j=0

cj

Proof (of Lemma).
n−1∏

k=0

ϕkl =

n−i0−1∏

k=0




s0∏

j=1

λn
N−jn−k

n−1∏

k=i0

ck




n−1∏

k=n−i0

s0−1∏

j=1

λn
N−jn−k

i0−1∏

k=0

ck

=

n−1∏

k=0

s0−1∏

j=1

λn
N−jn−k

n−i0−1∏

k=0

λn
N−s0n−k

n−1∏

k=0

ck

We put now N = n + m

= λn
mλn

m−1 · · ·λn
m+n−s0n−(n−i0−1)

n−1∏

k=0

ck

= λn
mλn

m−1 · · ·λn
m−l+1

n−1∏

k=0

ck

Proof (of Theorem).
We shall use the Hölder inequality

n−1∏

k=0

fk =

n−1∏

k=0

(
m∑

l=0

ϕklEl

)
≥




m∑

l=0

(
n−1∏

k=1

ϕklEl

) 1
n




n

=




m∑

l=0

l−1∏

j=0

λm−j




n−1∏

j=0

cj




1
n

El




n

(by lemma)

=




n−1∏

j=0

cj






m∑

l=0

l−1∏

j=0

λm−jEl




n

Thus 1. is proved. To obtain 2. we apply D-- oković proof of Atiyah conjecture
for type A configurations

m∑

l=0

l−1∏

j=0

λm−jEl ≥
m∏

i=1

(
1 + λ2

i

)

(c.f. section 3.)

5 Appendix

After the first version of this paper was finished, in the meantime, we have

discovered formulas for the partial derivatives, of the quantities Ψ1...n
1...n/Ψ1...k̂...n

1...k̂...n
,
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with respect to variables ξr (Note that in Theorem 3.6 we have given formulas
w.r.t. variables Xr!).

Lemma 5.1 For 2 ≤ r ≤ n the partial derivative w.r.t. ξr of the quotient
Ψ1...n

1...n/Ψ2...n
2...n is given by

(
Ψ2...n

2...n

)2
∂ξr

(
Ψ1...n

1...n

Ψ2...n
2...n

)
=
∑

i≥j

s′ijX1(X2 · · ·Xj)
2Xj+1 · · ·Xi+1(Xj+1 −Xi+2)

where s′ij is the conjugated Schur function sij = sij(ξ2, . . . , ξr−1, ξr+1, . . . , ξn)
corresponding to a two–rowed partition λ = (i ≥ j).
In particular for X1 ≥ · · · ≥ Xn > 0 the function Ψ1...n

1...n/Ψ2...n
2...n is monotonically

increasing w.r.t. the variable ξr (for r = 1, too).

Proof .
By using the formula Ψ1...n

1...n = Ψ1...n−1
1...r̂...n + X1ξrΨ

2...n
1...r̂...n we get

∂ξr (Ψ
1...n
1...n)Ψ2...n

2...n − Ψ1...n
1...n∂ξr (Ψ

2...n
2...n) =

= X1Ψ
2...n
1...r̂...n

(
Ψ2...n−1

2...r̂...n + X2ξrΨ
3...n
2...r̂...n

)
−
(
Ψ1...n−1

1...r̂...n + X1ξrΨ
2...n
1...r̂...n

)
X2Ψ

3...n
2...r̂...n

= X1Ψ
2...n
1...r̂...nΨ2...n−1

2...r̂...n − X2Ψ
1...n−1
1...r̂...nΨ3...n

2...r̂...n

= X1

(
Ψ2...n−1

2...r̂...n + X2ξ1Ψ
3...n
2...r̂...n

)
Ψ2...n−1

2...r̂...n − X2

(
Ψ1...n−2

2...r̂...n + X1ξ1Ψ
2...n−1
2...r̂...n

)
Ψ3...n

2...r̂...n

= X1

(
Ψ2...n−2

2...r̂...n

)2 − X2Ψ
1...n−2
2...r̂...nΨ3...n

2...r̂...n

With ei = e
(1r)
i = ei(ξ2, . . . , ξr−1, ξr+1, . . . , ξn) denoting the i–th elementary

symmetric function of the truncated alphabet A(1r) = {ξ2, . . . , ξr−1, ξr+1, . . . , ξn}
we have further

= X1



∑

i,j

eiejX2...i+1X2...j+1


− X2



∑

i,j

eiejX1...iX3...j+2




=
∑

i,j

eiejX1..i+1X2..j+1 −
∑

i,j

eiejX1..iX2..j+2

=
∑

i,j

∣∣∣∣
ei ei+1

ej−1 ej

∣∣∣∣X1..i+1X2..j+1

=
∑

i≥j

∣∣∣∣
ei ei+1

ej−1 ej

∣∣∣∣X1(X2..j)
2Xj+1 · · ·Xi+1(Xj+1 − Xi+2)

Now by Jacobi–Trudy formula we can write

∣∣∣∣
ei ei+1

ej−1 ej

∣∣∣∣ as the conjugated

Schur function s′ij = s′
(1r)
ij corresponding to a partition (i ≥ j).

Corollary 5.2 (ξn–monotonicity)
We have the following inequality:

Ψ1...n
1...n

Ψ2...n
2...n

≥ Ψ1...n−1
1...n−1

Ψ2...n−1
2...n−1
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Proof .
By Lemma 5.1 by letting ξn ↓ 0 we get

Ψ1...n
1...n/Ψ2...n

2...n ≥ Ψ1...n
1...n/Ψ2...n

2...n

∣∣
ξn=0

= Ψ1...n−1
1...n−1/Ψ2...n−1

2...n−1

By using this Corollary we state a strengthening of our Conjecture 3.3:

Conjecture 5.3

(
Ψ1...n

1...n

)n−2 ≥ Ψ2...n−1
2...n−2

n−1∏

k=2

Ψ1...k̂...n
1...k̂...n

We also have formulas for partial derivative of the quotient Ψ1...n
1...n/Ψ1...k̂...n

1...k̂...n
w.r.t. variable ξr, 2 ≤ r ≤ n, which are more complicated than for k = 1 (given
in Lemma 5.1). Without loss of generality we take r = n and proceed as follows:

∂ξn(Ψ1...n
1...n)Ψ1...k̂...n

1...k̂...n
− Ψ1...n

1...n∂ξn(Ψ1...k̂...n
1...k̂...n

) =

= X1Ψ
2...n
1...n−1Ψ

1...k̂...n
1...k̂...n

− X1Ψ
1...n
1...nΨ2...k̂...n

1...k̂...n−1

= X1Ψ
2...n
1...n−1

(
Ψ1...k̂...n

1...k̂...n
+ X1ξnΨ2...k̂...n

1...k̂...n−1

)
− X1

(
Ψ1...n−1

1...n−1 + X1ξnΨ2...n
1...n−1

)
Ψ2...k̂...n

1...k̂...n−1

= X1

(
Ψ2...n

1...n−1Ψ
1...k̂...n−1

1...k̂...n−1
− Ψ1...n−1

1...n−1Ψ
2...k̂...n
1...k̂...n−1

)

= X1

[(
Ψ2...n−1

1...k̂...n−1
+ X2ξkΨ3...n

1...k̂...n−1

)
Ψ1...k̂...n−1

1...k̂...n−1
−

−
(
Ψ1...n−2

1...k̂...n−1
+ X1ξkΨ2...n−1

1...k̂...n−1

)
Ψ2...k̂...n

1...k̂...n−1

]

= X1

[
Ψ2...n−1

1...k̂...n−1
Ψ1...k̂...n−1

1...k̂...n−1
− Ψ1...n−2

1...k̂...n−1
Ψ2...k̂...n

1...k̂...n−1
+

+ξk

(
X2Ψ

3...n
1...k̂...n−1

Ψ1...k̂...n−1

1...k̂...n−1
− X1Ψ

2...n−1

1...k̂...n−1
Ψ2...k̂...n

1...k̂...n−1

)]

= X1 [I1 − ξkI2]
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Now we first compute

I1 = Ψ2...n−1

1...k̂...n−1
Ψ1...k̂...n−1

1...k̂...n−1
− Ψ1...n−2

1...k̂...n−1
Ψ2...k̂...n

1...k̂...n−1
=

(
k−2∑

i=0

eiX2..i+1 +
n−2∑

i=k−1

eiX2..i+1

)


k−1∑

j=0

ejX1..j +
n−2∑

j=k

ejX1..k̂..j+1



−

−




k−1∑

j=0

ejX1..j +

n−2∑

j=k

ejX1..j




(

k−2∑

i=0

eiX2..i+1 +

n−2∑

i=k−1

eiX2..k̂..i+2

)
=

=
n−2∑

i=k−1

k−1∑

j=0

eiej

(
X2..i+1X1..j − X2..k̂..i+1X1..j

)
+

+
n−2∑

j=k

k−2∑

i=0

ejei

(
X1..k̂..j+1X2..i+1 − X1..jX2..i+1

)
+

+
n−2∑

i=k−1

n−2∑

j=k

eiej

(
X2..i+1X1..k̂..j+1 − X1..jX2..k̂..i+2

)

By replacing, in the middle sum, j with i + 1 and i with j − 1, and observing
that then X1..k̂..i+2X2..j − X1..i+1X2..j = −(X2..i+1X1..j − X2..k̂..i+2X1..j) the
contribution of the first two sums is

n−2∑

i=k−1

k−1∑

j=0

∣∣∣∣
ei ei+1

ej−1 ej

∣∣∣∣X2..k̂..i+1(Xk − Xi+2)X1..j

The third sum can similarly be transformed to the following form:

∑

k≤j≤i≤n−2

∣∣∣∣
ei ei+1

ej−1 ej

∣∣∣∣X2..k̂..i+1(Xj+1 − Xi+2)X1..j

Hence

I1 =
∑

0≤j,max{j,k−1}≤i≤n−2

s′ijX2..k̂..i+1(Xmax{j+1,k} − Xi+2)X1..j (≥ 0)

By a similar manipulation we can obtain the expression for the quantity

I2 = X1Ψ
2...n−1

1...k̂...n−1
Ψ2...k̂...n

1...k̂...n−1
− X2Ψ

3...n
1...k̂...n−1

Ψ1...k̂...n−1

1...k̂...n−1
=

= X1 − X2 +

n−1∑

i=1

∑

j≤min{k−1,i}

s′ijX2..k̂..i+2X1..j(Xj+1 − Xk) ≥ 0

where s′ij is conjugated Schur function s′ij = s′
(kn)
ij . We see that

(
Ψ1...k̂...n

1...k̂...n

)2

∂ξn



 Ψ1...n
1...n

Ψ1...k̂...n
1...k̂...n



 = X1 [I1 − ξkI2]
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has both positive and negative terms. And we have not been able to apply it
so far.

Now we illustrate use of ξ–monotonicity (in addition to X–monotonicity)
for proving once more the case n = 4 of our Conjecture 3.3:

(Ψ1234
1234)

3

Ψ234
234Ψ

134
134Ψ

124
124Ψ

123
123

=
Ψ1234

1234

Ψ234
234Ψ

123
123

Ψ1234
1234

Ψ134
134

Ψ1234
1234

Ψ124
124

≥ (by ξ4–monotonicity)

≥ 1

Ψ23
23

Ψ1234
1234

Ψ134
134

Ψ1234
1234

Ψ124
124

≥ (by X1–monotonicity twice and X4–monotonicity)

≥ 1

Ψ23
23

Ψ2234
1243

Ψ234
143

Ψ2233
1234

Ψ223
124

≥ (by ξ3–monotonicity)

≥ 1

Ψ23
23

Ψ223
124

Ψ23
14

Ψ2233
1234

Ψ223
124

=
Ψ2233

1234

Ψ23
23Ψ

23
14

≥ 1

Similarly the cases n = 5, 6, 7 of Conjecture 3.3 would be, by using ξ–
monotonicity and X–monotonicity, consequences of the following inequalities

Q̃n ≥ 1

where

Q̃5 = Ψ22344
12345Ψ

22344
12345/Ψ234

234Ψ
234
135Ψ

2244
1245

Q̃6 = Ψ223445
123456Ψ

233455
123456/Ψ2345

2345Ψ
2345
1346Ψ

2345
1256

Q̃7 = Ψ2234556
1234567Ψ

2334566
1234567Ψ

2344566
1234567/Ψ23456

23456Ψ
23456
13457Ψ

23456
12467Ψ

234566
123567

5.1 Computer verification of the Conjecture 3.3 (and hence
of the Atiyah–Sutcliffe conjecture C3) for almost collinear
9 + 1 configuration.

Let us now explain our computer verification of the inequality Q̃9 ≥ 1 where

Q̃9 =
Ψ223456778

123456789Ψ
233456788
123456789Ψ

223456678
123456789Ψ

234456788
123456789

Ψ2345678
2345678Ψ

2345678
1345679Ψ

2345678
1245689Ψ

2345678
1235789Ψ

22346788
12346789

which refines the case n = 9 of the Conjecture 3.3. We have observed first that
Q̃9 is symmetric in partial alphabets

A1 = {ξ1, ξ2, ξ8, ξ9}, A2 = {ξ3, ξ4, ξ6, ξ7}, A3 = {ξ5}

then by introducing the elementary symmetric functions {e1, e2, e3, e4} of A1

and {f1, f2, f3, f4} of A2 we first computed the products

Ψ2345678
2345678Ψ

2345678
1345679 and Ψ2345678

1245689Ψ
2345678
1235789

in terms of {e1, e2, e3, e4, f1, f2, f3, f4, ξ5}. Then by successive application of

Stembridge’s Maple SF package we expressed the difference ∆ := numer(Q̃9)−
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denom(Q̃9) in terms of the Schur functions of both alphabets A1 and A2. Then
we factored each coefficient in such a multi–Schur expansion and into non-
monomial factors we substituted X2 = X3 + h2, X3 = X4 + h3, . . ., X7 =
X8 + h7. Then the computation showed that the coefficients of all monomi-
als in X8, h2, . . . , h7 were nonnegative. The factoring out the trivial monomial
factors in X2, . . . , X8 (which are trivially nonnegative) was crucial because oth-
erwise the expansion of multi–Schur function coefficients in terms of increments
h2, . . . , h7 may not be feasible.

6 Appendix 2

Here we first recall a remarkable inequality of I. Schur (c.f. J. Michael Steele:
The Cauchy–Schwarz Master Class, Cambridge University Press, 2004.)

For all values x, y, z ≥ 0 and all α ≥ 0 we have

Iα(x, y, z) :=
∑

xα(x − y)(x − z) =
= xα(x − y)(x − z) + yα(y − x)(y − z) + zα(z − x)(z − y) ≥ 0

with equality iff either x = y = z or two of the variables are equal and the
third is zero. Note that Iα is a symmetric function. For a proof we can assume
0 ≤ x ≤ y ≤ z. Then clearly xα(x − y)(x − z) ≥ 0 and by grouping the other
two terms we get (z − y)[zα(z − x) − yα(y − x)] ≥ 0 by observing that z ≥ y
and z − x ≥ y − x.

Now we state and prove several properties of a function

d3(x, y, z) := (x + y − z)(x − y + z)(−x + y + z) (x, y, z ≥ 0)

which frequently appears in the main part of this paper.
We note that the area A = A(a, b, c) of a triangle with sides lengths a, b, c is

given, according to the Heron-s formula:

(4A)2 = (a + b + c)(a + b − c)(a − b + c)(−a + b + c)

= (a + b + c)d3(a, b, c)

= 2a2b2 + 2a2c2 + 2b2c2 − a4 − b4 − c4

Properties of the function d3:

Proposition 6.1 We have the following identities and inequalities:

1. xyz − d3(x, y, z) =
∑

x(x − y)(x − z) ≥ 0

2. d3(x, y, z)2 − d3(x
2, y2, z2) =

=
∑

x2(y2 − yz + z2 − x2)2 +
(∑

x(y2 − yz + z2 − x2)
)2 ≥ 0

3. d3(x, y, z)2 − d3(x
2, y2, z2) =

= 8x2y2z2 − 2(xyz + x3 + y3 + z3)d3(x, y, z) ≥ 0
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4. (x + y + z)2d3(x, y, z)2 − 3(x2 + y2 + z2)d3(x
2, y2, z2) =

= 4
∑

x4(x2 − y2)(x2 − z2) ≥ 0

5. (x+y+z)(X+Y +Z)d3(x, y, z)d3(X, Y, Z)−3(xX+yY +zZ)d3(xX, yY, zZ) =
2
∑

(x2(x2−y2)X2(X2−Z2)+X2(X2−Y 2)x2(x2−z2))+(x2(Y 2−Z2)+
y2(Z2 − X2) + z2(X2 − Y 2))2 ≥ 0

Proof .
All identities 1.–5. can be easily checked by expansion. The inequality in

1. follows from Schur’s inequality (α = 1), in 2. it is evident since the rhs is
the sum of four squares (see [5]). Case 3. follows from 2. Case 4. follows
from Schur’s inequality (α = 2). Case 5. follows from a generalization of the
case α = 2 of Schur’s inequality:

II2(x, y, z, X, Y, Z) =
∑

x(x − y)X(X − Z) =
= x(x − y)X(X − Z) + y(y − x)Y (Y − Z) + z(z − x)Z(Z − Y ) ≥ 0

(by letting y = x + h, z = y + k, Y = X + H , Z = Y + K, h, k, H, K ≥ 0).

Corollary 6.2 From the Proposition we get the following inequalities:

d3(x, y, z) ≤ xyz (from 1. )

and a stronger inequality d3(x, y, z) ≤ 4x2y2z2/(xyz + x3 + y3 + z3) (from 3.)
From 2. we have the inequality

d3(x, y, z)2 ≥ d3(x
2, y2, z2)

which can also be obtained from 4. (which implies famous Finsler–Hadwiger
inequality) by using the inequality (x + y + z)2 ≤ 3(x2 + y2 + z2).

The inequality 5. , with the help of Chebyshev inequality

(x + y + z)(X + Y + Z) ≤ 3(xX + yY + zZ) (x ≤ y ≤ z, X ≤ Y ≤ Z)

gives us the following inequality (which seems to be new):

d3(x, y, z)d3(X, Y, Z) ≥ d3(xX, yY, zZ)

(when 0 ≤ x ≤ y ≤ z, 0 ≤ X ≤ Y ≤ Z).

Remark 6.3 If a, b, c are side lengths of a triangle then inequality d3(a, b, c) ≤
abc follows also directly from the following identity

abc−d3(a, b, c) =
1

2
[(−a+b+c)(b−c)2+(a−b+c)(a−c)2+(a+b−c)(a−b)2]

from which we also have the following inequality

8(abc − d3(a, b, c))3 ≥ d3(a, b, c)(a − b)2(a − c)2(b − c)2
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