
Computer Cluster and Grid Simulator

I. Grudenic and N. Bogunovic
Department of Electronics, Microelectronics, Computer and Intelligent Systems

Faculty of electrical engineering and computing, University of Zagreb
Unska 3, Zagreb, Croatia

Phone: 01-6129-999 int. 548 Fax: 01-6129-653 E-mail: igor.grudenic@fer.hr

Abstract – Evaluation of scheduling algorithms for
distributed environments is a complex task that involves
simulation of computation resources, interconnection
network, users and generated workload. Multiple discrete
event based simulators are developed that tackle different
aspects of distributed systems in order to ease that task. In
this paper we address the simulation of computer clusters
that are the most popular distributed system architecture.
Fundamentals of the available simulators are given and the
extendable architecture for the new simulator is proposed.
Three-phase discrete event simulation is recognized as the
simulation technique of choice, and the behavior of the key
components is modeled using that technique. Implementation
details targeted to object oriented environments are pointed
out.

I. INTRODUCTION

Computer clusters are a preferred distributed system

architecture type because of the high price/computing
performance ratio. They constitute 82% of the top 500
supercomputers [1], with the rest being massively parallel
processors (MPP) and constellation systems.

The most important aspect of the computer cluster is its
performance. Performance can be defined in a variety of
metrics [2], and the job of the cluster scheduler is to
optimize the behavior of the cluster according to the target
metric.

Cluster scheduling in general is known to be an NP
complete problem [3]. This complexity makes exhaustive
schedule searching and application of the complex
heuristics infeasible. In large computing clusters event rate
is very high and the applied scheduling algorithm must
provide a matching decision rate [4][5].

In order to cover different metrics and workload types
different scheduling algorithms are developed. In the
development phase these are simulated using synthetic
workload traces. In this paper we address the simulation of
the cluster scheduling algorithms starting from the
underlying discrete event simulation systems and
following with the visualization of the results. Additionally
we propose the architecture for the specified system
together with the implementation details. This architecture
is extendable and can easily apply to architectures like
MPP and constellation systems.

General architecture of the cluster systems that is a basis
for the simulation is described in section II. Available
discrete event simulation techniques are described in
section III. Section IV presents a short overview of the
existing cluster and grid simulation tools. Architecture,
simulation and implementation details of the proposed
cluster simulator are given in section V.

II. CLUSTER ARCHITECTURE

Computer cluster is a group of interconnected

computers that are usually connected using fast local area
network. From the administrative point of view they are
centrally managed at the designated frontend node, while
other computers are referenced as computing nodes.

Frontend node is used for job submission and resource
scheduling. Some cluster suits [6] allow submission of
jobs at any cluster node but scheduling is still performed at
the dedicated cluster node. Cluster scheduler responds to
two types of events in the system. User generated events
represent job submissions and cancellations as well as the
resource reservation. System generated events include job
status information and resource availability. System
generated events are collected by the resource manager
component that is distributed across all cluster nodes.
Using the information collected from the users and the
resource manager, cluster scheduler enforces configured
execution policy.

Computation clusters that are the topic of interest in this
paper are usually connected to the fast storage system
which is shared among all the computing nodes. Access to
this storage may present a bottleneck for some applications
in the system and should be simulated for such workload
types.

III. DISCRETE EVENT SIMULATION

There are three main approaches to discrete event
simulation: using simulation tools, using simulation
libraries and creating a custom simulation.

The use of general purpose simulation tools is a most
abstract way to perform the system simulation. It limits the
number of available features, but hides away the complex
execution details. The limited number of elements in the
simulation can make model creation difficult if complex
behaviour needs to be modelled.

Simulation libraries provide access to basic simulation
operations, and enable the programmer to design the
custom model using the given platform. This grants more
modelling freedom, but some aspects of the model may not
be covered. For instance, event cancellation is not
implemented in some of the simulation libraries, but may
be required naturally by the model. There is a workaround
that can be made, but this often leads to more complicated
model.

Programming a custom simulation gives all the power
and flexibility to the modeller, but is most time consuming,
and requires detailed insight into discrete event simulation
principles.

Since our goal is the design of the concurrent simulation
system for comparison of scheduling algorithms, we
decided to create the system from scratch using insights to
existing simulation libraries. It is our objective to provide
an extensible simulation framework customized for the
modelling of cluster scheduling algorithms.

Several executives [7] for discrete event simulation
exist, with process based executive and three-phase
executive being the most efficient. Executive is an
algorithm at the core of the simulation that tracks events in
the model and executes appropriate actions.

Process based executive is most commonly used,
because it allows the greatest flexibility for the modeller
and has a steep learning curve. Elements of the model
using process based executive are designed as processes
with conditional and unconditional delays. In the
simulation each of the processes is executed until
unconditional or conditional delay occurs.

Three-phase simulation creates a distinction between
unconditional and conditional delays, and imposes an
order on their execution. Unconditional delays and
associated actions are called B activities and are executed
before conditional events and their respective actions at
any time. Conditional delays and actions are called C
activities.

The three-phase executive is composed of three phases.
At the A phase the time for the first B activity occurrence
is determined. All the B activities for that time are
executed during the B phase. B phase is followed by the C
phase at which all the C activities are performed. C
activities are repeatedly scanned until no activity can be
executed because execution of any C type activity can
change the state of simulated system and this can cause
other C activities eligible for execution. The modelled
order of C activities enables designer to avoid ambiguities
in the model.

Three-phase simulation approach requires better
understanding and detailed dissection of the model that
require additional modelling time. The strict ordering of
conditional activities gives greater control and helps
avoiding potential deadlocks and race conditions in the
model when compared to the process based executive.
Deadlocks and race conditions are also avoidable using
process based approach, but the analysis of their potential
occurrence is complicated due to an inherent lesser
transparency of the model.

IV. SIMULATION FOR CLUSTERS AND GRIDS

Cluster simulations are usually contained within the
more complex grid simulators. Most of them like Optorsim
[8], SimGrid [9], GridSim[10], Bricks[11] are focused on
data replication and process migration among clusters and
detailed support for scheduling policies within the cluster
is not provided.

SimGrid is aimed at the simulation of grids on real
hardware in order to capture fine interactions among
parallel applications and IO storage operations.

The most widely used Gridsim tool that is still being
maintained employs process based simulation executive
simjava [12] and defines an extensible cluster allocation

policy. Sample space shared and time shared policies are
provided to the developers.

Beosim [13] tool handles cluster simulation to a greater
detail, but the source code and the inside specifics are not
publicly available.

Scheduling simulations for clusters are mostly done
manually by the developers, and are specific for the
scheduling policy and the simulated system. This makes
unbiased comparison of scheduling strategies harder for
researchers since experimenting in different environments
and lack of implementation specifics for different
scheduling policies may lead to a different resulting
performance.

V. THREE-PHASE CLUSTER SCHEDULER

Three-phase cluster scheduler is proposed in order to
support investigation of the scheduling algorithm
performance. Requirements imposed on the scheduler,
architecture of the entire system and some of the
simulation details are presented in the following
subsections.

A. Requirements

Requirements are a prerequisite for any system design

and modeling process. In this paper we target both space
shared and time shared systems, and would even like to
support simulation of hybrid systems that allow time
sharing on subset of computing resources, while enforcing
space sharing on the rest of the system. This may prove
beneficial for interactive applications where instant
response is more important than overall performance of the
target application.

Detailed modeling of data flow within the large
computer cluster is not feasible, but data staging within the
cluster may be interesting to simulate since data storage
can be identified as a bottleneck in certain applications.

Inputs to the simulation system are job sequences,
scheduling policies and metrics of interest. Job sequence
can be either statistically modeled or a real job trace [14].
Statistically modeled sequences are more general and
provide unlimited number of inputs, while the real job
traces are bounded, but provide an insight to the real world
system behavior.

The simulation system must be easily extendable in
order to enable design, comparison and refinement of
different scheduling policies. Different metrics and data of
interest should be easily exposed and analyzed within the
system. Model development and refinement cycle must be
shortened to enable many different algorithms and
parameter sets to be evaluated. This can be done by the
real time performance monitoring of the simulation, and by
visualization of the different output parameters.

B. System architecture

The simulation system is composed of several parallel
discrete event simulations that enable real time comparison
of different scheduling strategies as presented on Fig 1.
Simulation designer is a user controllable component that

is used to define (1) parameters of every simulation in the
experiment. Parameters include type and settings of the
scheduling policy, job generator settings and compute
node servicing policy.

When simulation is configured (2), Simulation control
component is used to specify parameters and points of
interest for the simulation (4) that will be collected and to
define output of the simulation (5) in terms of these
parameters. Trace manager component subscribes (6) to
the events of interest and passes the data gathered from the
simulation to the Simulation Output component that
visualizes simulation results (7).

Simulation control component is used to control the
execution of the discrete event simulations (3). It directs
the execution of the phases at the three-phase simulation
executive. At the end of each A phase, every discrete
simulator controlled by the component announces its next
event time. By using that information and by selectively
choosing phases from different executives, Simulation
Control component synchronizes clocks in different
discrete simulations providing continuous comparison of
parameters at the Simulation Output component.

Features like asynchronous running, pausing and
stepping through different simulations can be easily
implemented in this architecture by providing the user
interface and changing execution rules at the Simulation
Control.

C. Three-phase simulation entities

Identification and classification of entities and resources

is one of the most important issues in system simulation.
For each element participating in the simulation a choice is
made by determining its role and the simulation goal.

Basic elements in the scheduling simulation are jobs,
computing nodes and the scheduler. Jobs are accompanied

with the respective job generator that creates new jobs
according to the specified policy. Since all the basic
elements are

Discrete event simulation n
 unique they are represented as entities in the

sim

ing of the hardware malfunction or
re

ge, a compute node state change and an internal
ch

rst-served (FCFS) or different types of
ba

e scheduler to switch from idle to the
sc

Scheduler ulation.
Scheduler is the central point of the simulation and is

modeled as an active system entity. It is responsible for
data staging and scheduling jobs to computing nodes
which includes handl

gular maintenance.
Scheduler element (Fig. 2) constantly switches between

idle and scheduling state. In order to enter the scheduling
state, a change in the system state that requires scheduling
action must occur (condition C1). There are three system
state changes that trigger the scheduling process: a job
state chan

ange.
Typically, scheduling is considered to be an almost

instant activity in the majority of the cluster systems. This
is required because the rate of the scheduling decisions
should closely match the job arrival rate. Some heuristic
algorithms such as genetic algorithms [15] are slower and
their reaction to system changes must be modeled with a
delay. It is assumed that scheduler decision is to be made
at the B1 activity using the information that was available
in the system at the time of the C1 activity. In order to
spare the computation resources the decision is made as
part of the C1 activity and the action that is a consequence
of that decision is taken during the B1 activity. Duration of
the scheduling state depends on the type of algorithm used
and the amount of input data in the system that are
currently available. State scheduling and B1 activity can be
omitted when fast scheduling policies are modeled such as
first-come-fi

ckfilling.
When time shared scheduling algorithms are simulated,

the interval for the algorithm time slice is setup at the B1
activity. Handling of the time slice interrupt, at which
context switch of the running processes is done, is
performed while algorithm is in the idle state. Execution of
the B2 activity changes internal system state, which
effectively triggers th

heduling state.
The only issue with this approach is that potentially

existing B2 event must be canceled at the C1 activity. This
is due to inability of the three-phase scheduling approach

Scheduling

Idle

B1: (start new job OR queue new job)
AND set timer

C1:
job state change OR

Compute node change OR
internal change

B2: timer adition,
sets internal change

Fig. 2. Scheduler activity diagram

Job Generator

Job JobCompute
Node

Compute
Node...

Three phase executive

...

Discrete event simulation 1

Job Generator

Job Job

Scheduler

Compute
Node

Compute
Node...

Three phase executive

...

Discrete event simulation 1

Scheduler Job Generator

Compute
Node

Job JobCompute ... Node

Three phase executive

Experiment centre

Simulation
Control

Trace
manager

Simulation
designer

Simulation
output

1
2

4

5

67

8

3

...

Fig. 1. Simulation system architecture

to handle more than one B type event pending at any
moment which may happen when one B2 is pending and
change in the system starts the execution of C1. Since
execution of C1 sometimes involves generation of B1
events that are handled in the future, other B type events
are not allowed. This doesn’t change semantics of the time
sharing algorithm since new B2 event is scheduled at the
B1 activity, and it is not expected for processes in the time
sharing system to run while being rescheduled or context
sw

s not
us

d
al

ed to report its
pr

d statistics must be saved. Other jobs
ne

es acquired by the job that the execution is
di

puting nodes are also informed about the
jo

n the idle state, and there is one B4 event
sc

ity C7 to move computing
no

 the
co

 node causes
cheduler to perform its scheduling cycle.

. Implementation

orces the
us

itched.
Event canceling must be supported in the underlying

three phase discrete event simulation package in order to
terminate pending B2 event at C1 activity. For simulation
of space shared scheduling algorithms, B2 activity i

ed, and there is no need for the event cancellation.
Semantics of the internal change vary for different

scheduling policies and can include data staging
notifications or different grid requests. In order for some
internal changes to occur, external entity must be created
that affects the scheduler internal state. Scheduler shoul

so be extended to handle the new functionality.
Jobs in the system that are created using job generator

are represented with an entity in the simulation. Job
activity state diagram is given in the Fig 3. Jobs are
initially queued and the event of a job creation triggers

scheduler to perform its decision cycle. During the
decision cycle some of the jobs can be scheduled for
execution, and appropriate attributes are set for both jobs
and the target computing nodes. When the job is marked
for the execution, C2 activity is performed which
calculates duration of the job on the given hardware and
sets the job to the running state. Running jobs can
occasionally report its progress to the scheduler through
the B3 activity. Jobs that are not design

Queued

Running

Finished

B3: report progress

C2: scheduled

C5: resource
problem or scheduler

intervention

Canceled

C4: canceled by the
scheduler or user

C3: 100% progress

ogress perform B3 only on completion.
Jobs are allowed to be stopped for a number of reasons

that are matched with the activities in the simulation.
Running job can be interrupted because of the outages of
some of the computing nodes or because scheduler decided
to stop it. This is handled by the activity C5 which puts job
in the queued state and changes some attributes of the job
depending on the type of the job. Preemptive jobs can be
moved to other resources on the cluster and their current
progress and collecteFig. 3. Job activity diagram

ed to be restarted.
Jobs that are canceled by the user or by the scheduler

and are not supposed to continue are handled by the
activity C4. Jobs that are either in queued or running state
can be canceled. The activity C4 also notifies all the
computing nod

scontinued.
When the job is completed C3 activity is performed that

moves the job to the finished state and updates statistics for
that job. The com

b completion.
Computing nodes in the system are modeled using

activity diagram in Fig. 4. Every computing node can be in
idle, running and out_of_service state. Initiatially all the
nodes are i

heduled.
When scheduler assigns the job to the computing node

the change in the job state triggers the activity C6, which
causes computing node to change state from idle to
running. When the job is finished or stopped it changes its
internal state, which causes activ

de from running to idle state.
From idle and running states the computing node moves

to out_of_service state when event B4 occurs. New B5
event is scheduled as a part of the B4 activity. When
servicing of the cluster component is finished, B5 activity
is executed. This activity changes the state of

mputing node to idle and schedules new B4 event.
The state change of the computing

s

D

Object oriented languages are a perfect match [16] for
the three-phase simulation algorithm. This distributed
approach, where executive runs on a server and simulation
components reside on the client, is beneficial in general,
although slightly modified version that drops the
distributed approach is more appropriate for custom
simulations. Keeping the simulation set within the
application boundaries avoids potential performance
penalty in the distributed environment, but enf

ers to run and maintain the simulation locally.

Idle

Running

C6: job ready

Out of
service

C6: job stopped

B4: service time

B5: in service

Fig. 4. Computing node activity diagram

There are two threads of execution that handle both user
interface and the three-phase simulation execution.
Threads communicate in two ways: user interface thread
controls the execution of the simulation, while simulation
th

he simulation is encapsulated in the Simulation
cl

 is valid since entities
ar

lation class. This would partly
vi

e simulation process, but
al time performance comparison of the algorithms allows

arlier debugging of the model.

ell as
va

cess based simulations if
pr

e notifications to the
m

his would require modification of the scheduler

entity, and the simulation of the grid interconnection
network.

S

 h

read reports data changes to the user interface in order to
enable visualization of current simulation results.

At heart of the simulation thread is an Executive class
that performs three phases of the discrete event simulation.
The rest of t

ass that instantiates the entities and sets up the
simulation.

System components in object oriented simulation are
represented by classes, and B activities are usually handled
by methods within these classes. This

e required to wait for B events and they typically change
their internal state when time is due.

There is an issue with C activities because their
conditional execution typically depends on several
different entities in the system so implementing them
within an entity class would conflict the encapsulation
property of the object oriented paradigm. On the other
hand, some of the C activities are conditionally bound to
the rest of the system but their effect is only visible to their
respective entity so it would make sense to implement such
activities within the appropriate entity class. It is decided
to classify C activities according to their dependencies on
other entities, and to put the ones that affect only one
entity type within this entity's class, and to implement the
others within the Simu

olate encapsulation principle, but would lesser the clutter
in the Simulation class.

In order for simulation to publish its results, each entity
in the system must expose data to subscribers, and raise
events in case the subscribed data changes its value. This
behavior is expected to slow th
re
e

VI. CONCLUSION

In this paper we presented the basic building blocks and
the architecture of the cluster simulator. Three phase
simulation technique is selected as the basis for the
simulation due to its inherent lack of ambiguity. Essential
simulation entities are recognized and modeled to a detail
capturing important aspects of cluster schedulers as w

riety of scheduling approaches. Implementation pointers
for the object oriented environments are also given.

Performance of the simulator is important when large
systems are simulated. Three phase simulation approach
should perform faster then pro

operly implemented because of the context switching
that is unavoidable in the latter.

In order to increase simulation performance several
modifications can be made. Simulation of the entire system
can be distributed to many machines resulting in faster
simulation. Event based runtim

odeler can be avoided and the simulation trace can be
used to analyze system behavior.

The proposed simulator should be extended to support
basic grid operations and to allow communication between
clusters. T

REFERENCE

 [1] TOP500 Supercomputing Sites,
ttp://top500.org/
. G. Feitelson, “Metrics for parallel [2] D job scheduling and

 [3]
f Scheduling Problems for Parallel/Pipelined

 [4]
cs for Multiple Machine

 [5] amic Scheduling with
ecture Notes in Computer

6.

their convergence”, Lecture Notes in Computer Science,
vol. 2221/-1/2001, p. 188-205, 2001

D. Bernstein, M. Rodeh and I. Gertner, “On the
Complexity o
Machines“, IEEE Transactions on Computers, vol. 38, p.
1308, 1998.
D. Jakobović, L. Jelenković and L. Budin, “Genetic
Programming Heuristi
Scheduling“, Lecture Notes in Computer Science, vol.
4445, p. 321-330, 2007.
D. Jakobović and L. Budin, “Dyn
Genetic Programming“, L
Science, vol. 3905, p. 73-84, 200

 [6] Condor Project Homepage,
http://www.cs.wisc.edu/condor/

 [7] M. Pidd, Computer Simulation in Management Science,
5th Edn., John Wiley & Sons, West Susex, England, 2004
W. H . Bell, D. G . Cameron, L. Capozza, A.P. Millar et
al., “OptorSim - A Grid Simulator for Studying Dynamic
Data R

 [8]

eplication Strategies“, International Journal of High

 [9]
of the First

[10]

rid Computing “, The

[11]

d“, Proc. of 10th IEEE

[12] vent

ion, p. 51-56, 1998
ulator for

Performance Computing Applications, vol. 17, p. 2003,
2003.
H. Casanova, “SimGrid: A toolkit for the simulation of
application scheduling“, Proceedings
IEEE/ACM International Symposium on Cluster
Computing and the Grid, p. 430-437, 2001
R. Buyya and M. Murshed, “GridSim: A Toolkit for the
Modeling and Simulation of Distributed Resource
Management and Scheduling for G
Journal of Concurrency and Computation: Practice and
Experience (CCPE), vol. 14, 2002.
A. Takefusa, H. Casanova, S. Matsuoka and F. Berman, “A
Study of Deadline Scheduling for Client-Server Systems
on the Computational Gri
International Symposium on High Performance Distributed
Computing, p. 406-415, 2001
F. Howell and R. Mcnab, “simjava: A discrete e
simulation library for Java“, In International Conference on
Web-Based Modeling and Simulat

[13] BeoSim - Multicluster Computational Grid Sim
Parallel Job Scheduling Research
http://www.parl.clemson.edu/~wjones/research/
D.G. Feitelson, “Work[14] load modeling for performance

[15]

ting”, In the Proceedings of 19th IEEE International

evaluation”, Lecture Notes in Computer Science, vol.
2459, p. 114-141, 2002.
A.J. Page and T.J. Naughton, “Dynamic Task Scheduling
using Genetic Algorithms for Heterogeneous Distributed
Compu
Symposium on Parallel and Distributed Processing, p. 189.,
2005.

[16] M. Pidd and R. A. Cassel, ” Three phase simulation in
Java”, In Proceedings of the 1998 Winter Simulation
Conference, p. 367-371, 1998.

