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Abstract – Evaluation of scheduling algorithms for 
distributed environments is a complex task that involves 
simulation of computation resources, interconnection 
network, users and generated workload. Multiple discrete 
event based simulators are developed that tackle different 
aspects of distributed systems in order to ease that task. In 
this paper we address the simulation of computer clusters 
that are the most popular distributed system architecture. 
Fundamentals of the available simulators are given and the 
extendable architecture for the new simulator is proposed. 
Three-phase discrete event simulation is recognized as the 
simulation technique of choice, and the behavior of the key 
components is modeled using that technique. Implementation 
details targeted to object oriented environments are pointed 
out. 

 
 

I. INTRODUCTION 
 
Computer clusters are a preferred distributed system 

architecture type because of the high price/computing 
performance ratio. They constitute 82% of the top 500 
supercomputers [1], with the rest being massively parallel 
processors (MPP) and constellation systems. 

The most important aspect of the computer cluster is its 
performance. Performance can be defined in a variety of 
metrics [2], and the job of the cluster scheduler is to 
optimize the behavior of the cluster according to the target 
metric. 

Cluster scheduling in general is known to be an NP 
complete problem [3]. This complexity makes exhaustive 
schedule searching and application of the complex 
heuristics infeasible. In large computing clusters event rate 
is very high and the applied scheduling algorithm must 
provide a matching decision rate [4][5]. 

In order to cover different metrics and workload types 
different scheduling algorithms are developed. In the 
development phase these are simulated using synthetic 
workload traces. In this paper we address the simulation of 
the cluster scheduling algorithms starting from the 
underlying discrete event simulation systems and 
following with the visualization of the results. Additionally 
we propose the architecture for the specified system 
together with the implementation details. This architecture 
is extendable and can easily apply to architectures like 
MPP and constellation systems. 

General architecture of the cluster systems that is a basis 
for the simulation is described in section II. Available 
discrete event simulation techniques are described in 
section III. Section IV presents a short overview of the 
existing cluster and grid simulation tools. Architecture, 
simulation and implementation details of the proposed 
cluster simulator are given in section V. 

II. CLUSTER ARCHITECTURE 
 
Computer cluster is a group of interconnected 

computers that are usually connected using fast local area 
network. From the administrative point of view they are 
centrally managed at the designated frontend node, while 
other computers are referenced as computing nodes. 

Frontend node is used for job submission and resource 
scheduling. Some cluster suits [6] allow submission of 
jobs at any cluster node but scheduling is still performed at 
the dedicated cluster node. Cluster scheduler responds to 
two types of events in the system. User generated events 
represent job submissions and cancellations as well as the 
resource reservation. System generated events include job 
status information and resource availability. System 
generated events are collected by the resource manager 
component that is distributed across all cluster nodes. 
Using the information collected from the users and the 
resource manager, cluster scheduler enforces configured 
execution policy. 

Computation clusters that are the topic of interest in this 
paper are usually connected to the fast storage system 
which is shared among all the computing nodes. Access to 
this storage may present a bottleneck for some applications 
in the system and should be simulated for such workload 
types. 

 
 

III. DISCRETE EVENT SIMULATION 
 

There are three main approaches to discrete event 
simulation: using simulation tools, using simulation 
libraries and creating a custom simulation. 

The use of general purpose simulation tools is a most 
abstract way to perform the system simulation. It limits the 
number of available features, but hides away the complex 
execution details. The limited number of elements in the 
simulation can make model creation difficult if complex 
behaviour needs to be modelled. 

Simulation libraries provide access to basic simulation 
operations, and enable the programmer to design the 
custom model using the given platform. This grants more 
modelling freedom, but some aspects of the model may not 
be covered. For instance, event cancellation is not 
implemented in some of the simulation libraries, but may 
be required naturally by the model. There is a workaround 
that can be made, but this often leads to more complicated 
model. 

Programming a custom simulation gives all the power 
and flexibility to the modeller, but is most time consuming, 
and requires detailed insight into discrete event simulation 
principles. 



Since our goal is the design of the concurrent simulation 
system for comparison of scheduling algorithms, we 
decided to create the system from scratch using insights to 
existing simulation libraries. It is our objective to provide 
an extensible simulation framework customized for the 
modelling of cluster scheduling algorithms. 

Several executives [7] for discrete event simulation 
exist, with process based executive and three-phase 
executive being the most efficient. Executive is an 
algorithm at the core of the simulation that tracks events in 
the model and executes appropriate actions. 

Process based executive is most commonly used, 
because it allows the greatest flexibility for the modeller 
and has a steep learning curve. Elements of the model 
using process based executive are designed as processes 
with conditional and unconditional delays. In the 
simulation each of the processes is executed until 
unconditional or conditional delay occurs. 

Three-phase simulation creates a distinction between 
unconditional and conditional delays, and imposes an 
order on their execution. Unconditional delays and 
associated actions are called B activities and are executed 
before conditional events and their respective actions at 
any time. Conditional delays and actions are called C 
activities.  

The three-phase executive is composed of three phases. 
At the A phase the time for the first B activity occurrence 
is determined. All the B activities for that time are 
executed during the B phase. B phase is followed by the C 
phase at which all the C activities are performed. C 
activities are repeatedly scanned until no activity can be 
executed because execution of any C type activity can 
change the state of simulated system and this can cause 
other C activities eligible for execution. The modelled 
order of C activities enables designer to avoid ambiguities 
in the model. 

Three-phase simulation approach requires better 
understanding and detailed dissection of the model that 
require additional modelling time. The strict ordering of 
conditional activities gives greater control and helps 
avoiding potential deadlocks and race conditions in the 
model when compared to the process based executive. 
Deadlocks and race conditions are also avoidable using 
process based approach, but the analysis of their potential 
occurrence is complicated due to an inherent lesser 
transparency of the model. 
 
 

IV. SIMULATION FOR CLUSTERS AND GRIDS 
 

Cluster simulations are usually contained within the 
more complex grid simulators. Most of them like Optorsim 
[8], SimGrid [9], GridSim[10], Bricks[11] are focused on 
data replication and process migration among clusters and 
detailed support for scheduling policies within the cluster 
is not provided.  

SimGrid is aimed at the simulation of grids on real 
hardware in order to capture fine interactions among 
parallel applications and IO storage operations. 

The most widely used Gridsim tool that is still being 
maintained employs process based simulation executive 
simjava [12] and defines an extensible cluster allocation 

policy. Sample space shared and time shared policies are 
provided to the developers. 

Beosim [13] tool handles cluster simulation to a greater 
detail, but the source code and the inside specifics are not 
publicly available. 

Scheduling simulations for clusters are mostly done 
manually by the developers, and are specific for the 
scheduling policy and the simulated system. This makes 
unbiased comparison of scheduling strategies harder for 
researchers since experimenting in different environments 
and lack of implementation specifics for different 
scheduling policies may lead to a different resulting 
performance. 
 
 

V. THREE-PHASE CLUSTER SCHEDULER 
 

Three-phase cluster scheduler is proposed in order to 
support investigation of the scheduling algorithm 
performance. Requirements imposed on the scheduler, 
architecture of the entire system and some of the 
simulation details are presented in the following 
subsections. 
 
A. Requirements 

 
Requirements are a prerequisite for any system design 

and modeling process. In this paper we target both space 
shared and time shared systems, and would even like to 
support simulation of hybrid systems that allow time 
sharing on subset of computing resources, while enforcing 
space sharing on the rest of the system. This may prove 
beneficial for interactive applications where instant 
response is more important than overall performance of the 
target application. 

Detailed modeling of data flow within the large 
computer cluster is not feasible, but data staging within the 
cluster may be interesting to simulate since data storage 
can be identified as a bottleneck in certain applications. 

Inputs to the simulation system are job sequences, 
scheduling policies and metrics of interest. Job sequence 
can be either statistically modeled or a real job trace [14]. 
Statistically modeled sequences are more general and 
provide unlimited number of inputs, while the real job 
traces are bounded, but provide an insight to the real world 
system behavior. 

The simulation system must be easily extendable in 
order to enable design, comparison and refinement of 
different scheduling policies. Different metrics and data of 
interest should be easily exposed and analyzed within the 
system. Model development and refinement cycle must be 
shortened to enable many different algorithms and 
parameter sets to be evaluated. This can be done by the 
real time performance monitoring of the simulation, and by 
visualization of the different output parameters. 
 
B. System architecture 
 

The simulation system is composed of several parallel 
discrete event simulations that enable real time comparison 
of different scheduling strategies as presented on Fig 1. 
Simulation designer is a user controllable component that 



is used to define (1) parameters of every simulation in the 
experiment. Parameters include type and settings of the 
scheduling policy, job generator settings and compute 
node servicing policy. 

When simulation is configured (2), Simulation control 
component is used to specify parameters and points of 
interest for the simulation (4) that will be collected and to 
define output of the simulation (5) in terms of these 
parameters. Trace manager component subscribes (6) to 
the events of interest and passes the data gathered from the 
simulation to the Simulation Output component that 
visualizes simulation results (7). 

Simulation control component is used to control the 
execution of the discrete event simulations (3). It directs 
the execution of the phases at the three-phase simulation 
executive. At the end of each A phase, every discrete 
simulator controlled by the component announces its next 
event time. By using that information and  by selectively 
choosing phases from different executives, Simulation 
Control component synchronizes clocks in different 
discrete simulations providing continuous comparison of 
parameters at the Simulation Output component. 

Features like asynchronous running, pausing and 
stepping through different simulations can be easily 
implemented in this architecture by providing the user 
interface and changing execution rules at the Simulation 
Control. 
 
C. Three-phase simulation entities 

 
Identification and classification of entities and resources 

is one of the most important issues in system simulation. 
For each element participating in the simulation a choice is 
made by determining its role and the simulation goal. 

Basic elements in the scheduling simulation are jobs, 
computing nodes and the scheduler. Jobs are accompanied 

with the respective job generator that creates new jobs 
according to the specified policy. Since all the basic 
elements are

Discrete event simulation n
 unique they are represented as entities in the 
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ing of the hardware malfunction or 
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ge, a compute node state change and an internal 
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rst-served (FCFS) or different types of 
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e scheduler to switch from idle to the 
sc

Scheduler ulation. 
Scheduler is the central point of the simulation and is 

modeled as an active system entity. It is responsible for 
data staging and scheduling jobs to computing nodes 
which includes handl

gular maintenance. 
Scheduler element (Fig. 2) constantly switches between 

idle and scheduling state. In order to enter the scheduling 
state, a change in the system state that requires scheduling 
action must occur (condition C1). There are three system 
state changes that trigger the scheduling process: a job 
state chan

ange.  
Typically, scheduling is considered to be an almost 

instant activity in the majority of the cluster systems. This 
is required because the rate of the scheduling decisions 
should closely match the job arrival rate. Some heuristic 
algorithms such as genetic algorithms [15] are slower and 
their reaction to system changes must be modeled with a 
delay. It is assumed that scheduler decision is to be made 
at the B1 activity using the information that was available 
in the system at the time of the C1 activity. In order to 
spare the computation resources the decision is made as 
part of the C1 activity and the action that is a consequence 
of that decision is taken during the B1 activity. Duration of 
the scheduling state depends on the type of algorithm used 
and the amount of input data in the system that are 
currently available. State scheduling and B1 activity can be 
omitted when fast scheduling policies are modeled such as 
first-come-fi

ckfilling. 
When time shared scheduling algorithms are simulated, 

the interval for the algorithm time slice is setup at the B1 
activity. Handling of the time slice interrupt, at which 
context switch of the running processes is done, is 
performed while algorithm is in the idle state. Execution of 
the B2 activity changes internal system state, which 
effectively triggers th

heduling state. 
The only issue with this approach is that potentially 

existing B2 event must be canceled at the C1 activity. This 
is due to inability of the three-phase scheduling approach 

Scheduling

Idle

B1: (start new job OR queue new job) 
AND set timer

C1: 
job state change OR

Compute node change OR 
internal change

B2: timer adition,
sets internal change

Fig. 2. Scheduler activity diagram 
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to handle more than one B type event pending at any 
moment which may happen when one B2 is pending and 
change in the system starts the execution of C1. Since 
execution of C1 sometimes involves generation of B1 
events that are handled in the future, other B type events 
are not allowed. This doesn’t change semantics of the time 
sharing algorithm since new B2 event is scheduled at the 
B1 activity, and it is not expected for processes in the time 
sharing system to run while being rescheduled or context 
sw

s not 
us

d 
al

ed to report its 
pr

d statistics must be saved. Other jobs 
ne

es acquired by the job that the execution is 
di

puting nodes are also informed about the 
jo

n the idle state, and there is one B4 event 
sc

ity C7 to move computing 
no

 the 
co

 node causes 
cheduler to perform its scheduling cycle. 

. Implementation 
 

orces the 
us

itched. 
Event canceling must be supported in the underlying 

three phase discrete event simulation package in order to 
terminate pending B2 event at C1 activity. For simulation 
of space shared scheduling algorithms, B2 activity i

ed, and there is no need for the event cancellation. 
Semantics of the internal change vary for different 

scheduling policies and can include data staging 
notifications or different grid requests. In order for some 
internal changes to occur, external entity must be created 
that affects the scheduler internal state. Scheduler shoul

so be extended to handle the new functionality. 
Jobs in the system that are created using job generator 

are represented with an entity in the simulation. Job 
activity state diagram is given in the Fig 3. Jobs are 
initially queued and the event of a job creation triggers 

scheduler to perform its decision cycle. During the 
decision cycle some of the jobs can be scheduled for 
execution, and appropriate attributes are set for both jobs 
and the target computing nodes. When the job is marked 
for the execution, C2 activity is performed which 
calculates duration of the job on the given hardware and 
sets the job to the running state. Running jobs can 
occasionally report its progress to the scheduler through 
the B3 activity. Jobs that are not design

Queued

Running

Finished

B3: report progress

C2: scheduled

C5: resource 
problem or scheduler 

intervention

Canceled

C4: canceled by the 
scheduler or user

C3: 100% progress

ogress perform B3 only on completion. 
Jobs are allowed to be stopped for a number of reasons 

that are matched with the activities in the simulation. 
Running job can be interrupted because of the outages of 
some of the computing nodes or because scheduler decided 
to stop it. This is handled by the activity C5 which puts job 
in the queued state and changes some attributes of the job 
depending on the type of the job. Preemptive jobs can be 
moved to other resources on the cluster and their current 
progress and collecteFig. 3. Job activity diagram 

ed to be restarted. 
Jobs that are canceled by the user or by the scheduler 

and are not supposed to continue are handled by the 
activity C4. Jobs that are either in queued or running state 
can be canceled. The activity C4 also notifies all the 
computing nod

scontinued. 
When the job is completed C3 activity is performed that 

moves the job to the finished state and updates statistics for 
that job. The com

b completion. 
Computing nodes in the system are modeled using 

activity diagram in Fig. 4. Every computing node can be in 
idle, running and out_of_service state. Initiatially all the 
nodes are i

heduled. 
When scheduler assigns the job to the computing node 

the change in the job state triggers the activity C6, which 
causes computing node to change state from idle to 
running. When the job is finished or stopped it changes its 
internal state, which causes activ

de from running to idle state. 
From idle and running states the computing node moves 

to out_of_service state when event B4 occurs. New B5 
event is scheduled as a part of the B4 activity. When 
servicing of the cluster component is finished, B5 activity 
is executed. This activity changes the state of

mputing node to idle and schedules new B4 event. 
The state change of the computing

s
 
D

Object oriented languages are a perfect match [16] for 
the three-phase simulation algorithm. This distributed 
approach, where executive runs on a server and simulation 
components reside on the client, is beneficial in general, 
although slightly modified version that drops the 
distributed approach is more appropriate for custom 
simulations. Keeping the simulation set within the 
application boundaries avoids potential performance 
penalty in the distributed environment, but enf

ers to run and maintain the simulation locally. 

Idle

Running

C6: job ready

Out of 
service

C6: job stopped

B4: service time

B5: in service

Fig. 4. Computing node activity diagram 



There are two threads of execution that handle both user 
interface and the three-phase simulation execution. 
Threads communicate in two ways: user interface thread 
controls the execution of the simulation, while simulation 
th

he simulation is encapsulated in the Simulation 
cl

 is valid since entities 
ar

lation class. This would partly 
vi

e simulation process, but 
al time performance comparison of the algorithms allows 

arlier debugging of the model. 

ell as 
va

cess based simulations if 
pr

e notifications to the 
m

his would require modification of the scheduler 

entity, and the simulation of the grid interconnection 
network. 

 
S 

 

  h

read reports data changes to the user interface in order to 
enable visualization of current simulation results. 

At heart of the simulation thread is an Executive class 
that performs three phases of the discrete event simulation. 
The rest of t

ass that instantiates the entities and sets up the 
simulation. 

System components in object oriented simulation are 
represented by classes, and B activities are usually handled 
by methods within these classes. This

e required to wait for B events and they typically change 
their internal state when time is due. 

There is an issue with C activities because their 
conditional execution typically depends on several 
different entities in the system so implementing them 
within an entity class would conflict the encapsulation 
property of the object oriented paradigm. On the other 
hand, some of the C activities are conditionally bound to 
the rest of the system but their effect is only visible to their 
respective entity so it would make sense to implement such 
activities within the appropriate entity class. It is decided 
to classify C activities according to their dependencies on 
other entities, and to put the ones that affect only one 
entity type within this entity's class, and to implement the 
others within the Simu

olate encapsulation principle, but would lesser the clutter 
in the Simulation class. 

In order for simulation to publish its results, each entity 
in the system must expose data to subscribers, and raise 
events in case the subscribed data changes its value. This 
behavior is expected to slow th
re
e
 
 

VI. CONCLUSION 
 

In this paper we presented the basic building blocks and 
the architecture of the cluster simulator. Three phase 
simulation technique is selected as the basis for the 
simulation due to its inherent lack of ambiguity. Essential 
simulation entities are recognized and modeled to a detail 
capturing important aspects of cluster schedulers as w

riety of scheduling approaches. Implementation pointers 
for the object oriented environments are also given. 

Performance of the simulator is important when large 
systems are simulated. Three phase simulation approach 
should perform faster then pro

operly implemented because of the context switching 
that is unavoidable in the latter. 

In order to increase simulation performance several 
modifications can be made. Simulation of the entire system 
can be distributed to many machines resulting in faster 
simulation. Event based runtim

odeler can be avoided and the simulation trace can be 
used to analyze system behavior. 

The proposed simulator should be extended to support 
basic grid operations and to allow communication between 
clusters. T
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