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Abstract In this paper we investigate the title groups which we call isomaximal. We give the
list of all isomaximal 2-groups with abelian maximal subgroups. Further, we prove some properties
of isomaximal 2-groups with nonabelian maximal subgroups. After that, we investigate the structure
of isomaximal groups of order less than 64. Finally, in Theorem 14. we show that the minimal
nonmetacyclic group of order 32 possesses a unique isomaximal extension of order 64.
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1 Introduction

The groups pointed in the title are interesting enough themselves because of their supposed
symmetry. There arise at once two questions:
1) which are these groups, and
2) which groups can appear as maximal subgroups in such groups.

The concrete motivation for this research was however a recent result concerning second-
metacyclic finite 2-groups. A group G is metacyclic if there exists a cyclic normal subgroup N

of G with cyclic factor group G/N . A group with some non-metacyclic maximal subgroup and
with all second-maximal subgroups being metacyclic we call a second-metacyclic group.

A minimal non-metacyclic group is a non-metacyclic group with all its proper subgroups
being metacyclic. By a result of N. Blackburn there are only four such groups:

Theorem 1. (see Janko [2 , Th.7.1]) Let G be a minimal non-metacyclic group. Then G is
one of the following groups:
(a) The elementary abelian group E8 of order 8,
(b) The direct product Q8 × Z2,
(c) The central product Q8 ∗ Z4 of order 24,
(d) G = 〈a, b, c | a4 = b4 = [a, b] = 1, c2 = a2b2, ac = a−1, bc = a2b3〉, where G is special of
order 25 with exp G = 4, Ω1(G) = G′ = Z(G) = Φ(G) = 〈a2, b2〉 ∼= E4 and M = 〈a〉 × 〈b〉 ∼=
Z4 × Z4 is the unique abelian maximal subgroup of G, the other six all being isomorphic to the
semidirect product Z4 · Z4.
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The second-metacyclic finite 2-groups were determined in [1] (Ćepulić, Ivanković, Kovač
Striko). It turned out that there are 17 such groups, four among them being of order 16, ten of
order 32 and three of order 64. Each of them contains, of course, some minimal non-metacyclic
group as a subgroup of index 2.

By Theorem 1.2 and Remark 2.1 of [2], we get the following result:

Theorem 2. There is only one nonabelian second-maximal finite 2-group G with all its
maximal subgroups being mutually isomorphic, the group:
(1) G = 〈a, b, c, d | a4 = b4 = 1, c2 = a2b2, d2 = a2, [a, b] = [c, d] = 1, [a, c] = a2, [a, d] =
[b, c] = a2b2, [b, d] = b2〉

G is of order 64. The maximal subgroups of G are all isomorphic to the minimal non-
metacyclic group of order 32 in Theorem 1(d).

The above investigation was suggested by Professor Zvonimir Janko. Recently he made
some research in which the group (1) had some importance. This fact was also a motive for the
present investigation. Our notation is standard. In addition, Ω∗k(G) = 〈g ∈ G | |g| = pk〉, for
any p-group G. Obviously, Ω∗1(G) = Ω1(G)

For the sake of brevity we introduce the following terms:

Definition 1. A group G with all its maximal subgroups being mutually isomorphic we shall
call isomaximal group.

Definition 2. We call an abelian group homocyclic if it is the direct product of isomorphic
cyclic groups.

2 Abelian isomaximal groups

The case of abelian isomaximal groups is simple. We have:

Theorem 3. If G is an abelian isomaximal group, then G is is a homocyclic p-group, for
some prime p.

Proof. As known, abelian groups are direct products of cyclic groups of prime power orders.
Thus, if G is not itself cyclic of prime power order, then for any two components B ∼= Zpn , C ∼=
Zqr of prime power orders of the direct product, G ∼= Zpn ×Zqr ×A for some abelian group A.
Now, there exist two maximal subgroups M1 and M2 of G such that M1

∼= Zpn−1 × Zqr × A

and M2
∼= Zpn × Zqr−1 × A, which should be isomorphic according our assumption. Therefore

pn−1 = qr−1, implying p = q and n = r. Thus, all factors are isomorphic to the same group
Zpn and G is homocyclic.

3 Nonabelian isomaximal 2-groups
with abelian maximal subgroups

The groups in question are obviously minimal nonabelian. We use the following known result:

Theorem 4. (Miller - Moreno) A minimal nonabelian finite 2-group is isomorphic to one of
the groups:
(a) G = 〈a, b | a2µ

= b2ν

= 1, ab = a1+2µ−1〉, µ > 2, ν > 1, |G| = 2µ+ν

(b) G = 〈a, b, c | a2µ

= b2ν

= c2 = 1, c = [a, b], [a, c] = [b, c] = 1〉,
µ, ν > 1, µ + ν > 2, |G| = 2µ+ν+1

(c) G ∼= Q8
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We have to examine which of these groups are isomaximal. The solution of this problem is
given by the following:

Theorem 5. A nonabelian isomaximal 2-group with abelian maximal subgroups is isomorphic
to one of the groups:
(a) G = 〈a, b | a2µ

= b2µ

= 1, ab = a1+2µ−1〉, µ > 2, |G| = 22µ, maximal subgroups being
isomorphic to Z2µ × Z2µ−1 ,
(b) G = 〈a, b, c | a2µ

= b2µ

= c2 = 1, c = [a, b], [a, c] = [b, c] = 1〉, µ > 2, |G| = 22µ+1,
maximal subgroups being isomorphic to Z2µ × Z2µ−1 × Z2,
(c) G ∼= Q8

Proof. By the introductory remark such a group is isomorphic to one of the groups stated in
Theorem 4.(a),(b),(c), which we treat separately.

(a) In this case Φ(G) = f1(G) = 〈a2, b2〉. If ν = 1, then G = 〈a, b | a2µ

= b2 = 1, ab = a1+2µ−1〉,
with nonisomorphic maximal subgroups M1 = 〈a〉 ∼= Z2µ and M2 = 〈a2, b〉 ∼= Z2µ−1 × Z2.
Thus µ, ν > 2, both. One can easily check that [a2, b] = [a, b2] = 1, so Φ(G) = Z(G).
As G/Φ(G) ∼= E4 there are three maximal subgroups in G: M1 = 〈Φ(G), a〉 = 〈a, b2〉 ∼=
Z2µ × Z2ν−1 , M2 = 〈Φ(G), b〉 = 〈a2, b〉 ∼= Z2µ−1 × Z2ν and M3 = 〈Φ(G), ab〉. By assumption,
M1

∼= M2, implying µ = ν. As for M3, (ab)2 = ab2ab = a2b2a2µ−1
, (ab)4 = a4b4, and so

M3 = 〈a2, ab〉 ∼= Z2µ−1 × Z2µ also.
(b) Now Φ(G) = f1(G) = 〈a2, b2, c〉. If ν = 1, there are nonisomorphic maximal subgroups
M1 = 〈a, c〉 ∼= Z2µ×Z2 and M2 = 〈a2, b, c〉 ∼= Z2µ−1×E4 in G. So ν > 2 and, by symmetry, µ > 2
as well. We have [a2, b] = [a, b2] = c2 = 1, and Φ(G) = Z(G) again. As G/Φ(G) ∼= E4 there are
three maximal groups M1 = 〈a, b2, c〉 ∼= Z2µ×Z2ν−1×Z2, M2 = 〈a2, b, c〉 ∼= Z2µ−1×Z2ν×Z2 and
M3 = 〈Φ(G), ab〉. Since M1

∼= M2, so µ = ν in this case again. Here (ab)2 = a2b2c, (ab)4 = a4b4,
and M3

∼= M1
∼= Z2µ × Z2µ−1 × Z2.

(c) The quaternion group Q8 is nonabelian isomaximal group with all maximal subgroups iso-
morphic to Z4.

4 Some remarks on isomaximal 2-groups
with nonabelian maximal subgroups

Here we state some facts about such groups.

Theorem 6. If G is an isomaximal 2-group with nonabelian maximal subgroups, then Z(G) 6
Φ(G). Especially, Z(G) 6 Z(M) for all maximal subgroups M .

Proof. Let M be a maximal subgroup of G. If Z(G) �M , then G = 〈M, z〉 for some z ∈ Z(G).
Now 〈M, z〉 = G = CG(Z(M)) and therefore Z(M) < Z(G) implying Z(G) ∩M = Z(M). Let
M1 be a maximal subgroup containing Z(G). Now Z(M1) > Z(G) > Z(M), in contradiction
with M1

∼= M .

Theorem 7. In an isomaximal 2-group, which is not cyclic, the exponent of G equals the
exponent of its maximal subgroups.

Proof. Each element of G is contained in some maximal subgroup, which proves the state-
ment.
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Theorem 8. A nonabelian 2-group with a cyclic maximal subgroup cannot be maximal in an
isomaximal group.

Proof. Suppose that G is an isomaximal 2-group. Let M be a nonabelian maximal subgroup
of G and let 〈a〉 be a cyclic maximal subgroup of M . Then M is isomorphic, as known, to one
of the following groups:
(i) 〈a, b | a2n−1

= b2 = 1, ab = a−1〉 ∼= D2n , n > 3,
(ii) 〈a, b | a2n−1

= b4 = 1, b2 = a2n−2
, ab = a−1〉 ∼= Q2n , n > 3,

(iii) 〈a, b | a2n−1
= b2 = 1, ab = a2n−2−1〉 ∼= SD2n , n > 4,

(iv) 〈a, b | a2n−1
= b2 = 1, ab = a2n−2+1〉 ∼= M2n , n > 4

In the cases (i), (ii) and (iii), 〈a〉 is the unique cyclic maximal subgroup of M and so 〈a〉
char M , 〈a〉 C G. Moreover, Z(M) = 〈a2n−2〉 ∼= Z2, and by Theorem 6. it is Z(G) = Z(M).
For each g = aαb ∈ M\〈a〉, we have (aαb)2 = aαb2(ab)α ∈ 〈a2n−2〉 = Z(G).

We see that all elements of M\〈a〉 have order 2 or 4 and their squares are in Z(G). Let
M1 be another maximal subgroup of G. The intersection M1 ∩ M does not contain all ele-
ments of order 2 and order 4 of M1, because such elements generate M1. Thus, there exists
some c ∈ M1\M, c2 ∈ Z(G) < 〈a〉, so that G = 〈M, c〉 = 〈a, b, c〉. Now, G/〈a〉 ∼= E4,
and 〈a, b〉, 〈a, c〉, 〈a, bc〉 are maximal in G containing 〈a〉 as cyclic maximal subgroup. Hence
ab = ac = aα where α = −1 in the cases (i) and (ii), and α = 2n−2 − 1 in the case (iii). It
follows, abc = aα2

= a, as α2 ≡ 1(mod 2n−1) also in the case (iii) as n > 3. But now, the
maximal subgroup 〈a, bc〉 would be abelian, a contradiction.

The case (iv) is somewhat different. The group M2n is minimal nonabelian. It has three
maximal subgroups, two of them - 〈a〉 and 〈ab〉 being cyclic and the third - 〈a2, b〉 is isomorphic
to Z2n−2 ×Z2. Therefore K = 〈a2, b〉 char M , K C G. Elements of M\K are all of order 2n−1:
(aαb)2 = aαb2(ab)α = aα+α(1+2n−2) = a2α(1+2n−3), where 2 - α and n > 4.

If G/K ∼= Z4, then c ∈ G\M , c2 ∈ M\K and so |c| = 2n, and exp G > exp M , contradic-
tioning Theorem 7. Thus G/K ∼= E4. Let M1 = 〈K, c〉 be another maximal subgroup of G.
Then M1

∼= M and |c| = 2n−1, c2n−2
= a2n−2

= τ , as 〈τ〉 = Ω1(f1(K)). Now [a, b] = [c, b] = τ ,
so bac = (τb)c = ττb = b. Thus, M2 = 〈ac, b〉 would be maximal and abelian, in contradiction
with M2

∼= M .

The theorem is proved.
As an obvious corrollary of Theorem 8. we have:

Theorem 9. The exponent of an isomaximal 2-group G with a nonabelian maximal subgroup
is at most |G| : 8.

Proof. Let M be a maximal group of G. By Theorem 7 we have exp G = exp M and by
Theorem 8, exp M 6 |M | : 4, so exp G 6 |G| : 8.

Also the following holds true.

Theorem 10. Let M be a maximal subgroup of an isomaximal 2-group G. Then:
(a) If Ω∗k(M) = M , then Ω∗k(G) = G

(b) If Ω∗k(M) < M , then either Ω∗k(M) = Ω∗k(G) 6 Φ(G), the same being true for all maximal
subgroups of G, or there exists some g ∈ G\M with |g| = 2k and for each such g it is G =
Ω∗k(M) · 〈g〉. Especially, if k = 1, then Ω1(M) = Ω1(G) 6 Φ(G). If moreover exp M = exp G

= 4, then Ω1(G) = Φ(G).
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Proof. (a) Let M1 be an other maximal subgroup of G. Since G is isomaximal, we have
Ω∗k(M1) = M1 also, and so Ω∗k(G) > 〈Ω∗k(M), Ω∗k(M1)〉 = 〈M, M1〉 = G, implying Ω∗k(G) = G.
(b) If there is none element of order 2k in G\M , then Ω∗k(G) = Ω∗k(M) < M . For any other
maximal subgroup M1 of G it is also Ω∗k(M1) = Ω∗k(G), as Ω∗k(M1) 6 Ω∗k(G) and |Ω∗k(M1)|=
|Ω∗k(M)|. Therefore Ω∗k(M) = Ω∗k(G) 6 Φ(G) for all maximal subgroups M of G.

If, on the contrary, there is some g ∈ G\M, |g| = 2k, then Ω∗k(G) > 〈Ω∗k(M), g〉 = Ω∗k(M)·〈g〉
because of Ω∗k(M) C G. If Ω∗k(M) · 〈g〉 < G, then there exists some maximal subgroup M1

containing Ω∗k(M) · 〈g〉. But now Ω∗k(M1) > 〈Ω∗k(M), g〉 > Ω∗k(M), a contradiction. Thus
Ω∗k(M) · 〈g〉 = G. If k = 1 then for any g ∈ G\M , |g| = 2, it would be Ω1(M) · 〈g〉 < G,
and so Ω1(M) = Ω1(G) 6 Φ(G). If moreover exp G = 4, then f1(G) 6 Ω1(G), and so
Φ(G) = f1(G) 6 Ω1(G) 6 Φ(G), implying Ω1(G) = Φ(G).

5 Isomaximal 2-groups of order 6 32

A. Groups of order 6 16

By inspection we immediately see that the following holds:

Theorem 11. Let G be an isomaximal 2-group of order 6 16.
Then G is isomorphic to one of the following groups:
(i) any group of order 6 4,
(ii) Z8, E8 or Q8, all of order 8,
(iii) Z16, Z4 × Z4, E16, and the semidirect product Z4 · Z4.

Remark There are fourteen groups of order 16:
five abelian - Z16, Z8 × Z2, Z4 × Z4, Z4 ×E4, E16,
four nonabelian of exponent 8 - D16, Q16, SD16, M16,
five nonabelian of exponent 4 - D8 ×Z2, Q8 ×Z2, the central product Q8 ∗Z4, and semidirect
products E4 · Z4, Z4 · Z4.

B. Groups of order 32 with abelian maximal subgroups

There are three such subgroups:

Theorem 12. Let G be an isomaximal group of order 32 with abelian maximal subgroups.
Then:
(i) G is abelian and either G ∼= Z32 or G ∼= E32, or
(ii) G is nonabelian and G = 〈a, b, c | a4 = b4 = c2 = 1, [a, b] = c, [a, c] = [b, c] = 1〉, the
maximal subgroups being isomorphic to Z4 × Z2 × Z2.
Proof. This follows immediately from the statements of Theorem 2 and Theorem 4.

C. Groups of order 32 with nonabelian maximal subgroups

These groups would be extensions of nonabelian groups in the Remark 1. But such groups
do not exist. We have

Theorem 13. Nonabelian groups of order 16 cannot be extended to isomaximal groups of
order 32.
Proof. By Theorem 8, the four nonabelian groups of order 16 and exponent 8, that is pos-
sessing cyclic maximal subgroups - D16, Q16, SD16 and M16 cannot have such extensions.
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The remaining five cases we should examine separately. In the following we denote by M

the supposed maximal subgroup and by G its extension that should be isomaximal.

1) M ∼= D8 × Z2, M = 〈a, b, c | a4 = b2 = c2 = 1, ab = a3, [a, c] = [b, c] = 1〉
Let M1 be another maximal subgroup of G. The group M is generated by its involutions and
so is M1. Thus there is some d ∈ M1\M, d2 = 1 and G = 〈M, d〉. The elements of order 4
in M generate K = 〈a, c〉 ∼= Z4 × Z2, implying 〈a2〉, K char M and so 〈a2〉, K C G. As the
elements in M\K invert the elements of order 4 in K and centralize the involutions in K, the
element d ∈ 〈a, c, d〉 does the same. So we have ad = a3, cd = c. Now, abd = (a3)3 = a and the
maximal subgroup 〈a, c, bd〉 would be abelian, a contradiction.

2) M ∼= Q8 × Z2, M = 〈a, b, c | a4 = c2 = 1, b2 = a2, ab = a3, [a, c] = [b, c] = 1〉
The group M has only three involutions and K = 〈a2, c〉 = Ω1(M) char M , 〈a2, c〉 C G. Also
〈a2〉 = f1(M) char G. None of elements d ∈ G\M is an involution since otherwise the maximal
subgroups containing 〈a2, c, d〉 would contain more than three involutions, a contradiction.
Because of exp G = exp M , by Theorem 7, each d ∈ G\M is of order 4 and 〈a2, c〉 is contained
in every maximal subgroup. Thus 〈a2, c〉 = Φ(G) = Ω1(G). Since f1(G) = Φ(G), generally, we
can assume without loss that d2 = c. But now 〈a2, c, a, d〉 = 〈a, d〉 is 2 - generated, contradicting
the fact that it should be isomorphic to M .

3) M ∼= Q8 ∗ Z4, M = 〈a, b, c | a4 = 1, b2 = c2 = a2, ab = a3, [a, c] = [b, c] = 1〉
This group contains a unique maximal subgroup isomorphic to Q8, the group K = 〈a, b〉, the
other maximal subgroups being isomorphic to D8 or Z4×Z2. Thus K char M , KCG. Similarly,
Z(M) = 〈c〉 char M and so 〈c〉 C G. The group M has 7 involutions and 8 elements of order
four. As it does not contain any subgroup isomorphic to E8, the group M is generated by
its involutions. Let M1 be another maximal subgroup of G. Then there is some involution
d1 ∈ M1\M and G = 〈M, d1〉. Now 〈K, d1〉 = 〈a, b, d1〉 is maximal in G, 〈K, d1〉 ∼= M ∼=
Q8 × Z4. Thus there exists some d ∈ 〈K, d1〉\K, |d| = 4, d2 = a2 in Z(〈K, d1〉). Thus we have
[a, d] = [b, d] = 1, and also cd ∈ 〈c〉. If cd = c, then d ∈ Z(G), a contradiction as Z(G) 6 Z(M),
by Theorem 6, and d /∈ M . So cd = c3. It follows that (bc)ad = (b3c)d = b3c3 = bc. Now,
(bc)2 = b2c2 = 1 and (ad)2 = a2d2 = 1, so it would be 〈a2, bc, ad〉 ∼= E8. But none maximal
subgroup of G would contain such a group. We get a contradiction.

4) M ∼= E4 · Z4, M = 〈a, b, c | a2 = b2 = c4 = 1, [a, b] = [a, c] = 1, bc = ab〉
Here 〈a, b, c2〉 ∼= E8 and (aαbβc2γc)2 = aαbβc2γc2aαaβbβc2γ = aβc2 6= 1. We see that the groups
〈a〉, K = 〈a, c2〉, and L = 〈a, b, c2〉 = Ω1(M) are all characteristic in M , so 〈a〉, K, L C G. If
d ∈ G\M is an involution, then M1 = 〈L, d〉 contains more than 7 involutions, a contradiction
because M1

∼= M and M has exactly 7 involutions. Thus |d| = 4 for all d ∈ G\L and L =
Ω1(G) = Ω1(M) = Φ(G) = f1(G), by Theorem 10. As f1(M) = Φ(M) = 〈a, c2〉, there exists
some d ∈ G\M so that d2 = aαc2γb ∈ L\K. But now b can be supstituted by d2, as (d2)c = ad2

and we can assume without loss that d2 = b. We see that ad = a, bd = b and (c2)d = ac2 as KCG

and (c2)d = c2 would imply 〈a, b, c2, d〉 = 〈a, c2, d〉 ∼= E4 × Z4 �M , a contradiction. Obviously
cd = aαbβc2γc and so (c2)d = (cd)2 = (bβc)2 = bβc2(bβ)c = bβc2aβbβ = aβc2 = ac2. Therefore
β = 1 and cd = aαbc2γc. From cd2

= cb = ac = (cd)d = (aαbc2γc)d = aαbaγc2γaαbc2γc = aγc it
follows γ = 1, cd = aαbc3, and from (cd)2 = cd2cd = cbaαbc3 = aα 6= 1 that α = 1, cd = abc3.
But now (c3d)2 = (c2cd)2 = c2(cd)2(c2)cd = c2aac2 = 1, a contradiction as |c3d| = 4.



On finite 2-groups all of whose subgroups are mutually isomorphic 7

5) M ∼= Z4 · Z4, M = 〈a, b | a4 = b4 = 1, ab = a3〉
Here Z(M) = Ω1(M) = f1(M) = 〈a2, b2〉 ≡ K. M has 3 involutions and 12 elements of order
four. Among elements of order four there are 8 with square b2 and 4 with square a2. Thus
a2, b2, a2b2 are all characteristic in M and so 〈a2, b2〉 6 Z(G). By Theorem 6. this implies that
Z(G) = Z(M) = K and by Theorem 10. Z(G) = Ω1(G) = Φ(G). Now G/Φ(G) = G/K ∼= E8

and all elements in G\K are of order 4. For any c ∈ G\M we have G = 〈a, b, c〉. It is [a, b] = a2.
Denote [a, c] = z1, [b, c] = z2, c2 = z3. Here z1, z2, z3 ∈ K and z1, z2, z3 6= 1 because the
maximal subgroups 〈a, c, K〉 and 〈b, c,K〉 are not abelian and |c| = 4. Since all maximal
subgroups are nonabelian, we have also [ab, c] = z1z2 6= 1, [a, bc] = a2z1 6= 1, [ac, b] = a2z2 6=
1, [ab, ac] = a2z1z2 6= 1. But now z1z2 ∈ {b2, a2b2}, z1 6= z2 and z1z2 6= a2, a contradiction.

The Theorem is proved.

6 The isomaximal extension of the minimal nonmetacyclic subgroup of order 32

We have

Theorem 14. The minimal nonmetacyclic group of order 32 (see Theorem 1.(d)):
M = 〈a, b, c | a4 = b4 = [a, b] = 1, c2 = a2b2, ac = a3, bc = a2b3〉
has its second - metacyclic extension (see Theorem 2.):
G = 〈a, b, c, d | a4 = b4 = 1, c2 = a2b2, d2 = a2, [a, b] = [c, d] = 1, [a, c] = a2, [b, d] =
b2, [b, c] = [a, d] = a2b2〉
as the unique isomaximal extension.

Proof. According Theorem 1.(d), M has L = 〈a, b〉 ∼= Z4 × Z4 as unique abelian maximal
subgroup, the other 6 being isomorphic to Z4 ·Z4. Here Z(M) = 〈a2, b2〉 = Ω1(M) = Φ(M) ≡ K

and by Theorem 10. K = Z(G) = Φ(G). Thus G/K ∼= E16 and G has 15 maximal subgroups.
On the other side there are exactly 3 maximal subgroups sharing the same subgroup of type
Z4 × Z4. Thus there are just 5 different subgroups in G isomorphic to Z4 × Z4.

Denote the group L by L1. For another such subgroup L2 the intersection L1 ∩L2 does not
contain any element x of order 4, since otherwise CG(x) > 〈L1, L2〉, which is maximal or equals
G, in contradiction with exp Z(M) = 2. So L1 ∩ L2 = K and G = L1 · L2.
Moreover, the five sets Li\K for different groups Li, i = 1, 2, 3, 4, 5, isomorphic to Z4 × Z4

form a partition of the set G\K. Consider now L1 = 〈a, b〉 and L2 = 〈c, d〉 - the Z4 ×Z4 group
which contains c. Now [c, d] = 1 and we can assume without loss that d2 = a2, as there is some
such element in L2.
The groups 〈K, a, d〉 and 〈K, b, d〉 are nonabelian of order 24. Thus [a, d] = z1, [b, d] = z2 for
some z1, z2 ∈ K, z1, z2 6= 1. Obviously CG(a) = CG(b) = 〈a, b〉, and CG(c) = CG(d) = 〈c, d〉.
Therefore [ab, d] = z1z2 6= 1, [a, cd] = a2z1 6= 1, [ab, cd] = a2 · z1 · a2b2 · z2 = b2z1z2 6= 1. Also
acd should be an element of order 4, so (acd)2 = a · (cd)2 · acd = a · b2 · a3z1 = b2z1 6= 1. It
follows easily that z1 = a2b2, z2 = b2, and so [a, d] = a2b2, [b, d] = b2.

The theorem is proved.
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