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Abstract This work introduces the concept of analysis of synergy interactions in chemical (biochemical) reac-
tion systems. The systems are defined by mass balances for reacting species, reaction network is given by .
stoichiometric matrix, reaction (kinetic) parameters, and parameters of interaction between the reaction system
and it's surrounding. Systems analysis is based on statistical evaluation of numerical results of computer simu-
lation of effects of a set of uncorrelated stochastic parameters, defined by corresponding ranges and probability
distributions. From the simulation data are extracted parameter global sensitivities and synergy effects of each
parameter in interaction with the whole system. The global parameter sensitivities are defined as ratios of con-
ditional variances of expected values for each parameter and the total dispersion of simulation data. The syn-
ergy effects are defined as the relative difference between expected values of the conditional variances with ex-
clusion of each parameter and the variance of the conditional expected value of the parameter. Numerical
evaluations are performed by use of sampling the parametric space by Lissajous type of curves and the Fourie
Amplitude Sensitivity Test (FAST) algorithm. The method is applied for analysis of propagation of hepatitis B
virus (HBV) in a stochastic single cell model, and for metabolic control analysis of a branched network. The re-
sults for virus propagation show dominant synergy effect of the system parameters, compared to negligible in-
fluence of individual parameters. The metabolic control analysis show that under homeostatic conditions influ-
ence of the individual enzymes is dominant and the key enzyme responsible for flux regulation is determined.
However, under perturbed homeostatic conditions influence of synergy effects dominates over impact of indi-
vidual parameters. Applicability of the proposed concept is discussed in view of model improvement and po-
tential control of reaction systems.
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of nonlinear reaction kineticé and system struc-
ture given by a constant stoichiometric matrix N

This work is focused on systems analysis and in- ix =N B/(x p C) 1)
formation extraction on individual parameter im- dt ”

portance and their communal interaction in com-
plex reaction systems. The motivation for this
analysis is its application for model development
and improvement by better selection of experiment
design, reduction of model dimension, increased
accuracy of parameter estimation, and determina-
tion of the key parameters for system design and
process control. Schematic presentation of the con-
sidered system is depicted in Fig. 1. Here is the in-
put-output concept redefined in terms of parameter
interaction. A considered reaction system (chemical
or biochemical) is defined by dynamics of state
variablesx, a set of system parametgrsand inter-
action with surroundings expressed by a set - Fig. 1. Systems view of a reaction system defined

1 Introduction

Reaction
system

X - state
p - parameter

Surrounding
O

System boundary

rameters. System dynamics is expressed by a set of
ordinary differential equations defined by a vector
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by concentrations of reacting specieseac-
tion parameters,@nd interaction parameters ¢
with surroundings.
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The stoichiometric matrix are deterministic inte-

gers, usually in the range [-2,2]. Structural proper-
ties of the reaction network are considered to be
fixed, or deterministic, and can evaluated by the
singular value decomposition of the corresponding
stoichiometric matrix

N=UENV' 2)
by which are defined the four fundamental sub-

spaces:

1) the null space contains all the steady state fluxes
(corresponding to homeostasis in a living reaction

system);

2) the row space contains all the dynamic flux dis-

tributions;

3) the left null space contains all the conservation
relationships or time invariants;

4) and the column space contains all possible time
derivatives of concentration vectors.

The stochastic part of the system is associated with
the reaction rates or kinetigs The kinetic models
are derived from the law of mass action, or by
Langmuir-Hinshelwood kinetics in heterogeneous
catalytic systems, or Michaelis-Menten rate expres-
sions when reactions are mediated by enzymes like
in living systems. In general, choice of kinetic
functions can also be considered to be associated
with a certain probability. In this work the main
source of stochastic effects is due to uncertain val-
ues of kinetic parametepsand the interaction with
parameters.c
Reaction system performance is viewed through
mass and energy exchange rates or flukdse-
tween network nodes (reacting species) and its sur-
roundings

3=3(x) (3)
The usual, classical, approach to analysis of pa-
rameter effects on the system performance is evalu-

ated by the local and infinitesimal one parameter at
time sensitivities

3, (1)

4
o (4)

S0, 1) ="

Evaluation of (4) requires simultaneous integration
of the sensitivity equations:

d 8J, _aJ, _dx ©
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d ox _

N [Ea_v [_Pl + a_vj (6)
dtap, ox ap op,
However, evaluation of the effect of perturbation of
an individual parametep, depends on the rest of
the parameters which need to be assumed constant
and accurately known.

2 Problem Formulation

In view of significant uncertainties in models of
complex reaction systems, here is applied a method
of stochastic simulation of the complete set of pa-
rameters. Each paramefelis considered as an in-
dependent random variable with corresponding

probability density distribution functiop, in a fi-
nite range

pD pp[ pmin ! pmax] (7)
System analysis is based on evaluation of the first
and second moments (expected values and vari-
ances) from the multidimensional joint probability
distributions. The first moment is

Pimax PN max

[ mf3.(p,ap,)0

P1min

o R) Toy ( R,) g Mp,

E(‘Jk) = )

PN min

The second moment is the variance of the flux

02( ‘l): E(sz)_ E(Jk)2

The expected value of the ensemble of the square
term is given by

(9)

Pimax PN max
E(32)= [ m ¥ (p.op,)C

P1min

(10)

PN min

Coy( R) Ty ( R,) i Mp,

Effect SKJ’, of each individual parameter on the

flux Jy is evaluated by the ratio of the conditional
variance of a given parameter and the total disper-
sion of the ensemble of parameters

a*(El3/p)

D= (11)
T2,
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Synergy effect of each paramefgiis evaluated by
the difference between the expected value of condi-
tional ensemble variance when all parameters are
fixed exceptp, and the conditional ensemble vari-
ance of the expected value whgris fixed relative

to the total variance:

EﬁE( (4] p.)-

The multidimensional integrals can be numerically
evaluated by Monte Carlo system simulation based
on parameter space sampling by a random genera-
tor. In this work is applied numerically more effi-
cient method proposed by Cukier al. [1-2]. It is
based on application of Lissajous type of curves for
uncorrelated exploration of the parameter space.
Each parameter is associated with a frequency and
simulation results are expanded into Fourier com-
ponents. The numerical procedure is accordingly
called the Fourier Amplitude Sensitivity Test
(FAST) [1-2].

2( E(Jk| P ))](12)

Syd| =

Assumed are uniform probability distributions of
each parameter in a predefined vale range. For ex-
ample, the ranges may be selected from signifi-
cance intervals obtained after parameter estimation
procedure. Alternatively, the ranges may be as-
sumed to cover a whole feasible range of parameter
variations. The parameter ranges are scaled to the
standard range [-1,1]. The uniform probability dis-
tribution is generated by piece wise linear functions
arcsin@in(s)) of a scan variables and two ran-

domly selected parameters, frequency, and
phaseg, , corresponding to each parameter p

B :% + %Darcsi(wsir(ﬂﬂfq 3+¢)) (13)

Integer frequencies are randomly selected in a pre-
selected range, and the scan variable is incremen-
tally covering the complete range [-1,1]. Random
selection of the parameters ensures that the func-
tions (13) are mutually independent, i.e. uncorre-
lated. For each value of the scan variabthesflux

J«(s) is evaluated and the resulting data are interpo-

lated to provide a continuous functid,[(s) which
is expanded into Fourier series

=L Jmodoryes g

ISSN: 1790-5117 302

1 7 .
B, =5 D_j”Ji (9min(wiym@s  (15)

The total dispersion is calculated from the full spe-
ctrum (effectively truncated)

r =20}, (a2 +82)
w=1
Contribution of each parametqg; in the total dis-

persion is calculated from the harmonics of the cor-
responding fundamental frequenay

D, :Zmi(ﬂfJfo))

w=kldy

(16)

(17)

The partial dispersion that measures the effect of all
parameters except the parameids given by

D, zzmi('ﬂz&m + BkZEmJ)

w=kldy

(18)

Global sensitivity factor is determined for each pa-
rameter as the ratio of the dispersion corresponding
to each parameter and the total dispersion

(19)

and the synergistic effect of each parameteasp
the relative difference

1
Syer :1_D_ EQDI + D~|) (20

T

Numerical simulations, random number generation
and Fourier analysis can be efficiently and numeri-
cally accurately evaluated by Wolfram Research
“Mathematicé v.6. software by use of Random-
Real, NDSolve, and Fourier algorithms [3-4].

3 Problem Solutions

3.1. Hepatitis B virus propagation

The method is applied for analysis of single cell
model virus propagation, brought into chemical en-
gineering byRawlings and Ekerdt [5]. Since the

model involves initially a small number of re-
acting species it is considered as an example of
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a stochastic model of a reaction system, de-
picted in Fig. 2. The authors analyze the sys-
tems dynamics by comparing deterministic
with a stochastic Gillespie [6] simulations.

2 -,)'» virusinfection

virus secretion

V

Fig. 2. Schematic presentation of the reaction path-
way of the model of hepatitis B virus (HBV)
infection. The state variables are: covalently
closed circular  deoxyribonucleic  acid
(cccDNA), relaxed circular deoxyribonucleic
acid (rcDNA) and envelope proteins.

The key of the model of propagation is a positive
feedback loop which results in instability and “ex-
plosive” nature of response upon perturbation by
transfer of a virus from surrounding into cell inte-
rior. The reaction system is given by the first and
second order kinetics and the following mecha-
nism:

cccDN£
nucleotide - rcDNA
nucleotidet rcDNA — cccDNA

~ cccDNA
aminacids - envelope

cccDNA -, degraded
envelope- degraded
rcDNA + envelope- secretedvirus

(21)

A typical deterministic behavior is depicted in Fig.
3. Steady state flux df the virus excretion from the
cell into surroundings

J= kﬁ m:rcDNA IZ[‘\'envelope (22)
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Fig. 3. Dynamics of hepatitis B virus single cell
propagation model.

is considered as a measure of system performance
and is analyzed for parameter sensitivity and syn-
ergy effects in the global stochastic environment.
The kinetic parameters are randomly varied in the
range of 2 orders of magnitudes around their de-
terministic values, while the initial concentration of
cccDNA(0) between 0 and 2 molecules per cell.
Results of statistical evaluation of 2000 simulation
cases are depicted as a bi-plot in Fig. 4.
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Fig. 4. Bi-plot of single parameter sensitivities and
synergies for the model of HBV virus propa-
gation. Specific rate coefficients correspond-
ing to the rates given in eq. (21) are denoted
from k; to ks. The initial concentration of
cccDNA is labeled asA

The results show a very distinct property of the
model parameters. The single most important pa-
rameter ik, the specific rate of cccDNA degrada-
tion. The highest synergy effect ig due to the ini-

tial concentration of cccDNA. The total global sin-
gle parameter sensitivities have profoundly lower
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effect compared to their collective synergy. The
comparison of the total effects is depicted in Fig. 5.

Total single paramg
ter sensitivities

Tota
synergy

Fig. 5. Ratio of the single parameter sensitivities
and the total synergy for the model of HBV
virus propagation model.

3.2. Branched metabolic network
The second case of this study is evaluation of syn-

ergy effects in a test case of metabolic control
analysis (MCA) of a branched pathway.

Fig. 6. Scheme of regulation of a branched path-
way. Metabolites engaged in the pathway are
denoted from Mto Mg, and total flux is J

MCA analysis is a part of the new emerging tech-
nologies base on potentials of genetic engineering
[7-9]. The model is used as a standard case due to
its kinetic complexity and application in analysis of
flux redirection at a branch point [10]. The reac-
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tions exhibit strong substrate, cofactor and allos-
teric regulation given by the following kinetics:
Reversible Hill kinetics:

ssi- Psk){ss,+P/p,)"
= (1+(M IM )h)
(95, )+

i)

Ordered bi-bi (reversible) kinetics:

V=V,

+P/P

05

23)

AlB-PIQ/K,,
v=v,
ATBIL+ P/ K, )+ K, {A+K,, )+
(24)
K [B
+QIK, Q1+ ——"— +P 1+£
KiA |:|<mB I<iB
Uni-uni reversible kinetics:
s- P
Keg
v=v, I 5 (25)
S+K,_ [1+——
KmP
O
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Fig.7. Bi-plot of single parameter sensitivities and
synergies under homeostatic conditions.

Statistical MCA results of individual enzymes from
E; to Eg and homeostatic parameters are given by
Kurtanjek [11]. Here the focus is on comparison of
sensitivities and synergy effects in homeostaic (
cofactor, substrat8, and product®, andP,) Fig.

7., and non-homeostatic conditions, Fig. 8. For The
total flux J controlling parameter ig;, the enzyme

at the branch point. Under homeostatic conditions it
has for an order of magnitude higher sensitivity
compared to other enzymes, almost 100 %, and
also has the maximum synergy effect. In this case
total single parameter sensitivities dominates, 88
%, over the total synergy effects 12%, Fig. 9.
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=0 For MCA control of a branched pathway synergy
, A TE ffects b dominant only und tion of
0.100 A effects become dominant only under assumption o
Eq E S perturbation of homeostasis.
0.070 O 1O
P . . .
.,_“"’5“.1 E4O In conclusion, synergy analysis provides a broader
2 P2 O horizon for extraction of system information in a

Y
@)
m
~

S

Foos0 ®©Es parameter space leading to better understanding of
0.020 Es model performance, model improvement and reac-
tion system control.
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of HBV virus propagation reveals that synergy ef-
fects greatly dominate over individual parameters.
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