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1. Introduction and known results

Denote by G2 the set of finite 2-groups, and for any group G denote by
M(G) the set of its maximal subgroups. We consider here the groups which
satisfy the condition stated in the title, which is equivalent with the following
one:

G ∈ G2 and if M ∈ M(G) then |M ′| ≤ 2. (1)

We prove the folowing result, which describes the structure of such groups.

Theorem. Let G be a 2-group whose all proper subgroups have commutator
groups of order ≤ 2. Then we have one of the following cases:

1) if |G′| = 2 then G = H1 ∗ · · · ∗ Hn · Z(G), Hi (i = 1, 2, . . . , n)
being minimal nonabelian subgroups of G, and ∗ denoting the central
product.

2) d(G) = 3, G′ ∼= E8, Φ(G) ≤ Z(G), G = 〈a1, a2, a3〉, [a2, a3] = z1,
[a3, a1] = z2, [a1, a2] = z3, G′ = 〈z1, z2, z3〉. The maximal subgroups
of G are all nonabelian and for maximal M,N ≤ G, M 6= N it is
M ′ 6= N ′.

3) d(G) = 3, G′ ∼= E4, Φ(G) ≤ Z(G), G = 〈a1, a2, a3〉, [a2, a3] = z1,
[a3, a1] = z2, [a1, a2] = 1, G′ = 〈z1, z2〉. There is one abelian maximal
subgroup M1 = 〈a1, a2, Φ(G)〉 and the remaining 6 are nonabelian and
divided in 3 pairs, each pair having the same commutator group.

4) d(G) = 2, G′ ∼= E4 or G′ ∼= Z4, G = 〈a1, a2〉. There are 3 maximal
subgroups M1,M2,M3 such that K = M ′

1
M ′

2
M ′

3
= 〈z〉 ∼= Z2, K < G′

and G/K is minimal nonabelian 2-group.
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In the proof of this theorem we shall use following known results:

Proposition 1.(Janko [2,Proposition 1.7]) Let G be a nonabelian finite 2-
group possesing an abelian maximal subgroup. Then |G| = 2|G′| · |Z(G)|.

Proposition 2.(A. Mann, see Berkovich [1]) Let G be a finite 2-group, M,N
any two different maximal subgroups of G. Then |G′ : M ′N ′| ≤ 2.

Proof. Since M,N ⊳ G, therefore M ′N ′ E G. Also M ′N ′ ≤ G′ ≤ Φ(G).
Thus M/M ′N ′ and N/M ′N ′ are abelian and maximal in G = G/M ′N ′. Ob-

viously, |G : Z(G)| ≤ 4, and so by Proposition 1, G
′

= |G′/M ′N ′| ≤ 2.

Proposition 3.(Janko [3,Proposition 1.6]) Let G be a 2-group with |G′| = 2.
If H is a minimal nonabelian subgroup of G, then G = HCG(H) and
|G : CG(H)| = 4.

Proof. Each minimal nonabelian group H is 2-generated:
For x1, x2 ∈ H, [x1, x2] 6= 1 is 〈x1, x2〉 nonabelian and thus H = 〈x1, x2〉
because of its minimality. Denote Ci = CG(xi), i = 1, 2. Because of |G′| = 2
and |xG| = |G : CG(x)| = |{xg|g ∈ G}| = |{x[x, g]|g ∈ G}| ≤ |G′| = 2, we
have |C : Ci| = 2 for i = 1, 2. Considering C = C1

⋂
C2, we have C = CG(H),

|G : C| ≤ 4, H
⋂

C = Z(H). Since H is nonabelian |H : Z(H)| > 4 and so
|HC| = (|C| · |H|) : |H

⋂
C| > 4|C|. Therefore |G : C| = |H : Z(H)| = 4

and G = HC.

Proposition 4. Let G be a finite 2-group, G′ ≤ Z(G) and exp G′ = 2. Then
Φ(G) ≤ Z(G).

Proof. Let x, g ∈ G. Then [x, g2] = [x, g][x, g]g = [x, g]2 = 1, as [x, g] ∈ G′.
Since Φ(G) = ℧1(G) = 〈g2|g ∈ G〉 for any 2-group G and g2 ∈ Z(G) for all
g ∈ G, we have Φ(G) ≤ Z(G).

Proposition 5. Let G be a 2-generated finite 2-group and |G′| = 2. Then
G is minimal nonabelian.

Proof. Let G = 〈a, b〉. By Proposition 4, Φ(G) ≤ Z(G). As Φ(G) is
maximal in all 3 maximal subgroups M1 = 〈a, Φ(G)〉, M2 = 〈b, Φ(G)〉,
M3 = 〈ab, Φ(G)〉 of G, they are all abelian and so G is minimal abelian.
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2. Proof of the Theorem

We prove our Theorem in several steps.

(i) The case |G′| = 2:
Let H1 = 〈a1, b1〉 be a minimal nonabelian subgroup of G.
Then, by Proposition 3, G = H1CG(H1); if CG(H1) is abelian, so CG(H1) =
Z(G) and we have G = H1Z(G). Otherwise, let H2 = 〈a2, b2〉 be a min-
imal nonabelian subgroup of CG(H1). By the same Proposition 3 we have
CG(H1) = CG(H2) · (CG(H1)

⋂
CG(H2)) = H2 · CG(〈H1, H2〉), and so G =

H1 ∗ H2 · CG(〈H1, H2〉). Continuing in the same way we get fnally G =
H1 ∗ H2 ∗ · · · ∗ Hn · CG(〈H1, . . . , Hn〉), the last factor being abelian and so
equal Z(G). This proves the assertion 1) of the Theorem.

(ii) The order of G′ is at most 8.
Proof. Let M,N be two different maximal subgroups of G. By assumption
|M ′|, |N ′| ≤ 2 and M ′, N ′ E G so |M ′N ′| ≤ 4. By Proposition 2 it is
|G′ : M ′N ′| ≤ 2 and so |G′| ≤ 8.

In the following we denote K = 〈M ′|M ∈ M(G)〉, the group generated
by commutator groups of all maximal subgroups of G. Obviously, K ≤ Z(G)
and exp K = 2.

(iii) If G′ = K and |K| ≥ 4, then d(G) = 3. Moreover Φ(G) ≤ Z(G).
Proof. Let M,N be maximal subgroups of G with M ′N ′ ∼= E4, M ′ = 〈z1〉,
N ′ = 〈z2〉. Then there exist elements a, b ∈ M , c, d ∈ N such that [a, b] =
z1, [c, d] = z2. Now, H = 〈a, b, c, d〉 ≤ G and H ′ ≥ 〈z1, z2〉, |H ′| ≥ 4.
Consequently, H = G = 〈a, b, c, d〉. Consider H1 = 〈a, b, c〉 and H2 = 〈b, c, d〉.
Now [b, c] ≤ 〈a, b, c〉′

⋂
〈b, c, d〉′. If H1 and H2 are different from G, then

[b, c] ≤ H ′

1

⋂
H ′

2
= 〈z1〉 ∩ 〈z1〉 = 1, so [b, c] = 1.

Similary, [a, c] = [a, d] = [b, d] = 1. Consider H = 〈ac, b, d〉. Here, [ac, b] =
[a, b] = z1, [ac, d] = [c, d] = z2, so |H ′

3
| > 2 and therefore H3 = G = 〈ac, b, d〉.

We see that d(G) ≤ 3. If d(G) = 2, then G = 〈x1, x2〉 and [x1, x2] = z ∈
G′ = K, implying G′ = 〈[x1, x2]

G〉 = 〈z〉 ∼= Z2, a contradiction. So, d(G) = 3.
From Proposition 3 we see immediately that Φ(G) ≤ Z(G).

(iv) If |K| ≥ 4 then G′ = K.
Proof. For |K| = 8 it is trivial, as |G′| ≤ 8. Suppose |K| = 4 and |G′| = 8.
So G′ > K ∼= E4. Let a, b ∈ G such that [a, b] = c ∈ G′

r K. If 〈a, b〉 ≤ M
for some maximal M ≤ G then c = [a, b] ≤ M ′ ≤ K. Thus 〈a, b〉 = G and
d(G) = 2. There are 3 maximal subgroups in G:

M1 = 〈a, Φ(G)〉, M2 = 〈b, Φ(G)〉, and M3 = 〈ab, Φ(G)〉.
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As (G/K)′ = G′/K ∼= Z2, it follows G′/K ≤ Z(G/K) and so [c, x] ∈ K ≤
Z(G) for every x ∈ G. Therefore [c, x2] = [c, x][c, x]x = [c, x]2 = 1. Now
[a, b2] = [a, b][a, b]b = ccb ∈ M ′

1
, [a2, b] = [a, b]a[a, b] = cca ∈ M ′

2
, [a2, ab] =

[a2, b] = cca ∈ M ′

3

⋂
M ′

2
and [ab, b2] = [a, b2]b = cbcb2 = ccb ∈ M ′

3

⋂
M ′

1
.

If cca 6= 1 or ccb 6= 1, then M ′

3
= M ′

2
or M ′

3
= M ′

1
, respectively, and so, by

Proposition 2, |G′| = 4. Thus cca = ccb = 1, and so ca = c−1 = cb, and
cab = c. It follows that G′ = 〈cG〉 = 〈c〉 is cyclic, a contradiction. Thus
G′ = K.

(v) Case G′ = K ∼= E8

Since d(G) = 3 and M ′ 6= N ′, M ′N ′ ∼= E4 for different maximal subgroups
M,N , each involution in G′ generates commutator group for exactly one of
7 maximal subgroups in G. Thus we have, without loss of generality:

G = 〈a1, a2, a3| ami

i = zδi

1
zεi

2
zζi

3
, [ai, aj] = zk, 〈z1, z2, z3〉 = G′〉,

where i = 1, 2, 3 and {i, j, k} = {1, 2, 3}, δi, εi, ζi ∈ {0, 1} and mi being the
order of āi in Ḡ = G/K. The established facts prove the part 2) of our
Theorem.

(vi) Case G′ = K ∼= E4.
Again, by (iii) d(G) = 3 and Φ(G) ≤ Z(G).
By Proposition 2 there cannot exist more than one abelian maximal subgroup
in G. Thus there exist two maximal subgroups M1,M2 with M ′

1
= M ′

2
= 〈z〉,

1 6= z ∈ G′. Denote by x3 an element of M1

⋂
M2 rΦ(G) and x1 ∈ M1 rM2,

x2 ∈ M2 r M1. So M1 = 〈x1, x3, Φ(G)〉, M2 = 〈x2, x3, Φ(G)〉. We have
[x1, x3] = [x2, x3] = z and [x1, x2, x3] = [x1, x3][x2, x3] = z · z = 1.
For M3 = 〈x1x2, x3, Φ(G)〉, which is also maximal in G, it is M ′

3
= 〈[x1x2, x3]〉

′ =
1. We see that there is a unique abelian maximal subgroup in G.

After some renaming of generators we get the following relations for G:

G = 〈a1, a2, a3| ami

i = zδi

1
zεi

2
, [a1, a2] = 1, [a1, a3] = z1, [a2, a3] = z2〉,

where i = 1, 2, 3, δi, εi ∈ {0, 1} and mi being the order of āi in Ḡ = G/K.
One can easily check that besides M = 〈a1, a2, Φ(G)〉 which is abelian, the
other six maximal subgroups are all nonabelian and are divided in 3 pairs
with commutator groups 〈z1〉, 〈z2〉 and 〈z1, z2〉, respectively. This proves the
part 3) of the Theorem.

(vii) Case G′ > K.
By (iv) and Proposition 2 we have in this case |G′| = 4 and |K| = 2. If
[a, b] = c ∈ G′

r K then G = 〈a, b〉, d(G) = 2, since otherwise [a, b] would be
in K = 〈M ′|M maximal in G〉. Now (G/K)′ = G′/K ∼= Z2 and G/K is 2-
generated. Applying Proposition 5 we see that G/K is minimal nonabelian.
This proves the part 4) of the Theorem.
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The Theorem is proved.
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