Finite 2-groups all of whose proper subgroups have commutator groups of order ≤ 2 .

Vladimir Ćepulić	Olga S. Pyliavska
University of Zagreb	National University
Zagreb, Croatia	Kyiv-Mohyla Academy
	Kyiv, Ukraine

1. Introduction and known results

Denote by \mathcal{G}_2 the set of finite 2-groups, and for any group G denote by $\mathcal{M}(G)$ the set of its maximal subgroups. We consider here the groups which satisfy the condition stated in the title, which is equivalent with the following one:

$$G \in \mathcal{G}_2$$
 and if $M \in \mathcal{M}(G)$ then $|M'| \le 2.$ (1)

We prove the following result, which describes the structure of such groups.

Theorem. Let G be a 2-group whose all proper subgroups have commutator groups of order ≤ 2 . Then we have one of the following cases:

- 1) if |G'| = 2 then $G = H_1 * \cdots * H_n \cdot Z(G)$, H_i $(i = 1, 2, \ldots, n)$ being minimal nonabelian subgroups of G, and * denoting the central product.
- 2) $d(G) = 3, G' \cong E_8, \Phi(G) \leq Z(G), G = \langle a_1, a_2, a_3 \rangle, [a_2, a_3] = z_1, [a_3, a_1] = z_2, [a_1, a_2] = z_3, G' = \langle z_1, z_2, z_3 \rangle$. The maximal subgroups of G are all nonabelian and for maximal $M, N \leq G, M \neq N$ it is $M' \neq N'$.
- 3) $d(G) = 3, G' \cong E_4, \Phi(G) \leq Z(G), G = \langle a_1, a_2, a_3 \rangle, [a_2, a_3] = z_1, [a_3, a_1] = z_2, [a_1, a_2] = 1, G' = \langle z_1, z_2 \rangle$. There is one abelian maximal subgroup $M_1 = \langle a_1, a_2, \Phi(G) \rangle$ and the remaining 6 are nonabelian and divided in 3 pairs, each pair having the same commutator group.
- 4) $d(G) = 2, G' \cong E_4$ or $G' \cong Z_4, G = \langle a_1, a_2 \rangle$. There are 3 maximal subgroups M_1, M_2, M_3 such that $K = M'_1 M'_2 M'_3 = \langle z \rangle \cong Z_2, K < G'$ and G/K is minimal nonabelian 2-group.

In the proof of this theorem we shall use following known results:

Proposition 1.(Janko [2,Proposition 1.7]) Let G be a nonabelian finite 2group possessing an abelian maximal subgroup. Then $|G| = 2|G'| \cdot |Z(G)|$.

Proposition 2.(A. Mann, see Berkovich [1]) Let G be a finite 2-group, M, N any two different maximal subgroups of G. Then $|G': M'N'| \leq 2$.

Proof. Since $M, N \triangleleft G$, therefore $M'N' \trianglelefteq G$. Also $M'N' \le G' \le \Phi(G)$. Thus M/M'N' and N/M'N' are abelian and maximal in $\overline{G} = G/M'N'$. Obviously, $|\overline{G} : Z(\overline{G})| \le 4$, and so by Proposition 1, $\overline{G}' = |G'/M'N'| \le 2$.

Proposition 3. (Janko [3, Proposition 1.6]) Let G be a 2-group with |G'| = 2. If H is a minimal nonabelian subgroup of G, then $G = HC_G(H)$ and $|G: C_G(H)| = 4$.

Proof. Each minimal nonabelian group H is 2-generated:

For $x_1, x_2 \in H$, $[x_1, x_2] \neq 1$ is $\langle x_1, x_2 \rangle$ nonabelian and thus $H = \langle x_1, x_2 \rangle$ because of its minimality. Denote $C_i = C_G(x_i)$, i = 1, 2. Because of |G'| = 2and $|x^G| = |G : C_G(x)| = |\{x^g | g \in G\}| = |\{x[x, g] | g \in G\}| \leq |G'| = 2$, we have $|C : C_i| = 2$ for i = 1, 2. Considering $C = C_1 \cap C_2$, we have $C = C_G(H)$, $|G : C| \leq 4, H \cap C = Z(H)$. Since H is nonabelian $|H : Z(H)| \geq 4$ and so $|HC| = (|C| \cdot |H|) : |H \cap C| \geq 4|C|$. Therefore |G : C| = |H : Z(H)| = 4and G = HC.

Proposition 4. Let G be a finite 2-group, $G' \leq Z(G)$ and exp G' = 2. Then $\Phi(G) \leq Z(G)$.

Proof. Let $x, g \in G$. Then $[x, g^2] = [x, g][x, g]^g = [x, g]^2 = 1$, as $[x, g] \in G'$. Since $\Phi(G) = \mathcal{O}_1(G) = \langle g^2 | g \in G \rangle$ for any 2-group G and $g^2 \in Z(G)$ for all $g \in G$, we have $\Phi(G) \leq Z(G)$.

Proposition 5. Let G be a 2-generated finite 2-group and |G'| = 2. Then G is minimal nonabelian.

Proof. Let $G = \langle a, b \rangle$. By Proposition 4, $\Phi(G) \leq Z(G)$. As $\Phi(G)$ is maximal in all 3 maximal subgroups $M_1 = \langle a, \Phi(G) \rangle$, $M_2 = \langle b, \Phi(G) \rangle$, $M_3 = \langle ab, \Phi(G) \rangle$ of G, they are all abelian and so G is minimal abelian.

2. Proof of the Theorem

We prove our Theorem in several steps.

(*i*) The case |G'| = 2:

Let $H_1 = \langle a_1, b_1 \rangle$ be a minimal nonabelian subgroup of G.

Then, by Proposition 3, $G = H_1C_G(H_1)$; if $C_G(H_1)$ is abelian, so $C_G(H_1) = Z(G)$ and we have $G = H_1Z(G)$. Otherwise, let $H_2 = \langle a_2, b_2 \rangle$ be a minimal nonabelian subgroup of $C_G(H_1)$. By the same Proposition 3 we have $C_G(H_1) = C_G(H_2) \cdot (C_G(H_1) \bigcap C_G(H_2)) = H_2 \cdot C_G(\langle H_1, H_2 \rangle)$, and so $G = H_1 * H_2 \cdot C_G(\langle H_1, H_2 \rangle)$. Continuing in the same way we get finally $G = H_1 * H_2 * \cdots * H_n \cdot C_G(\langle H_1, \ldots, H_n \rangle)$, the last factor being abelian and so equal Z(G). This proves the assertion 1) of the Theorem.

 $|M'|, |N'| \leq 2$ and $M', N' \leq G$ so $|M'N'| \leq 4$. By Proposition 2 it is $|G': M'N'| \leq 2$ and so $|G'| \leq 8$. In the following we denote $K = \langle M'|M \in \mathcal{M}(G) \rangle$, the group generated

In the following we denote $K = \langle M' | M \in \mathcal{M}(G) \rangle$, the group generated by commutator groups of all maximal subgroups of G. Obviously, $K \leq Z(G)$ and exp K = 2.

(iii) If G' = K and $|K| \ge 4$, then d(G) = 3. Moreover $\Phi(G) \le Z(G)$. Proof. Let M, N be maximal subgroups of G with $M'N' \cong E_4$, $M' = \langle z_1 \rangle$, $N' = \langle z_2 \rangle$. Then there exist elements $a, b \in M, c, d \in N$ such that $[a, b] = z_1, [c, d] = z_2$. Now, $H = \langle a, b, c, d \rangle \le G$ and $H' \ge \langle z_1, z_2 \rangle$, $|H'| \ge 4$. Consequently, $H = G = \langle a, b, c, d \rangle$. Consider $H_1 = \langle a, b, c \rangle$ and $H_2 = \langle b, c, d \rangle$. Now $[b, c] \le \langle a, b, c \rangle' \bigcap \langle b, c, d \rangle'$. If H_1 and H_2 are different from G, then $[b, c] \le H'_1 \bigcap H'_2 = \langle z_1 \rangle \cap \langle z_1 \rangle = 1$, so [b, c] = 1.

Similary, [a, c] = [a, d] = [b, d] = 1. Consider $H = \langle ac, b, d \rangle$. Here, $[ac, b] = [a, b] = z_1$, $[ac, d] = [c, d] = z_2$, so $|H'_3| > 2$ and therefore $H_3 = G = \langle ac, b, d \rangle$. We see that $d(G) \leq 3$. If d(G) = 2, then $G = \langle x_1, x_2 \rangle$ and $[x_1, x_2] = z \in G' = K$, implying $G' = \langle [x_1, x_2]^G \rangle = \langle z \rangle \cong Z_2$, a contradiction. So, d(G) = 3. From Proposition 3 we see immediately that $\Phi(G) \leq Z(G)$.

(iv) If $|K| \ge 4$ then G' = K.

Proof. For |K| = 8 it is trivial, as $|G'| \le 8$. Suppose |K| = 4 and |G'| = 8. So $G' > K \cong E_4$. Let $a, b \in G$ such that $[a, b] = c \in G' \setminus K$. If $\langle a, b \rangle \le M$ for some maximal $M \le G$ then $c = [a, b] \le M' \le K$. Thus $\langle a, b \rangle = G$ and d(G) = 2. There are 3 maximal subgroups in G:

$$M_1 = \langle a, \Phi(G) \rangle, \ M_2 = \langle b, \Phi(G) \rangle, \ \text{and} \ M_3 = \langle ab, \Phi(G) \rangle$$

As $(G/K)' = G'/K \cong Z_2$, it follows $G'/K \leq Z(G/K)$ and so $[c, x] \in K \leq Z(G)$ for every $x \in G$. Therefore $[c, x^2] = [c, x][c, x]^x = [c, x]^2 = 1$. Now $[a, b^2] = [a, b][a, b]^b = cc^b \in M'_1$, $[a^2, b] = [a, b]^a [a, b] = cc^a \in M'_2$, $[a^2, ab] = [a^2, b] = cc^a \in M'_3 \cap M'_2$ and $[ab, b^2] = [a, b^2]^b = c^b c^{b^2} = cc^b \in M'_3 \cap M'_1$. If $cc^a \neq 1$ or $cc^b \neq 1$, then $M'_3 = M'_2$ or $M'_3 = M'_1$, respectively, and so, by Proposition 2, |G'| = 4. Thus $cc^a = cc^b = 1$, and so $c^a = c^{-1} = c^b$, and $c^{ab} = c$. It follows that $G' = \langle c^G \rangle = \langle c \rangle$ is cyclic, a contradiction. Thus G' = K.

(v) Case $G' = K \cong E_8$

Since d(G) = 3 and $M' \neq N'$, $M'N' \cong E_4$ for different maximal subgroups M, N, each involution in G' generates commutator group for exactly one of 7 maximal subgroups in G. Thus we have, without loss of generality:

$$G = \langle a_1, a_2, a_3 | a_i^{m_i} = z_1^{\delta_i} z_2^{\varepsilon_i} z_3^{\zeta_i}, \ [a_i, a_j] = z_k, \ \langle z_1, z_2, z_3 \rangle = G' \rangle,$$

where i = 1, 2, 3 and $\{i, j, k\} = \{1, 2, 3\}, \delta_i, \varepsilon_i, \zeta_i \in \{0, 1\}$ and m_i being the order of \bar{a}_i in $\bar{G} = G/K$. The established facts prove the part 2) of our Theorem.

(vi) Case $G' = K \cong E_4$.

Again, by (iii) d(G) = 3 and $\Phi(G) \leq Z(G)$.

By Proposition 2 there cannot exist more than one abelian maximal subgroup in G. Thus there exist two maximal subgroups M_1, M_2 with $M'_1 = M'_2 = \langle z \rangle$, $1 \neq z \in G'$. Denote by x_3 an element of $M_1 \bigcap M_2 \smallsetminus \Phi(G)$ and $x_1 \in M_1 \smallsetminus M_2$, $x_2 \in M_2 \smallsetminus M_1$. So $M_1 = \langle x_1, x_3, \Phi(G) \rangle$, $M_2 = \langle x_2, x_3, \Phi(G) \rangle$. We have $[x_1, x_3] = [x_2, x_3] = z$ and $[x_1, x_2, x_3] = [x_1, x_3][x_2, x_3] = z \cdot z = 1$. For $M_3 = \langle x_1 x_2, x_3, \Phi(G) \rangle$, which is also maximal in G, it is $M'_3 = \langle [x_1 x_2, x_3] \rangle' =$

1. We see that there is a unique abelian maximal subgroup in G.

After some renaming of generators we get the following relations for G:

$$G = \langle a_1, a_2, a_3 | a_i^{m_i} = z_1^{\delta_i} z_2^{\varepsilon_i}, \ [a_1, a_2] = 1, \ [a_1, a_3] = z_1, \ [a_2, a_3] = z_2 \rangle,$$

where $i = 1, 2, 3, \delta_i, \varepsilon_i \in \{0, 1\}$ and m_i being the order of \bar{a}_i in $\bar{G} = G/K$. One can easily check that besides $M = \langle a_1, a_2, \Phi(G) \rangle$ which is abelian, the other six maximal subgroups are all nonabelian and are divided in 3 pairs with commutator groups $\langle z_1 \rangle, \langle z_2 \rangle$ and $\langle z_1, z_2 \rangle$, respectively. This proves the part 3) of the Theorem.

(vii) Case G' > K.

By (iv) and Proposition 2 we have in this case |G'| = 4 and |K| = 2. If $[a,b] = c \in G' \setminus K$ then $G = \langle a,b \rangle$, d(G) = 2, since otherwise [a,b] would be in $K = \langle M'|M$ maximal in $G \rangle$. Now $(G/K)' = G'/K \cong Z_2$ and G/K is 2-generated. Applying Proposition 5 we see that G/K is minimal nonabelian. This proves the part 4) of the Theorem.

The Theorem is proved.

Acknowledgement. The authors thank Prof. Zvonimir Janko for suggesting us to investigate this problem.

REFERENCES

[1] Y. Berkovich, On subgroups and epimorphic images of finite p-groups, J.Algebra 248 (2002), 472-553.

[2] Z. Janko, Finite 2-groups with exactly four cyclic subgroups of order 2^n , J.f.d.reine und angew. Mathematik 566 (2004), 135-181.

[3] Z. Janko, Finite p-groups in which any two non-normal subgroups of the same order are conjugate, manuscript, June 2007.