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1. Introduction and known results

Denote by G, the set of finite 2-groups, and for any group G denote by
M(G) the set of its maximal subgroups. We consider here the groups which
satisfy the condition stated in the title, which is equivalent with the following
one:

G € Gy and if M € M(G) then |M'| < 2. (1)

We prove the folowing result, which describes the structure of such groups.

Theorem. Let G be a 2-group whose all proper subgroups have commutator
groups of order < 2. Then we have one of the following cases:

1) if |G'| = 2 then G = Hyx---x H, - Z(G), H; (i = 1,2,...,n)
being minimal nonabelian subgroups of G, and * denoting the central

product.

2) d(G) = 3, GI = Eg, @(G) S Z(G), G = <Cl1,a,2,a3>, [&2,&3] = 21,
l[as, a1] = 2z, [a1,a2] = z3, G’ = (21, 22, 23). The maximal subgroups
of G are all nonabelian and for maximal M, N < G, M # N it is
M' #£ N'.

3) d(G) = 3, G = E4, @(G) S Z(G), G = (al,ag,a3>, [ag,ag] = Z1,
las, a1] = 2o, [a1,a2] = 1, G' = (21, z2). There is one abelian maximal
subgroup M; = (ay,as, (G)) and the remaining 6 are nonabelian and
divided in 3 pairs, each pair having the same commutator group.

4) d(G) =2, G = Eyor G' = Zy, G = (ay,a2). There are 3 maximal
subgroups My, My, M3 such that K = M{MjM} = (z) = Zy, K < G’
and G/K is minimal nonabelian 2-group.



In the proof of this theorem we shall use following known results:

Proposition 1.(Janko [2,Proposition 1.7]) Let G be a nonabelian finite 2-
group possesing an abelian maximal subgroup. Then |G| = 2|G'| - |Z(G)].

Proposition 2.(A. Mann, see Berkovich [1]) Let G be a finite 2-group, M, N
any two different maximal subgroups of G. Then |G’ : M'N'| < 2.

Proof. Since M, N < G, therefore M'N'" < G. Also M'N' < G' < ¢(G).
Thus M/M’'N" and N/M'N" are abelian and maximal in G = G/M'N’. Ob-
viously, |G : Z(G)| < 4, and so by Proposition 1, G = |G//M'N'| < 2.

Proposition 3.(Janko [3,Proposition 1.6]) Let G be a 2-group with |G| = 2.
If H is a minimal nonabelian subgroup of G, then G = HCg(H) and
|G : Co(H)| = 4.

Proof. Each minimal nonabelian group H is 2-generated:

For x1,29 € H, [x1,22] # 1 is (x1,25) nonabelian and thus H = (21, x9)
because of its minimality. Denote C; = Cg(x;), i = 1,2. Because of |G| = 2
and |2°] = |G : Ca(x)| = {a2%]g € G} = Halz,gllg € G} < |G'] = 2, we
have |C': C;| = 2fori = 1,2. Considering C' = C} [ Cs, we have C = Cg(H),
|G :C| <4, HNC = Z(H). Since H is nonabelian |H : Z(H)| > 4 and so
|HC| = (|C| - |H|) : [HNC| = 4|C|. Therefore |G : C| = |H : Z(H)| =4
and G = HC.

Proposition 4. Let G be a finite 2-group, G’ < Z(G) and exp G’ = 2. Then
O(G) < Z(G).

Proof. Let z,g € G. Then [z,¢%] = [z,9][z,9]? = [z,9]> =1, as [z,g] € G".
Since ®(G) = U1(G) = {¢*|g € G) for any 2-group G and g*> € Z(G) for all
g € G, we have ®(G) < Z(G).

Proposition 5. Let G be a 2-generated finite 2-group and |G’| = 2. Then
G is minimal nonabelian.

Proof. Let G = (a,b). By Proposition 4, ®(G) < Z(G). As ®(G) is
maximal in all 3 maximal subgroups M; = (a,®(G)), My = (b, ®(G)),
Ms = (ab, ®(G)) of G, they are all abelian and so G is minimal abelian.



2. Proof of the Theorem

We prove our Theorem in several steps.

(i) The case |G'| = 2:
Let Hy; = (a1, b;) be a minimal nonabelian subgroup of G.
Then, by Proposition 3, G = H,Cq(H,); if Co(H;) is abelian, so Cq(H;) =
Z(G) and we have G = H,Z(G). Otherwise, let Hy = (as,bs) be a min-
imal nonabelian subgroup of Cg(H;). By the same Proposition 3 we have
Cg<H1) = Cg(HQ) : (Cg(Hl)mCG(HQ)) = H2 : Cg(<H1,H2>), and so G =
H, % Hy - C((Hy, Hs)). Continuing in the same way we get fnally G =
Hy*« Hyx---x H, -Cg((Hy,...,Hy,)), the last factor being abelian and so
equal Z(G). This proves the assertion 1) of the Theorem.

(ii) The order of G' is at most 8.
Proof. Let M, N be two different maximal subgroups of G. By assumption
|M'|,IN'| < 2 and M',N" < G so |[M'N’| < 4. By Proposition 2 it is
|G’ : M'N'| <2 and so |G'| < 8.

In the following we denote K = (M'|M € M(Q)), the group generated
by commutator groups of all maximal subgroups of G. Obviously, K < Z(G)
and exp K = 2.

(iii) If G' = K and |K| > 4, then d(G) = 3. Moreover ®(G) < Z(G).

Proof. Let M, N be maximal subgroups of G with M'N" = E;, M’ = (z
N’ = (z3). Then there exist elements a,b € M, ¢,d € N such that [a,b]
21, l¢,d] = z. Now, H = (a,b,c,d) < G and H' > (z,2), |H'| >
Consequently, H = G = (a, b, ¢,d). Consider H; = (a, b, c) and Hy = (b, ¢, d).
Now [b,c] < (a,b,c)'((b,c,d)'. If Hy and Hy are different from G, then
[b,c] < H(H)y=(z1)N(z1) =1,s0 [b,c] =1.
Similary, [a,c|] = [a,d] = [b,d] = 1. Consider H = (ac,b,d). Here, [ac,b] =
[a,b] = 21, |ac,d] = [¢,d] = 29, so |Hj| > 2 and therefore Hy = G = (ac, b, d).
We see that d(G) < 3. If d(G) = 2, then G = (x1,x9) and [v1,29] = 2z €
G' = K, implying G’ = ([x1, 7]%) = (2) = Z,, a contradiction. So, d(G) = 3.
From Proposition 3 we see immediately that ®(G) < Z(G).

() If |K| > 4 then G' = K.

Proof. For |K| = 8 it is trivial, as |G| < 8. Suppose |K| =4 and |G'| = 8.
So G’ > K = Ej. Let a,b € G such that [a,b] =ce G' N K. If (a,b) < M
for some maximal M < G then ¢ = [a,b] < M’ < K. Thus (a,b) = G and
d(G) = 2. There are 3 maximal subgroups in G:

M, = (a,®(G)), My = (b,®(G)), and My = (ab, ®(G)).



As (G/K) = G'/K = Zs, it follows G'/K < Z(G/K) and so [c,z] € K <
Z(@) for every x € G. Therefore [c 22| = [e,x][c,x]® = [c,z]* = 1. Now
[a,b2] [a,b][a,b)’ = cc® € M], [a®b] = [a,b][a, b] = cc” € My, [a? ab] =
[a?,b] = cc® GM’ﬂM’ and [ab, b?] = [a, 1]’ = & = e € M4 M].

If cc® # 1 or ec® # 1, then M} = M), or M} = Mj, respectively, and so by
Proposition 2, |G'| = 4. Thus cc® = cc® = 1, and so ¢* = ¢! = ¢}, and
c® = c. Tt follows that G’ = (c%) = (c) is cyclic, a contradiction. Thus
G =K.

(v) Case G' = K = Fyg
Since d(G) = 3 and M’ # N', M'N’" = FE, for different maximal subgroups
M, N, each involution in G’ generates commutator group for exactly one of
7 maximal subgroups in GG. Thus we have, without loss of generality:

G = (a1, a9, a3| a™ = 222525 | [as, a;] = 21, (21,22, 23) = G'),

where i = 1,2,3 and {4,j,k} = {1,2,3}, d;,€;,(; € {0,1} and m; being the
order of a; in G = G/K. The established facts prove the part 2) of our
Theorem.

(vi) Case G' = K = Ej.
Again, by (iil) d(G) = 3 and ®(G) < Z(G).
By Proposition 2 there cannot exist more than one abelian maximal subgroup
in G. Thus there exist two maximal subgroups M;, My with M| = M} = (z),
1 # z € G'. Denote by x3 an element of M; (| My~ ®(G) and z1 € My~ My,
To € M2 AN Ml. So M1 = <$1,.T3, @(G)), M2 = <$2,LE3, CI)(G>> We have
[r1, 23] = [X9, 23] = z and [z1, X9, 23] = [11, 23][X0, 23] = 2+ 2 = 1.
For M3 = (x1x9, x3, ®(G)), which is also maximal in G, it is M} = ([x122, x3])’
1. We see that there is a unique abelian maximal subgroup in G.

After some renaming of generators we get the following relations for G:

G = <a1,a2,a3| ai = Zis Z;C [al,aﬂ =1, [a1,a3] = Z21, [a2,a3] = 22>7

where i = 1,2,3, §;,&; € {0,1} and m; being the order of a; in G = G/K.
One can easily check that besides M = (ay, as, (G)) which is abelian, the
other six maximal subgroups are all nonabelian and are divided in 3 pairs
with commutator groups (z1), (z2) and (z1, 22), respectively. This proves the
part 3) of the Theorem.

(vii) Case G' > K.
By (iv) and Proposition 2 we have in this case |G'| = 4 and |K| = 2. If
[a,b] = c € G'\ K then G = (a,b), d(G) = 2, since otherwise [a, b] would be
in K = (M'|M maximal in G). Now (G/K) = G'/K = Z; and G/K is 2-
generated. Applying Proposition 5 we see that G/K is minimal nonabelian.
This proves the part 4) of the Theorem.
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The Theorem is proved.
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