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Abstract - This paper presents the design space exploration of 
a multi-core implementation of the JPEG algorithm using the 
Embedded System Environment (ESE). ESE is a tool-set, 
which enables multi-core system design by high-level 
modeling of both the hardware platform and software 
application. In order to define an application model for ESE, 
sequential JPEG code written in C was partitioned and 
translated into concurrent processes, which communicate via 
abstract channels. The application model is then mapped on 
the system platform captured as a graphical netlist consisted 
out of SW and HW cores, buses and buffers. ESE provides 
means for automatic translation of these models to 
Transaction Level Models (TLM) in order of seconds. High-
speed TLM simulation was used to identify possible 
bottlenecks and evaluate different design options for both 
HW and SW partitioning of the JPEG algorithm application. 
The obtained experimental results have shown that such 
approach may find a good solution regarding specific design 
constraints in a very short time. 

 
 

I. INTRODUCTION 
 

The high-performance requirements and stringent design 
constraints imposed on modern embedded systems are 
making the designer's job increasingly difficult. This is 
especially challenging in the field of mobile devices, which 
usually have to support a wide range of multimedia 
capabilities, which require high-performance and low 
power consumption at the same time. This is impossible 
using a traditional design flow based on a single general-
purpose or DSP processor and sequential software. These 
systems require careful planning of system architecture and 
design of custom hardware. On the other hand, the market 
demands that new devices must be available as soon as 
possible. Shortened time-to-market imposes shortened 
design time, which makes it extremely difficult to evaluate 
different design options and design custom hardware. 
Single-processor software-based design flow can be 
viewed as the approach which has the highest design 
productivity (i.e. shortest time-to-market), but lowest 
design quality in terms of performance and power 
utilization. The problem with this approach is that it is 
often unable to meet the required design constraints. The 
other extreme is the implementation of the whole design in 
custom hardware, which offers high design quality but 
usually prolongs time-to-market to levels unacceptable for 
consumer devices. Design approach based on 
heterogeneous multi-core systems-on-chip represents a 
trade-off between these extremes. Such approach allows 
for a design of high-performance and low-power systems, 
while keeping time-to-market short enough for consumer 
electronics. 

Heterogeneous multi-core systems are essentially a 
collection of general-purpose processors, DSP processors, 
custom hardware accelerators and various other cores, such 
as memories, bus modules, peripheral devices etc. 
Hardware accelerators can either be specifically designed 
or automatically generated in order to accelerate a 
particular time-critical application task. The main 
advantage of using multi-core systems is their ability to use 
task-level parallelism inherent to the application. Parallel 
execution enables performing the same amount of work in 
fewer clock cycles, thus lowering the system frequency 
while maintaining the required performance. Lowering the 
frequency reduces the power consumption and enables 
meeting low-power constraints.  

However, multi-core systems are difficult to design, 
both from hardware and software point of view. Because 
of the wide choice of processing elements (PEs) and 
possible hardware/software partitioning strategies and 
parallelization techniques, design space exploration is 
extremely time-consuming process. To efficiently explore 
the design space and find appropriate hardware platform 
and adequate software mapping in a reasonable amount of 
time, systems are usually modeled on a higher level of 
abstraction. Such high-level model is then used to drive 
simulation-based evaluation of alternative designs and to 
synthesize and implement the final system. According to 
the application-specific constraints, design can be 
optimized with respect for speed, chip area or power 
consumption. Special system-level design tools like the 
Embedded System Environment (ESE) are used to 
facilitate this design process and automate generation of 
different models employed for simulation, synthesis and 
implementation [4].  

Image encoding algorithms have become a popular 
example in studying multi-core system on chip design 
methodology, hardware/software co-design as well as 
custom acceleration. In this paper, we present the design 
space exploration of a multi-core JPEG encoder 
application [19] using ESE tool-set. Different HW/SW 
partitioning schemes are analyzed and corresponding 
functional and timed properties are estimated and verified.   

 
 

II. DESIGN SPACE EXPLORATION OVERVIEW 
 

Design space exploration is a process of exploring and 
evaluating different design alternatives in order to find a 
configuration, which fits specific design constrains [9]. 
The values for certain design parameters can be 
determined statically (e.g. the estimated maximum 
frequency), but evaluating a design alternative usually 
involves simulation. Simulation is also used for verifying 
functional correctness of the system when changes are 
made. The growing complexity of modern systems, i.e. the 



increasing amount of software and the number of PEs are 
making low-level simulation extremely difficult and time-
consuming. With the advent of multi-core systems, rapidly 
growing software content and shortened time-to-market, 
RTL modeling and verification is no longer practical. It is 
certain that size, complexity and heterogeneity of future 
multi-core systems will present a problem even for models 
targeted at Instruction Set Simulators (ISS). To enable 
faster simulation and faster design time, systems need to be 
modeled on a higher-level of abstraction. High-level 
models sacrifice some of the accuracy in measuring design 
parameters to enable simulating the design in a reasonable 
amount of time. In this way, it is possible to explore 
several design alternatives and design process can 
converge more quickly to a solution that meets specified 
constraints. 

Transaction level modeling has emerged as the next 
level of abstraction for system design. Transaction Level 
Model (TLM) approach clearly separates communication 
details among modules from the implementation specific 
details of these modules [5]. Communication is modeled 
using channels, which are simply a repository for 
communication services. Transaction requests take place 
by calling interface functions of these channels, which 
encapsulate low-level details of the information exchange. 
At the transaction level, the emphasis is more on the 
functionality of the data transfers - what data are 
transferred to and from what locations - and less on their 
actual implementation.  

 
A. Related Work 

 

In recent years, there has been a lot of research on DSE 
addressing the problem at the higher level of abstraction. 
As a result, several modeling environments for system 
design and synthesis were developed. Balarin et al. [2] 
present Metropolis, a DSE environment that integrates 
tools for simulation, verification, and synthesis. Metropolis 
supports refinement and abstraction, thus allowing top-
down and bottom-up methodologies with a meet-in-the-
middle approach. Sesame [15] is a tool for performance 
evaluation and exploration of heterogeneous architectures 
for the multimedia application domain. In Sesame, 
application specification is given as a Kahn process 
network modeled with a C++ class library. Platform is 
built from building blocks accessible in the library. By 
simulating TL model of the application, performance 
evaluation can be done. In order to co-simulate the 
application and the architecture, a trace-driven simulation 
approach technique is employed. Kopetz [12, 13] proposes 
a component model for dependable automotive systems. 
Both approaches aim to achieve dependability and 
reliability of heterogeneous multi-core systems by using 
predefined platform templates. However, their design flow 
requires platform-specific input models. 

Using TLM, different design flows were developed. 
Approach presented in [16] uses SpecC to generate TLM 
in order to perform design space exploration. In such 
approach, modeling abstraction requires implementation 
decisions for synchronization to already be made. 
Moreover, there is no discussion of modeling 
communication processes such as bridges and routers. 
However, designers are still required to understand 
complex channel modeling in a non-standard SpecC 

language. In [3] timed Programmer view (PVT) level 
within TLM modeling approach was proposed. System is 
modeled on the two complementary sublevels of the PVT 
with respect to accuracy and simulation speed up. 
However, proposed approach includes modeling system 
components in SystemC language and therefore requires 
for a designer to have deep knowledge of the SystemC.  

There have been several other approaches that start from 
a very high-level specification and go to a cycle accurate 
model or synthesizable model implemented in a FPGA 
board. Paper [10] proposed system design flow starting 
from the specification in Simulink, which is then converted 
to different abstraction levels by the refinement to 
Instruction Set Simulators. Namely, specification is 
converted to a Simulink Combined Algorithm and 
Architecture level, a Virtual Architecture, Transaction-
accurate Model and finally to a Virtual Prototype which is 
cycle accurate. The main drawback of this approach is that 
designer needs to be familiar with Simulink to specify the 
design, before being able to do any 
transformation/refinement. Another approach based on 
UML specification that results in a synthesized model 
mapped to a FPGA-based platform is presented in [11]. In 
[8] authors have proposed a design flow where 
specification is given in a subset of a SystemC language, 
while target platform template is built from components 
specified in the library. As already mentioned above, the 
common disadvantage of all described approaches is that 
designers need to learn and use another language in order 
to perform the design space exploration. 

ESE requires application specification in C language and 
provides means for automatic generation of the TL model. 
In contrast to all previously described techniques and tools, 
system designer does not have to learn any additional 
language to model the system and perform the design 
space exploration. 
 

 
III. JPEG ENCODER ALGORITHM 

 

JPEG (Joint Photographic Experts Group) is a widely 
used still image compression standard, very popular in 
embedded systems, especially in multimedia devices and 
digital cameras [11]. The JPEG standard specifies two 
classes of encoding and decoding approaches, namely 
lossless and lossy compression [7]. In this paper, lossy 
compression is discussed. Generally, three types of lossy 
compression are defined by the JPEG standard; baseline 
sequential, progressive and hierarchical method. However, 
the most popular compression method is indeed baseline 
sequential because it provides sufficient capabilities for 
wide range of applications. JPEG baseline compression 
operates on blocks of pixels and is based on forward 
discrete cosine transform (DCT) and Huffman entropy 
encoding. The bitmap is first segmented into 8 × 8 non-
overlapping pixel blocks from left to right and top to 
bottom, Fig. 1. On each of these blocks, DC level shifting 
is performed followed by DC transformation and 
quantization. Zig-zag pattern scanning mechanism is 
applied in order to transform the image block into a vector. 
Vectors are then entropy coded using either Huffman or 
arithmetic coding algorithm. 



JPEG can also be used in coding of video, on the basis 
that video is a succession of still images. In this case, the 
process is called Motion JPEG (M -JPEG) [7]. As a 
response to the increasing demands of multimedia content 
in variety of applications, especially on Internet, 
JPEG2000 standard was issued [14]. Despite the fact that 
new versions of the standard have been issued, JPEG is 
still widely used and falls into the wide category of 
computationally intensive digital signal processing (DSP) 
problems. Therefore, conclusions derived from the design 
space exploration process for this algorithm can be later 
applied to other similar algorithms. 

 
A. Embedded JPEG implementations 

 

In recent years many JPEG-related (JPEG, JPEG 2000, 
Motion JPEG) algorithm implementations in embedded 
systems were proposed. JPEG related encoding algorithms, 
especially blocks performing discrete transformations 
(Discrete Wavelet Transformation or Discrete Cosine 
Transformation) are very computationally consuming. In 
order to speed up the transformation process, hardware 
accelerators are used. Paper [1] presents an implementation 
of the  JPEG 2000 encoder and decoder algorithm defined 
in Part 1 of the standard. Custom hardware modules are 
used to implement discrete wavelet transform, intra-
subband bit-plane coding, and binary arithmetic coding. 
System architecture has been implemented in VHDL. 
Zhang et al. in [21] applied loop transformation techniques 
on a scalable JPEG 2000 coder during the architectural 
exploration stage. The emphasis in this paper was on the 
maximization of the throughput between JPEG 2000 
building blocks. Suggested HW/SW partitioning was based 
upon profiling experiments on the standard PC. I.e. the 
most time-consuming blocks like DWT and entropy coding 
were implemented in hardware, while the rest of the 
application was implemented using standard software 
cores. Effectiveness of their approach was proven on 
Xilinx FPGA. In [20] FPGA-based multi-core system for 
JPEG encoder application was presented. Several different 
interconnections between cores were explored and trade-
offs between them were analyzed. However, proposed 
tools and methods cope with the design of the JPEG 
application on the low level, designing the RTL model 
manually. In order to fill the gap between the application 
specification given in high-level language like C and RTL 
model given in VHDL/Verilog, in this paper, we present a 
methodology for system level design with an application 
level model as input and TL model as a result. Using ESE, 
such TL model can be further refined into Pin-Cycle 
Accurate model [5] suitable for board implementation. 

IV. MODEL BASED DESIGN SPACE EXPLORATION 
IN ESE 

 

In this section, model based design exploration process 
using ESE is described in detail. ESE [6] is a toolset for 
modeling, synthesis and validation of multi-core embedded 
system designs. It has been developed at the Center for 
Embedded Computer Systems (CECS) at the University of 
California Irvine. ESE is comprised out of two parts: ESE 
FrontEnd and ESE BackEnd. ESE Front End provides 
automatic generation of SystemC transaction level models 
(TLMs) from graphical capture of system platform and 
application C/C++ code. ESE Back End provides 
automatic synthesis from TLM to Pin-Cycle Accurate 
Model (PCAM) consisting of RTL interfaces, system SW 
and prototype ready FPGA project files. ESE generated 
RTL can be synthesized using standard logic synthesis 
tools and system SW can be compiled along with 
application code for a given processor. ESE automatically 
creates Xilinx EDK projects for download to Xilinx boards 
[18]. 

Overview of the design process using ESE FrontEnd [4] 
is given in Fig 2. Modeling process begins at the 
application level, which is comprised out of C processes 
communicating through synchronized point to point 
channels and shared variables. System platform is captured 
graphically in ESE as a net-list of the process elements 
(PEs), memories, buses and communication interfaces. For 
given application, model elements are then mapped to the 
corresponding platform components, i.e. application 
processes are mapped to the PEs, while channels are 
mapped to routes in the platform. 

Above described system definition along with the 
library of the data models for PEs, buses and RTOSes is 
used in Transaction Level Model (TLM) generation. ESE 
Front-End allows for automatic generation and simulation 
of the TL model in order of seconds. Transaction Level 
Model represents the PEs as SystemC modules and 
corresponding application processes as SystemC threads. 
Communication architecture is comprised out of bus 
channels and SystemC buffer modules. ESE FrontEnd 
provides means for automatic generation of the two types 
of the Transaction Level Model: functional and timed. 
Functional TLM presents a completely untimed model of 

 

 
 

Fig. 1. Baseline JPEG encoder block diagram [7]. 

 

 
 

Fig. 2. ESE FrontEnd tool flow [4]. 



the system considering only causal dependencies. 
Therefore, it is adequate for the system behavior 
verification. On the other hand, timed TLM is generated 
using timed estimation algorithm and it is suitable for the 
performance evaluation of the system design. Given the 
performance analysis results of the timed TLM system 
definition, software and hardware partitioning can be 
easily refined allowing for quick and efficient design space 
exploration. Application and platform specification 
overview is given in the following chapters. 

 
A. Application model in ESE 

 

Application specification is comprised out of C 
processes communicating through abstract channels or 
shared variables [4]. Both, processes (P1, P2, P3 and P4 in 
Fig. 3) and channels (Ch1 and Ch2 in Fig. 3) may be 
defined through graphical user interface (GUI). In addition, 
C code assigned to specific processes could be modified 
easily. Processes use channels for synchronized 
communication and variables for unsynchronized 
communication. For both synchronized and 
unsynchronized communication mechanisms, ESE API 
calls are defined: (a) send/recv methods for process-to-
process channels and (b) read/write methods for shared 
variable based communication. Such approach clearly 
separates communication interface from the actual 
computation code. Consequently, application model 
partitioning is easily refined by applying modifications in 
the interface implementation only. Above described API 
calls are sufficient to implement other complex 
communication services like FIFOs, mutexes, mailboxes or 
events. 

 
B. Platform template in ESE 

 

ESE FrontEnd toolset provides means for graphical 
definition of a multi-core system platform. In general, a 
platform is composed out of process elements (PEs), buses, 
storage cores and transducers[5], Fig. 3. Process elements 
are either general-purpose cores, custom HW components 
or IPs on which application processes are mapped. Several 
different application processes can be executed 
simultaneously on the single process element. In order to 
support such multi-threaded applications, several RTOS 
models are available in ESE. Storage cores correspond to 
the platform elements that don't have any active thread of 
computation. Application variables are mapped to 
memories, which are either local to process element or 
shared between several process elements. Buses are 
generic communication units that can act as point-to-point 
links, shared buses with arbitration or even network links. 
Buses have well defined protocols and may connect to 
compatible ports on a given core. Transducers represent 
generic interface cores and they can denote shared 
memories, bridges or routers. Internally, transducers are 
comprised out of buffers and provide functionality of 
store-and-forward static routing. In order to connect 
incompatible buses via different ports, transducers also 
implement protocol conversion mechanism. Application 
model channels for process communication are mapped to 
routes consisting of buses and bridges. 

 
 

Fig. 3. Multi-core system definition in ESE [4]. 

 
 

V. CASE STUDY: MULTI_CORE JPEG DSE 
 

In this section, a case study of the design space 
exploration for multi-core JPEG encoder implementation 
using ESE is described. First, an application model is 
described followed by the experimental results of the 
design space exploration process. 

 
A. JPEG encoder application model 

 

The original JPEG encoder source code was obtained 
from [20]. This code was already optimized for execution 
in embedded systems. According to the JPEG standard, 
application source code was partitioned manually into four 
C processes, Fig. 4. Data flow of the application is as 
follows. Bitmap image is first segmented into blocks by 
JPEG_main process. Subsequently, Color_conversion 
process converts block by block of the original image to a 
suitable color space, namely RGB information contained in 
the original image blocks is encoded in YCbCr color 
space. Blocks are then transformed using discrete cosine 
transformation by DCT process. Entropy_coding process is 
comprised out of several operations. First, it performs 
quantization of the DCT transformed blocks, then converts 
such image blocks into a vector by zigzag pattern 
scanning. Finally, it performs entropy coding using 
Huffman's algorithm. 

For inter-process communication, message-passing 
mechanism implemented by send/recv API calls in ESE 
was used. Send/recv methods impose handshake 
synchronization semantics, where the receiver process 
blocks until the sender have sent the data [5]. 
 

 
 

Fig. 4. JPEG encoder application model. 



C. Experimental results 
 

According to the application model described in 
previous section, the goal was to find a good hardware and 
software partitioning schemes with respect to computation 
distribution and communication overhead between cores. 

In the first experiment, we have mapped the entire 
application model to the single MicroBlaze core. As it was 
to be expected, timed TLM simulation results have shown 
that the DCT function is computationally the most 
consuming function of the entire application (takes 80 % of 
the overall execution time). Thus, DCT was identified as 
an ideal candidate for offloading onto a separate core or 
migration to the custom hardware. 

According to the performance estimation results 
obtained from the first experiment as well as the software 
partitioning presented in chapter A, JPEG application code 
was partitioned over the four MicroBlaze cores (4mB), 
Fig. 5. 

Nevertheless, utilization of the DCT process element 
was still high (95.5 %), identifying it as a bottleneck. This 

suggested the usage of hardware accelerator to speed up 
the DCT function. In third experiment, following platforms 
were used: three MicroBlaze cores and DCT32 custom 
hardware accelerator (3mB + DCT32). DCT32 is hardware 
accelerator designed specifically to perform DCT function 
[17]. 

To evaluate the advantages of using the DCT32 
hardware accelerator, we first measured the speedup of a 
custom DCT32 processor over a MicroBlaze core when 
running DCT algorithm only, Table I. As a performance 
metric, performance time was used. Results show that 
usage of the DCT32 hardware accelerator increases 
performance of the DCT function 4.81 times, which is a 
significant speed up. 

Finally, performance of the heterogeneous system was 
measured and compared with the homogeneous system. As 
a quality metric, computational utilization of the process 
element is used, Table II. Due to DCT process element 
speedup, utilization of other process elements in 
heterogeneous system is increased 3.58 times. However, in 
comparison to other process elements, Entropy_coding PE 
has achieved greatest utilization (78.8%). That is because 
this PE receives its inputs directly from the DCT process 
element. Utilization of the DCT process is decreased for 
25.6% because process elements producing its inputs 
(JPEG_main and Color_conversion) aren't able to process 
data at adequate speed. 

Furthermore, described platforms were compared with 
respect to overall performance time, Table I. 
Heterogeneous multi-core system performance is increased 
3.57 times in comparison to the homogeneous multi-core 
system. The achieved speed up of the DCT function for 
4.81 times increases overall system performance for 3.57. 
As already described above, that because the system is 
only partially balanced, i.e. in comparison with the DCT 
process element, the elements generating its inputs work at 
lower rate. 

 
 

VI. CONCLUSION 
 

In this paper, model based design space exploration of 
the JPEG encoder multi-core implementation using ESE 
toolset was explored. ESE allows for system level design 
approach employed in the development of the JPEG multi-
core system. An application model was defined as a set of 
the C processes communicating via message passing 
channels. A system platform was defined as a graphical 
netlist and with corresponding design parameters assigned. 
Furthermore, both system platform and application can be 
easily extended and refined. Thus, only few modifications 
of the existing model are required for modeling various 
other design options. Developed application level model is 

 
TABLE I 

DCT PROCESS EXECUTION TIME COMPARISON 

 

 
MicroBlaze DCT32 

Speed-
up ratio 

Performance 
time(cycles) 

89.115 18.513 4.81 

 
TABLE II 

PROCESS ELEMENT UTILIZATION COMPARISON 

 

PE 4mB 3mB+DCT32 
Utilization 

ratio 

JPEG_main 8.9% 31.8% 3.58 times 

Color_conversion 18.4% 65.7% 3.58 times 

DCT 95.5% 71.0% 25.6% 

Entropy_coding 22.0% 78.8% 3.58 times 

 

 
TABLE III 

SYSTEM PERFORMANCE COMPARISON 

 

 
4mB 3mB+DCT32  

Speed-up 
ratio 

Performance 
time (cycles) 

272.200.230 76.064.760 3.57 

 

 

 
 

Fig. 5. Homogeneous multi-core platform (4mB). 

 



mapped on a corresponding platform forming the system 
definition. For the defined system model, Transaction 
Level Model (TLM) is automatically generated in ESE in 
order of seconds. High speed timed TLM simulation 
allows for system performance analysis using the 
utilization of particular process elements and 
communication overhead as quality metrics. According to 
the performance estimation results, both system application 
and platform are easily refined.  Thus, different design 
choices are efficiently explored and evaluated. 

Experimental results of the JPEG encoder 
implementation have shown that presented TLM-based 
exploration approach may find a good solution regarding 
the design constraints in a very short time (order of a few 
seconds). Several multi-core systems were modeled using 
ESE. Due to high-speed simulation of the TLM, models 
were easily refined eliminating the bottlenecks in the 
process. Design space exploration using ESE tool-set could 
be efficiently used for further improvements on parallel 
execution of the JPEG encoding algorithm.  
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