
Design Space Exploration of a multi-core JPEG

V. Zadrija and V. Sruk
Department of Electronics, Microelectronics, Computer and Intelligent Systems

Faculty of Electrical Engineering and Computing, University of Zagreb
Complete Address: Unska 3, Zagreb, 10000, Croatia

Phone: (003851) 6129-554 Fax: (003851) 6129-653 E-mail: valentina.zadrija@fer.hr

Abstract - This paper presents the design space exploration of
a multi-core implementation of the JPEG algorithm using the
Embedded System Environment (ESE). ESE is a tool-set,
which enables multi-core system design by high-level
modeling of both the hardware platform and software
application. In order to define an application model for ESE,
sequential JPEG code written in C was partitioned and
translated into concurrent processes, which communicate via
abstract channels. The application model is then mapped on
the system platform captured as a graphical netlist consisted
out of SW and HW cores, buses and buffers. ESE provides
means for automatic translation of these models to
Transaction Level Models (TLM) in order of seconds. High-
speed TLM simulation was used to identify possible
bottlenecks and evaluate different design options for both
HW and SW partitioning of the JPEG algorithm application.
The obtained experimental results have shown that such
approach may find a good solution regarding specific design
constraints in a very short time.

I. INTRODUCTION

The high-performance requirements and stringent design
constraints imposed on modern embedded systems are
making the designer's job increasingly difficult. This is
especially challenging in the field of mobile devices, which
usually have to support a wide range of multimedia
capabilities, which require high-performance and low
power consumption at the same time. This is impossible
using a traditional design flow based on a single general-
purpose or DSP processor and sequential software. These
systems require careful planning of system architecture and
design of custom hardware. On the other hand, the market
demands that new devices must be available as soon as
possible. Shortened time-to-market imposes shortened
design time, which makes it extremely difficult to evaluate
different design options and design custom hardware.
Single-processor software-based design flow can be
viewed as the approach which has the highest design
productivity (i.e. shortest time-to-market), but lowest
design quality in terms of performance and power
utilization. The problem with this approach is that it is
often unable to meet the required design constraints. The
other extreme is the implementation of the whole design in
custom hardware, which offers high design quality but
usually prolongs time-to-market to levels unacceptable for
consumer devices. Design approach based on
heterogeneous multi-core systems-on-chip represents a
trade-off between these extremes. Such approach allows
for a design of high-performance and low-power systems,
while keeping time-to-market short enough for consumer
electronics.

Heterogeneous multi-core systems are essentially a
collection of general-purpose processors, DSP processors,
custom hardware accelerators and various other cores, such
as memories, bus modules, peripheral devices etc.
Hardware accelerators can either be specifically designed
or automatically generated in order to accelerate a
particular time-critical application task. The main
advantage of using multi-core systems is their ability to use
task-level parallelism inherent to the application. Parallel
execution enables performing the same amount of work in
fewer clock cycles, thus lowering the system frequency
while maintaining the required performance. Lowering the
frequency reduces the power consumption and enables
meeting low-power constraints.

However, multi-core systems are difficult to design,
both from hardware and software point of view. Because
of the wide choice of processing elements (PEs) and
possible hardware/software partitioning strategies and
parallelization techniques, design space exploration is
extremely time-consuming process. To efficiently explore
the design space and find appropriate hardware platform
and adequate software mapping in a reasonable amount of
time, systems are usually modeled on a higher level of
abstraction. Such high-level model is then used to drive
simulation-based evaluation of alternative designs and to
synthesize and implement the final system. According to
the application-specific constraints, design can be
optimized with respect for speed, chip area or power
consumption. Special system-level design tools like the
Embedded System Environment (ESE) are used to
facilitate this design process and automate generation of
different models employed for simulation, synthesis and
implementation [4].

Image encoding algorithms have become a popular
example in studying multi-core system on chip design
methodology, hardware/software co-design as well as
custom acceleration. In this paper, we present the design
space exploration of a multi-core JPEG encoder
application [19] using ESE tool-set. Different HW/SW
partitioning schemes are analyzed and corresponding
functional and timed properties are estimated and verified.

II. DESIGN SPACE EXPLORATION OVERVIEW

Design space exploration is a process of exploring and
evaluating different design alternatives in order to find a
configuration, which fits specific design constrains [9].
The values for certain design parameters can be
determined statically (e.g. the estimated maximum
frequency), but evaluating a design alternative usually
involves simulation. Simulation is also used for verifying
functional correctness of the system when changes are
made. The growing complexity of modern systems, i.e. the

increasing amount of software and the number of PEs are
making low-level simulation extremely difficult and time-
consuming. With the advent of multi-core systems, rapidly
growing software content and shortened time-to-market,
RTL modeling and verification is no longer practical. It is
certain that size, complexity and heterogeneity of future
multi-core systems will present a problem even for models
targeted at Instruction Set Simulators (ISS). To enable
faster simulation and faster design time, systems need to be
modeled on a higher-level of abstraction. High-level
models sacrifice some of the accuracy in measuring design
parameters to enable simulating the design in a reasonable
amount of time. In this way, it is possible to explore
several design alternatives and design process can
converge more quickly to a solution that meets specified
constraints.

Transaction level modeling has emerged as the next
level of abstraction for system design. Transaction Level
Model (TLM) approach clearly separates communication
details among modules from the implementation specific
details of these modules [5]. Communication is modeled
using channels, which are simply a repository for
communication services. Transaction requests take place
by calling interface functions of these channels, which
encapsulate low-level details of the information exchange.
At the transaction level, the emphasis is more on the
functionality of the data transfers - what data are
transferred to and from what locations - and less on their
actual implementation.

A. Related Work

In recent years, there has been a lot of research on DSE
addressing the problem at the higher level of abstraction.
As a result, several modeling environments for system
design and synthesis were developed. Balarin et al. [2]
present Metropolis, a DSE environment that integrates
tools for simulation, verification, and synthesis. Metropolis
supports refinement and abstraction, thus allowing top-
down and bottom-up methodologies with a meet-in-the-
middle approach. Sesame [15] is a tool for performance
evaluation and exploration of heterogeneous architectures
for the multimedia application domain. In Sesame,
application specification is given as a Kahn process
network modeled with a C++ class library. Platform is
built from building blocks accessible in the library. By
simulating TL model of the application, performance
evaluation can be done. In order to co-simulate the
application and the architecture, a trace-driven simulation
approach technique is employed. Kopetz [12, 13] proposes
a component model for dependable automotive systems.
Both approaches aim to achieve dependability and
reliability of heterogeneous multi-core systems by using
predefined platform templates. However, their design flow
requires platform-specific input models.

Using TLM, different design flows were developed.
Approach presented in [16] uses SpecC to generate TLM
in order to perform design space exploration. In such
approach, modeling abstraction requires implementation
decisions for synchronization to already be made.
Moreover, there is no discussion of modeling
communication processes such as bridges and routers.
However, designers are still required to understand
complex channel modeling in a non-standard SpecC

language. In [3] timed Programmer view (PVT) level
within TLM modeling approach was proposed. System is
modeled on the two complementary sublevels of the PVT
with respect to accuracy and simulation speed up.
However, proposed approach includes modeling system
components in SystemC language and therefore requires
for a designer to have deep knowledge of the SystemC.

There have been several other approaches that start from
a very high-level specification and go to a cycle accurate
model or synthesizable model implemented in a FPGA
board. Paper [10] proposed system design flow starting
from the specification in Simulink, which is then converted
to different abstraction levels by the refinement to
Instruction Set Simulators. Namely, specification is
converted to a Simulink Combined Algorithm and
Architecture level, a Virtual Architecture, Transaction-
accurate Model and finally to a Virtual Prototype which is
cycle accurate. The main drawback of this approach is that
designer needs to be familiar with Simulink to specify the
design, before being able to do any
transformation/refinement. Another approach based on
UML specification that results in a synthesized model
mapped to a FPGA-based platform is presented in [11]. In
[8] authors have proposed a design flow where
specification is given in a subset of a SystemC language,
while target platform template is built from components
specified in the library. As already mentioned above, the
common disadvantage of all described approaches is that
designers need to learn and use another language in order
to perform the design space exploration.

ESE requires application specification in C language and
provides means for automatic generation of the TL model.
In contrast to all previously described techniques and tools,
system designer does not have to learn any additional
language to model the system and perform the design
space exploration.

III. JPEG ENCODER ALGORITHM

JPEG (Joint Photographic Experts Group) is a widely
used still image compression standard, very popular in
embedded systems, especially in multimedia devices and
digital cameras [11]. The JPEG standard specifies two
classes of encoding and decoding approaches, namely
lossless and lossy compression [7]. In this paper, lossy
compression is discussed. Generally, three types of lossy
compression are defined by the JPEG standard; baseline
sequential, progressive and hierarchical method. However,
the most popular compression method is indeed baseline
sequential because it provides sufficient capabilities for
wide range of applications. JPEG baseline compression
operates on blocks of pixels and is based on forward
discrete cosine transform (DCT) and Huffman entropy
encoding. The bitmap is first segmented into 8 × 8 non-
overlapping pixel blocks from left to right and top to
bottom, Fig. 1. On each of these blocks, DC level shifting
is performed followed by DC transformation and
quantization. Zig-zag pattern scanning mechanism is
applied in order to transform the image block into a vector.
Vectors are then entropy coded using either Huffman or
arithmetic coding algorithm.

JPEG can also be used in coding of video, on the basis
that video is a succession of still images. In this case, the
process is called Motion JPEG (M -JPEG) [7]. As a
response to the increasing demands of multimedia content
in variety of applications, especially on Internet,
JPEG2000 standard was issued [14]. Despite the fact that
new versions of the standard have been issued, JPEG is
still widely used and falls into the wide category of
computationally intensive digital signal processing (DSP)
problems. Therefore, conclusions derived from the design
space exploration process for this algorithm can be later
applied to other similar algorithms.

A. Embedded JPEG implementations

In recent years many JPEG-related (JPEG, JPEG 2000,
Motion JPEG) algorithm implementations in embedded
systems were proposed. JPEG related encoding algorithms,
especially blocks performing discrete transformations
(Discrete Wavelet Transformation or Discrete Cosine
Transformation) are very computationally consuming. In
order to speed up the transformation process, hardware
accelerators are used. Paper [1] presents an implementation
of the JPEG 2000 encoder and decoder algorithm defined
in Part 1 of the standard. Custom hardware modules are
used to implement discrete wavelet transform, intra-
subband bit-plane coding, and binary arithmetic coding.
System architecture has been implemented in VHDL.
Zhang et al. in [21] applied loop transformation techniques
on a scalable JPEG 2000 coder during the architectural
exploration stage. The emphasis in this paper was on the
maximization of the throughput between JPEG 2000
building blocks. Suggested HW/SW partitioning was based
upon profiling experiments on the standard PC. I.e. the
most time-consuming blocks like DWT and entropy coding
were implemented in hardware, while the rest of the
application was implemented using standard software
cores. Effectiveness of their approach was proven on
Xilinx FPGA. In [20] FPGA-based multi-core system for
JPEG encoder application was presented. Several different
interconnections between cores were explored and trade-
offs between them were analyzed. However, proposed
tools and methods cope with the design of the JPEG
application on the low level, designing the RTL model
manually. In order to fill the gap between the application
specification given in high-level language like C and RTL
model given in VHDL/Verilog, in this paper, we present a
methodology for system level design with an application
level model as input and TL model as a result. Using ESE,
such TL model can be further refined into Pin-Cycle
Accurate model [5] suitable for board implementation.

IV. MODEL BASED DESIGN SPACE EXPLORATION
IN ESE

In this section, model based design exploration process
using ESE is described in detail. ESE [6] is a toolset for
modeling, synthesis and validation of multi-core embedded
system designs. It has been developed at the Center for
Embedded Computer Systems (CECS) at the University of
California Irvine. ESE is comprised out of two parts: ESE
FrontEnd and ESE BackEnd. ESE Front End provides
automatic generation of SystemC transaction level models
(TLMs) from graphical capture of system platform and
application C/C++ code. ESE Back End provides
automatic synthesis from TLM to Pin-Cycle Accurate
Model (PCAM) consisting of RTL interfaces, system SW
and prototype ready FPGA project files. ESE generated
RTL can be synthesized using standard logic synthesis
tools and system SW can be compiled along with
application code for a given processor. ESE automatically
creates Xilinx EDK projects for download to Xilinx boards
[18].

Overview of the design process using ESE FrontEnd [4]
is given in Fig 2. Modeling process begins at the
application level, which is comprised out of C processes
communicating through synchronized point to point
channels and shared variables. System platform is captured
graphically in ESE as a net-list of the process elements
(PEs), memories, buses and communication interfaces. For
given application, model elements are then mapped to the
corresponding platform components, i.e. application
processes are mapped to the PEs, while channels are
mapped to routes in the platform.

Above described system definition along with the
library of the data models for PEs, buses and RTOSes is
used in Transaction Level Model (TLM) generation. ESE
Front-End allows for automatic generation and simulation
of the TL model in order of seconds. Transaction Level
Model represents the PEs as SystemC modules and
corresponding application processes as SystemC threads.
Communication architecture is comprised out of bus
channels and SystemC buffer modules. ESE FrontEnd
provides means for automatic generation of the two types
of the Transaction Level Model: functional and timed.
Functional TLM presents a completely untimed model of

Fig. 1. Baseline JPEG encoder block diagram [7].

Fig. 2. ESE FrontEnd tool flow [4].

the system considering only causal dependencies.
Therefore, it is adequate for the system behavior
verification. On the other hand, timed TLM is generated
using timed estimation algorithm and it is suitable for the
performance evaluation of the system design. Given the
performance analysis results of the timed TLM system
definition, software and hardware partitioning can be
easily refined allowing for quick and efficient design space
exploration. Application and platform specification
overview is given in the following chapters.

A. Application model in ESE

Application specification is comprised out of C
processes communicating through abstract channels or
shared variables [4]. Both, processes (P1, P2, P3 and P4 in
Fig. 3) and channels (Ch1 and Ch2 in Fig. 3) may be
defined through graphical user interface (GUI). In addition,
C code assigned to specific processes could be modified
easily. Processes use channels for synchronized
communication and variables for unsynchronized
communication. For both synchronized and
unsynchronized communication mechanisms, ESE API
calls are defined: (a) send/recv methods for process-to-
process channels and (b) read/write methods for shared
variable based communication. Such approach clearly
separates communication interface from the actual
computation code. Consequently, application model
partitioning is easily refined by applying modifications in
the interface implementation only. Above described API
calls are sufficient to implement other complex
communication services like FIFOs, mutexes, mailboxes or
events.

B. Platform template in ESE

ESE FrontEnd toolset provides means for graphical
definition of a multi-core system platform. In general, a
platform is composed out of process elements (PEs), buses,
storage cores and transducers[5], Fig. 3. Process elements
are either general-purpose cores, custom HW components
or IPs on which application processes are mapped. Several
different application processes can be executed
simultaneously on the single process element. In order to
support such multi-threaded applications, several RTOS
models are available in ESE. Storage cores correspond to
the platform elements that don't have any active thread of
computation. Application variables are mapped to
memories, which are either local to process element or
shared between several process elements. Buses are
generic communication units that can act as point-to-point
links, shared buses with arbitration or even network links.
Buses have well defined protocols and may connect to
compatible ports on a given core. Transducers represent
generic interface cores and they can denote shared
memories, bridges or routers. Internally, transducers are
comprised out of buffers and provide functionality of
store-and-forward static routing. In order to connect
incompatible buses via different ports, transducers also
implement protocol conversion mechanism. Application
model channels for process communication are mapped to
routes consisting of buses and bridges.

Fig. 3. Multi-core system definition in ESE [4].

V. CASE STUDY: MULTI_CORE JPEG DSE

In this section, a case study of the design space
exploration for multi-core JPEG encoder implementation
using ESE is described. First, an application model is
described followed by the experimental results of the
design space exploration process.

A. JPEG encoder application model

The original JPEG encoder source code was obtained
from [20]. This code was already optimized for execution
in embedded systems. According to the JPEG standard,
application source code was partitioned manually into four
C processes, Fig. 4. Data flow of the application is as
follows. Bitmap image is first segmented into blocks by
JPEG_main process. Subsequently, Color_conversion
process converts block by block of the original image to a
suitable color space, namely RGB information contained in
the original image blocks is encoded in YCbCr color
space. Blocks are then transformed using discrete cosine
transformation by DCT process. Entropy_coding process is
comprised out of several operations. First, it performs
quantization of the DCT transformed blocks, then converts
such image blocks into a vector by zigzag pattern
scanning. Finally, it performs entropy coding using
Huffman's algorithm.

For inter-process communication, message-passing
mechanism implemented by send/recv API calls in ESE
was used. Send/recv methods impose handshake
synchronization semantics, where the receiver process
blocks until the sender have sent the data [5].

Fig. 4. JPEG encoder application model.

C. Experimental results

According to the application model described in
previous section, the goal was to find a good hardware and
software partitioning schemes with respect to computation
distribution and communication overhead between cores.

In the first experiment, we have mapped the entire
application model to the single MicroBlaze core. As it was
to be expected, timed TLM simulation results have shown
that the DCT function is computationally the most
consuming function of the entire application (takes 80 % of
the overall execution time). Thus, DCT was identified as
an ideal candidate for offloading onto a separate core or
migration to the custom hardware.

According to the performance estimation results
obtained from the first experiment as well as the software
partitioning presented in chapter A, JPEG application code
was partitioned over the four MicroBlaze cores (4mB),
Fig. 5.

Nevertheless, utilization of the DCT process element
was still high (95.5 %), identifying it as a bottleneck. This

suggested the usage of hardware accelerator to speed up
the DCT function. In third experiment, following platforms
were used: three MicroBlaze cores and DCT32 custom
hardware accelerator (3mB + DCT32). DCT32 is hardware
accelerator designed specifically to perform DCT function
[17].

To evaluate the advantages of using the DCT32
hardware accelerator, we first measured the speedup of a
custom DCT32 processor over a MicroBlaze core when
running DCT algorithm only, Table I. As a performance
metric, performance time was used. Results show that
usage of the DCT32 hardware accelerator increases
performance of the DCT function 4.81 times, which is a
significant speed up.

Finally, performance of the heterogeneous system was
measured and compared with the homogeneous system. As
a quality metric, computational utilization of the process
element is used, Table II. Due to DCT process element
speedup, utilization of other process elements in
heterogeneous system is increased 3.58 times. However, in
comparison to other process elements, Entropy_coding PE
has achieved greatest utilization (78.8%). That is because
this PE receives its inputs directly from the DCT process
element. Utilization of the DCT process is decreased for
25.6% because process elements producing its inputs
(JPEG_main and Color_conversion) aren't able to process
data at adequate speed.

Furthermore, described platforms were compared with
respect to overall performance time, Table I.
Heterogeneous multi-core system performance is increased
3.57 times in comparison to the homogeneous multi-core
system. The achieved speed up of the DCT function for
4.81 times increases overall system performance for 3.57.
As already described above, that because the system is
only partially balanced, i.e. in comparison with the DCT
process element, the elements generating its inputs work at
lower rate.

VI. CONCLUSION

In this paper, model based design space exploration of
the JPEG encoder multi-core implementation using ESE
toolset was explored. ESE allows for system level design
approach employed in the development of the JPEG multi-
core system. An application model was defined as a set of
the C processes communicating via message passing
channels. A system platform was defined as a graphical
netlist and with corresponding design parameters assigned.
Furthermore, both system platform and application can be
easily extended and refined. Thus, only few modifications
of the existing model are required for modeling various
other design options. Developed application level model is

TABLE I

DCT PROCESS EXECUTION TIME COMPARISON

MicroBlaze DCT32

Speed-
up ratio

Performance
time(cycles)

89.115 18.513 4.81

TABLE II

PROCESS ELEMENT UTILIZATION COMPARISON

PE 4mB 3mB+DCT32
Utilization

ratio

JPEG_main 8.9% 31.8% 3.58 times

Color_conversion 18.4% 65.7% 3.58 times

DCT 95.5% 71.0% 25.6%

Entropy_coding 22.0% 78.8% 3.58 times

TABLE III

SYSTEM PERFORMANCE COMPARISON

4mB 3mB+DCT32

Speed-up
ratio

Performance
time (cycles)

272.200.230 76.064.760 3.57

Fig. 5. Homogeneous multi-core platform (4mB).

mapped on a corresponding platform forming the system
definition. For the defined system model, Transaction
Level Model (TLM) is automatically generated in ESE in
order of seconds. High speed timed TLM simulation
allows for system performance analysis using the
utilization of particular process elements and
communication overhead as quality metrics. According to
the performance estimation results, both system application
and platform are easily refined. Thus, different design
choices are efficiently explored and evaluated.

Experimental results of the JPEG encoder
implementation have shown that presented TLM-based
exploration approach may find a good solution regarding
the design constraints in a very short time (order of a few
seconds). Several multi-core systems were modeled using
ESE. Due to high-speed simulation of the TLM, models
were easily refined eliminating the bottlenecks in the
process. Design space exploration using ESE tool-set could
be efficiently used for further improvements on parallel
execution of the JPEG encoding algorithm.

VII. A CKNOWLEDGEMENTS

The work presented in this paper is developed within the
Application-oriented Embedded System Technology
project supported by the Unity through Knowledge Fund.
This work builds upon many years of research in the
system level design at the Center for Embedded Computer
Systems (CECS), University of California at Irvine. The
authors wish to thank CECS for allowing download of the
ESE tool-set and Samar Abdi for support. In addition, we
would like to thank Sun Wei, Joris van Emden and Marcel
Lauwerijssen from Technical University Eindhoven for
providing the JPEG application source code. Finally,
special thanks to Roko Grubišić for his help in overall
system implementation.

REFERENCES

[1] Andra, K.; Chakrabarti, C.; Acharya, T.; (2003). A high-
performance JPEG2000 architecture. IEEE Transactions on
Circuits and Systems for Video Technology , 13 (3), 209 -
218.

[2] Balarin, F.; Watanabe, Y.; Hsieh, H.; Lavagno, L.;
Passerone, C.; Sangiovanni-Vincentelli, A.; Metropolis: an
integrated electronic system design environment, Computer,
vol. 36, no. 4, pp. 45–52, 2003.

[3] Ben, R.A.; Niar, S.; Meftali, S.; Dekeyser, J.-L.; (2007). An
MPSoC Performance Estimation Framework Using
Transaction Level Modeling. Proceedings of the 13th IEEE
International Conference on Embedded and Real-Time
Computing Systems and Applications (str. 525 - 533).
Daegu, Korea: IEEE Computer Society.

[4] Gajski, D. D.; Abdi, S.; Hwang, Y.; Yu, L.; Cho, H.; Viskic,
I.; (2007, October). ESE Front End 2.0. University of
California, Irvine.

[5] Gajski, D. D.; Abdi, S.; Viskic, I.; (2008). Model Based
Synthesis of Embedded Software. Proceedings of the 6th
IFIP WG 10.2 international workshop on Software
Technologies for Embedded and Ubiquitous Systems.
Anacarpi, Capri Island, Italy.

[6] Gajski, D. D.; Gerstlauer, A.; Abdi, S.;. (2007, January 23).
Embedded System Design: Concepts and Tools. ASP-DAC
2007 Pacifico Yokohama, Japan.

[7] Ghanbari, M. (2003). Standard Codecs: Image Compression
to Advanced Video Coding. London, UK: The Institution of
Electrical Engineers.

[8] Haubelt, C.; Falk, J.; Keinert, J.; Schlichter, T.; Streubühr,
M.; Deyhle, A.; Hadert, A.; Teich, J.; (2007). A SystemC-
Based Design Methodology for Digital Signal Processing
Systems. EURASIP Journal on Embedded Systems , 2007
(1), 15 - 37.

[9] Jerraya, A.; Wolf, W. (2005). Multiprocessor Systems-on-
Chips. San Francisco, CA: Elsevier Inc.

[10] Kai Huang; Sang-il Han; Popovici, K.; Brisolara, L.; Guerin,
X.; Lei Li; Xiaolang Yan; Soo-lk Chae; Carro, L.; Jerraya,
A.A.. (2007). Simulink-based MPSoC Design Flow: Case
Study of Motion-JPEG and H.264. DAC 07: Proceedings of
the Design Automation Conference (pp. 39 - 42). San Diego,
California: ACM New York, NY, USA.

[11] Kangas, T.; Kukkala, P.; Orsila, H.; Salminen, E.;
Hännikäinen, M.; Hämäläinen, T.D.; Riihimäki, J.;
Kuusilinna, K. UML-Based Multiprocessor SoC Design
Framework. ACM Transactions on Embedded Computing
Systems, New York, Vol.5, No.2, p.281-320, 2006.

[12] Kopetz, H.; Obermaisser, R.; Salloum, C.E.; Huber, B.
Automotive software development for multi-core system-on-
a-chip. In Proceedings of the 4th International Workshop on
Software Engineering for Automotive Systems (SEAS'07),
Washington, DC, USA, 2007.

[13] Kopetz, H.; Bauer, G.. The Time-Triggered Architecture.
Proceedings of the IEEE, 91(1):126-113, January 2003.

[14] Marcellin, M. W., Gormish, M. J., Bilgin, A., & Boliek, M.
P. (2000). An Overview of JPEG-2000. Data Compression
Conference (DCC) (pp. 523-541). Washington, DC, USA:
IEEE Computer Society.

[15] Pimentel, A. D.; Erbas, C.; Polstra, S., A systematic
approach to exploring embedded system architectures at
multiple abstraction levels, IEEE Transactions on
Computers, vol. 55, no. 2, pp. 99–112, 2006.

[16] Shin, D.; Gerstlauer, A.; Peng, J.; Doemer, R.; Gajski, D.
(2006). Automatic generation of transaction-level models for
rapid design space exploration. Proceedings of the 4th
International Conference on Hardware/Software Codesign
and System Synthesis (pp. 64-69). Seoul, Korea: ACM, New
York, NY, USA.

[17] Trajkovic, J.; Gajski, D.D. (2008). Custom Processor Core
Construction from C Code. 6th IEEE Symposium on
Application Specific Processors, (pp. 1 - 6). Anaheim
Convention Center, CA.

[18] Xilinx Embedded Development Kit[online]. (n.d.).
Retrieved from http://www.xilinx.com/.

[19] Wallace, G. K.; (1992). The JPEG Still Picture Compression
Standard. IEEE Transactions on Consumer Electronics , 38
(1), xviii - xxxiv.

[20] Wei, S. (2005). A FPGA-based Soft Multiprocessor System
for JPEG Compression. Eindhoven: Technical University of
Eindhoven, the Netherlands.

[21] Zhang, C.; Long, Y.; Kurdahi, F.; (2007). A scalable
embedded JPEG 2000 architecture. Journal of Systems
Architecture: the EUROMICRO Journal , 53 (8), 524-538.

