
Development of I2C Bus Driver

D. Ivošević and V. Sruk
Department of Electronics, Microelectronics, Computer and Intelligent Systems

Faculty of Electrical Engineering and Computing, University of Zagreb
Complete Address: Unska 3, Zagreb, 10000, Croatia

Phone: (+385) 1 6129 926 Fax: (+385) 1 6129 653 E-mail: danko.ivosevic@fer.hr

Abstract - A typical embedded system encompasses logic
design, processors, and access to the peripheral devices. In the
embedded systems design usage of Field Programmable Gate
Arrays (FPGAs) allows a system designer to customize both
processor and digital logic to the specific needs of a target
application. Usually, it also requires appropriate access to the
peripheral devices. One of the approaches to access peripheral
devices is the usage of the I2C bus which is currently the
industry de-facto standard for low-speed IC-to-IC
communication. The I2C bus is a simple two wire serial bi-
directional bus supported by wide range of peripheral devices
such as memories, A/D and D/A converters, real-time clocks,
video drivers, and microprocessor.
In this paper, we present comparison of different I2C bus
implementations approaches as IP-cores using FPGA: an
open-source core written in VHDL, PicoBlaze soft
microcontroller core, and proprietary IP core component. We
have analyzed features and implementation issues such as area
and timing performance on different FPGA architectures.

I. INTRODUCTION

Rapid embedded system design usually starts using test
and development platforms that include Field
Programmable Gate Array (FPGA) devices and numerous
peripheral devices for accessing the outer world. The
spectrum of available platforms is wide as it is the choice
of FPGA’s and peripheral devices. The most common
peripherals are all types of memories, audio and video
ports, Ethernet, USB, and peripheral busses. Including their
functionalities into some design puts a demand of accessing
them through various buses and protocols. The
communication can be based on serial communication
buses such that are RS-232, I2C, I2S, SPI or CAN.

There is no doubt that the FPGA technology has an
enormous impact on embedded computing. The concept of
a programmable logic device enables designer the
flexibility to implement customized digital logic circuits
from dedicated logical function to complex processors. In
developing process designers have, depending of problem
complexity, a variety of choices used to develop designs
from using Hardware Description Languages (HDLs) to
use of advanced methodologies based on extensive
Intellectual Property component reuse. Minimizing design
and development time and cost is the goal of an efficient
design methodology.

Today FPGA based design is typically realized using
appropriate Computer Aided Design tools. These tools
support design entry using several different methods. As
the design complexity grows, HDLs become leading choice
since they handle low-level implementation details
automatically. They are also suitable for the development

of the different forms of IP cores which are used to build a
larger or more complex system. IP cores are divided into
three categories according to the flexibility of reuse: soft
cores, firm cores, and hard cores.

It this paper, we present comparison of three I2C bus
implementation approaches on two development platforms.
Section II. talks on I2C bus standard specifications, and
Section III. presents different implementation approaches.
Section IV. deals with implementation details for two
FPGA platforms and presents approaches comparisons.
The last section, Section V., gives conclusions on
presented aspects of undertaken implementation
approaches.

II. I2C BUS STANDARD

An Inter IC bus widely known as I2C bus is a multi-
master serial bus introduced in 1982 by Philips
Semiconductors [1]. It was primary designed for efficient
inter-IC control and nowadays is widespread in consumer
electronics, telecommunications and industrial electronics.
The bus protocol basis is a simple two wire bi-directional
serial master/slave communication. The communication
lines are connecting devices in the system and are denoted
as SCL and SDA lines, as illustrated in Fig. 1.

The SCL line is a serial port clock line and it is driven
by the master device. The SDA line is a bi-directional
serial port data line. The master can demand reading and
writing to a slave device, and the SDA line is used for the
data interchange during the realization of those operations.
The data transfer is 8-bit oriented. The protocol defines
several data transfer rates from up to 100 kbits/s in the
Standard mode to maximum of 3.4 Mbits/s in the High-
speed mode.

The master device uses I2C bus protocol for reading and
writing to a slave device internal registers. Fig. 2. shows
patterns of read and write operations. As I2C bus protocol
figures out, start of the communication is marked using
START condition and it ends using STOP condition. When
the bus is in the idle state, the SCL and SDA lines are kept
high. The START condition is recognized when the SDA

SCL

SDA

I 2C
Serial

EEPROMs

I 2C
Real-Time

Clocks

I 2C
Audio/Video

Drivers

I 2C Master #2 I 2C Master #1

I 2C
A/D or D/A
Converter

VCC

Fig. 1. Example of I2C bus applications

line is driven high-to-low while the SCL line is high. The
STOP condition is recognized when the SDA line is driven
low-to-high while the SCL line is high. Since I2C bus
protocol allows multiple slave devices, a specific slave
device is accessed by setting appropriate address on the
SDA line. After this, the addressing of the device’s internal
register follows. The steps following the addressing phase
depends of the type of the operation that master device
wants to perform. The types of the operation are read or
write. The I2C protocol uses 7-bit slave address and the
eighth bit specifies whether master wants to read or write to
slave. In a case of writing, next byte of data contains
contents to be written to the slave device register, and the
master finishes the transfer using the STOP condition, as in
Fig. 2a. During the read operation, master repeats the
START condition and the slave addressing sequence, but
with a last bit in slave address byte set low to signify the
read operation. After that the master expects appropriate
data on the SDA line set by the slave and finishes the
transfer with the STOP condition, as in Fig. 2b.

During initiation of communication and addressing
phase the slave device is required to respond to every
received byte with acknowledgment signal. Using low
leveled signal the slave affirms its presence on the bus and
its preparedness for the transfers. After receiving data from
the slave, master device is also required to acknowledge
every received byte except for the last received byte. By
not acknowledging the last received byte it is announcing
to slave not to send more bytes what concludes the read
sequence.

III. I MPLEMENTATION APPROACHES

In this work, we examine different approaches for I2C
master implementation using FPGA technologies. The first
studied implementation is based on an open source I2C
controller core from OpenCores [2]. The second is based
on a software implementation using Xilinx PicoBlaze soft
core processor [3, 4]. The third is based on a proprietary
I2CM IP core from Altium Limited [5]. The features of the
approaches are described in following subsections.

A. OpenCores.org I2C Controller

The solution from OpenCores represents one of the
open-source I2C controller cores. The advantage of using
such an approach is in the full accessibility to low-level
implementation of I2C bus protocol. The scheme of the
implementation is presented in Fig. 3. In this case, typical
code consists of several entities written in VHDL: the core
module, the interface module and the intermediate module.

There are two purposes of the interface module: it
defines access points to I2C pins on the target and enables
the user to specify the device’s and its internal registers’
addresses. Also, this module implements the protocol
command sequences as a Moore state machine, as shown in
Fig 4. The states of the machine are defined at higher level
easily understandable to user. The intermediate module is
used to interpret these states and translate them to I2C
commands. The core module interprets the commands into
bit-level data for sending over SDA and SCL lines. The
SDA and SCL signals are “wired” with other data through
all three modules and in the interface module they are
connected to target SDA and SCL pins.

S Slave Address A Register Address A

Data

7 6 5 4 3 2 1 0

Sr Slave Address A

W
7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0
R /A

7 6 5 4 3 2 1 0
P

a) read

S Slave Address A Register Address A

Data

7 6 5 4 3 2 1 0
W

7 6 5 4 3 2 1 0

A
7 6 5 4 3 2 1 0

P

b) write

 From Master

From Slave

S Start Condition
Sr Restart Condition
P Stop Condition

A Acknowledge

R Read Condition
W Write Condition

Not acknowledge /A

Fig. 2. I2C read (a) and write (b) patterns.

t1

t2

t3

t4

action = send
start = TRUE
data = slave_address & ‘0’

action = send
data = register_address

action = send
start = TRUE
data = slave_address & ‘1’

action = receive
stop = TRUE

ack

ack

ack

t1

t2

t3

action = send
start = TRUE
data = slave_address & ‘0’

action = send
data = register_address

action = send
stop = TRUE
data = <data_to_write>

ack

ack

a) b)

Fig. 4. OpenCores.org Interface module state machines for

read (a) and write (b) operation.

entity CH7301C_interface is …

entity simple_i2c is …

entity i2c_core is …

Interface Module
(Application Level)

Intermediate Module
(Translation Level)

Core Module
(Physical Level)

States

Commands

FPGA User Input

Fig. 3. The configuration of OpenCores.org based
implementation.

B. Xilinx PicoBlaze I2C Controller

The PicoBlaze solution is one of the soft processors
based solution. The soft processor core generally refers to
an IP core that is every time synthesized through a logic
synthesis process and can be implemented on different
FPGA architectures. The PicoBlaze is a specific
implementation of 8-bit RISC soft processor core which is
optimized and embedded within Xilinx FPGA
architectures. Inside the FPGA device it is interfaced to
available peripheral logic through its input and output
ports.

The PicoBlaze core is delivered as synthesizable HDL
source code and accompanying development suite. The
suite consists of assembler for writing an application and a
template code for generating HDL source that represents
the instruction memory.

The implementation scheme of the I2C master is
presented in Fig. 5. It consists of top-level interface
module, controller module, PicoBlaze processor core and
assembled PicoBlaze code.

Top-level interface module defines access points to I2C
user interface pins on the target. The application code is
written in assembler and translated into assembled HDL
source which represents the instruction memory for the
PicoBlaze processor core. Controller module serves as a
wrapper for the assembled HDL code and PicoBlaze
processor core and ensures their mutual mapping. During
execution the processor core reads the instructions coded
inside the assembled code and runs the application.

C. Altium Designer I2C Controller

The Altium Designer tool is digital design development
environment with graphical interface and fully integrated
libraries of Altium proprietary IP cores. These IP cores are
logic and data blocks designed to support the design reuse
concept in electronic design automation industry. In more
complex designs’ development process they are used as
reliable and portable design elements. The Altium Designer
environment provides the user with numerous soft IP cores
what means that they can be instantiated in design
schematic as boxes with well-known functionalities. There
are core components libraries with generic components,
instruments, memories, peripherals, processors, and board

port-plugins. A wide spectrum of present IP cores opens
the horizon for rapid development of complex designs.

Altium I2C master core is implemented in two versions:
non-Wishbone compliant (I2CM) and Wishbone compliant
(I2CM_W) version. Schematic representation of the
components in Altium Designer environment is presented
in Fig. 6.

The non-Wishbone compliant core has the basic SCL
and SDA I2C lines and interface lines for accepting user's
demands; address and data buses, read/write select, reset
and input clock. It is suitable for use in designs with
simpler communication overhead and no demands for
higher level bus standards.

The Wishbone compliant version introduces the
additional Wishbone interconnect lines. Advantage of
using standard bus is robust and flexible solution for
enforcing compatibility between IP cores and allowing
design reuse using standard bus components [6].

To implement the I2C master with Altium’s IP cores a
soft processor core is needed. Its task is to control the I2C
master core. The final design includes RISC processor
core, Wishbone interconnect, and I2C Wishbone-compliant
controller. For the soft processor cores the environment
provides adequate compiler support for assembler or C
source code. Fig. 7. presents I2C controller architecture
using the Wishbone interconnect features. Through the
Wishbone interconnect the user application controls I2C
master component.

The control of I2C sequences is done by C code
application, as in portion of code below:

void SendI2CByte(unsigned char data, int last) {

cmd = 0;

 i2c_int = 0;
 if (last) {

cmd = I2C_CTRL_EN | I2C_CTRL_IEN | I2C_CTRL_WR |
I2C_CTRL_STOP;

 } else {
cmd = I2C_CTRL_EN | I2C_CTRL_IEN | I2C_CTRL_WR;

 }
 *I2C_WRIT_REG = data;
 *I2C_CTRL_REG = cmd;

 while(!i2c_int);
}

unsigned char GetI2CByte(int last) {
 cmd = 0;

 i2c_int = 0;
 if (last) {

cmd = I2C_CTRL_EN | I2C_CTRL_IEN | I2C_CTRL_RD |
I2C_CTRL_ACK | I2C_CTRL_STOP;

 } else {
cmd = I2C_CTRL_EN | I2C_CTRL_IEN | I2C_CTRL_RD;

 }
 *I2C_CTRL_REG = cmd;

while (!i2c_int);

 return *I2C_READ_REG;
}

module CH7301C_DEMO …

module CH7301C_DEMO_CTRL …

module
PB_CH7301C_DEMO …

Interface Module

Controller Module

Assembled PicoBlaze Code
(Instruction Memory)

PicoBlaze
Processor Core

module KCPSM3 …
ADDRESS

INSTRUCTION

FPGA
User Input
(Assembler Code)

Fig. 5. The configuration of PicoBlaze based implementation.

CLK
RST

DATAO[7..0]
DATAI[7..0]

ADDR[2..0]
WR
RD

INT

SDATA_EN

SDATAO

SDATAI

SCLK_EN

SCLKO

SCLKI

U?

I2CM

I2C Master Wishbone

STB_I
CYC_I
ACK_O
ADR_I[2..0]
DAT_O[7..0]
DAT_I[7..0]

WE_I
CLK_I
RST_I
INT_O

SDATA_EN

SDATAO

SDATAI

SCLK_EN

SCLKO

SCLKI

U?

I2CM_W
a) b)

Fig. 6. I2C controller cores from Altium Designer library: non-

Wishbone version (a) and Wishbone-compliant version (b).

The routines for sending (SendI2CByte) and receiving
(GetI2CByte) data handle the communication sequences
through a set of pointers. The user fills the pointer location
I2C_WRIT_REG with byte of data to send, and receives the
byte of data at I2C_READ_REG pointer location. The
control of the communication is realized by combining
special constants (I2C_CTRL_EN, I2C_CTRL_IEN,
I2C_CTRL_WR, I2C_CTRL_RD, I2C_CTRL_ACK,
I2C_CTRL_STOP) to the pointer location I2C_CTRL_REG
which represents the control register. After issuing the
commands, the communication is held inside those routines
until variable i2c_int is set by interrupt from slave device.
In such way the user is mastering the bus protocol in a
higher level languages style of handling constants,
variables and pointers. Since IP core takes care of low level
protocol communication, there is no need of making the
data sequences from bit-level pieces and coordinating them
with the clock signal as in hardware description languages.
Also, the C code higher level constructs allow that handling
jumps, logic operations and moving the data between
registers, as in a case of assembler code, are avoided.

IV. I2C PROTOCOL IMPLEMENTATION

Previously described implementations are investigated
on two development platforms with different FPGA
devices: Spartan-IIE and Virtex-5.

A. Spartan-IIE

The Spartan-IIE device is present on Altium’s
NanoBoard-NB1 platform developed for test and education
purposes. The board utilizes I2C bus for accessing A/D and
D/A converters.

Two successful implementations on Altium NanoBoard-
NB1 were the OpenCores and Altium Designer based. The
PicoBlaze processor core is not supported for Spartan-IIE
device so the related implementation has been omitted. The
information on device slices used and resulting cycles’
periods after place and route phase is presented in Table I.

The assessment of presented results will be done in
comparison with results on other platform in following
sections.

B. Virtex-5

The Virtex-5 device populates the Xilinx’s ML506 DSP
development platform. The I2C bus is used for accessing
EEPROM, Fan Controller, VGA Input, DVI Output and
Serial Presence Detect (SPD) to the DDR DIMM.

The information on device resources consumed and
resulting best possible timings after place and route phase
is presented in Table II. The Virtex-5 platform has more
available resources what reflects in slice occupation
records and leaves space for development of more complex
designs. Besides that, its slice organization is more
advanced with 6-input LUT based logic what allows
achieving the higher frequencies.

C. Implementation Approaches Comparison

Comparing proposed approaches the usage of Altium
Designer environment with fully integrated proprietary IP
cores eases the design process. It is especially useful when
a soft processor core is already included in the design.
However, the usage of such cores brings initial overhead to
the device resources occupation. The solution based on
Altium Designer environment on both platforms takes
much more of available resources. Further, first two
solutions are designed and optimized for use on lower
levels of abstraction and consequently offer better
performance in terms of resulting clock cycle periods. The
size of solution reflects also on duration of synthesis and
implementation process. The duration time for this process
is 15 seconds for first two solutions, and over 1 minute for
the third solution.

TABLE I
IMPLEMENTATION RESULTS FOR SPARTAN-IIE

Occupied
Slices (out of

3072)

Solution

%

Min.
Period /

ns

Max.
Frequency

/ MHz

OpenCores 58 1 6.6 151.3

PicoBlaze Not applicable

Altium Designer 1885 61 31.0 32.3

INT_I[31..0]

IO_CYC_O

IO_CLK_O

IO_ADR_O[23..0]

IO_STB_O

ME_DAT_O[31..0]
ME_SEL_O[3..0]

ME_STB_O

IO_WE_O

IO_DAT_O[31..0]

ME_WE_O
IO_SEL_O[3..0]

ME_ADR_O[31..0]
ME_DAT_I[31..0]

IO_ACK_I
ME_CYC_O
ME_ACK_I

IO_DAT_I[31..0]

IO_RST_O
ME_CLK_O
ME_RST_O

MDU : Not Installed
Debug Hardware : Installed
Internal Memory : 4 KB

TSK3000A 32-Bit RISC Processor

Current Configuration

RST_I
CLK_I

U3

TSK3000A

Wishbone Interconnect

s0_STB_O
s0_CYC_O
s0_ACK_I

s0_DAT_I[7..0]
s0_DAT_O[7..0]
s0_SEL_O[3..0]
s0_WE_O
s0_CLK_O
s0_RST_O

s1_STB_O
s1_CYC_O
s1_ACK_I
s1_ADR_O[2..0]
s1_DAT_I[7..0]
s1_DAT_O[7..0]
s1_SEL_O[3..0]
s1_WE_O
s1_CLK_O
s1_RST_O
s1_INT_I

m0_STB_I
m0_CYC_I

m0_ACK_O
m0_ADR_I[23..0]

m0_DAT_O[31..0]
m0_DAT_I[31..0]

m0_SEL_I[3..0]
m0_WE_I

m0_CLK_I
m0_RST_I

m0_INT_O[31..0]

U2

WB_INTERCON

CLK_I
RST_IWE_I

CLK_I
RST_I

SDATAO

SCLK_EN

SCLKI

ACK_O

SDATAI

SDATA_EN

ADR_I[2..0]

SCLKO

CYC_I
STB_I

DAT_I[7..0]
DAT_O[7..0]

INT_O

U8

I2CM_W

s1_STB_O
s1_CYC_O

s1_ADR_O[2..0]
s1_DAT_I[7..0]
s1_DAT_O[7..0]

s1_WE_O
s1_SEL_O[3..0]

Fig. 7. Schematic of I2C Altium Designer based implementation.

TABLE II
IMPLEMENTATION RESULTS FOR VIRTEX-5

Occupied
Slices (out of

8160)

Solution

%

Min.
Period /

ns

Max.
Frequency

/ MHz

OpenCores 37 1 3.1 322.9

PicoBlaze 66 1 8.5 117.6

Altium Designer 1073 13 13.7 73.0

Table III. reveals the complexity from application

programming view in a sense of approximate code sizes
and programming language levels. The inclusion of soft
processor cores enables usage of conventional software
programming languages and makes the job more familiar to
application designer. In comparison to hardware
description language (VHDL) such approach reduces the
number of code lines to be written. The portion of C code
given in Section III.C. particularly emphasizes the higher
level approach in application programming.

V. CONCLUSION

The reality of embedded systems and hardware/software
co-design environments assumes running of hardware base
and development of software Electronic Design
Automation (EDA) support. The hardware base could be
the custom hardware component or development board
based on flexible FPGA technology. The affordable
development boards populated with FPGA device, memory
elements and diverse peripheral devices lately became very
popular choice for creating relatively quick solution
prototypes.

To drive input and output peripheral ports the usage of
soft processor cores often appears as a best choice [7, 8, 9].
Conventional approach of writing a HDL code that directly
controls the components is moving towards higher levels of
abstraction and is successfully replaced with a higher level
code that runs on the processor core.

We explored approaches to I2C bus protocol
implementation on three different levels of abstraction. The
prerequisites are different and each implementation has its
own advantages and disadvantages. Implementation details
for two different boards are presented.

The results are showing that writing a driver at lower
levels of abstraction is still the most precise way which
minimizes resources demands and maximizes the final
frequencies. Unfortunately, it requires specific knowledge
of special purpose languages, and consequently its design
time is the most demanding. In the same time, introduction
of soft processor cores represents a significant shift in
designer’s perspective. Considering more complex designs,
with higher resource volumes and advances in FPGA
device organization, the usage of soft processor cores
essentially decreases the design time and improves the
further integration in larger systems.

REFERENCES

 [1] NXP, UM10204 I2C-bus specification and user manual,
http://www.nxp.com/acrobat_download/usermanuals/UM1
0204_3.pdf

 [2] OPENCORES.ORG, I2C controller core: Overview,
http://www.opencores.org/projects.cgi/web/i2c/overview

 [3] Xilinx, PicoBlaze for Spartan-3 Generation, Virtex-4,
Virtex-II, and Virtex-II Pro FPGAs,
http://www.xilinx.com/products/ipcenter/picoblaze-S3-V2-
Pro.htm

 [4] B. Timpe, “Hidden in Plain View”, XCell Journal, Issue
67, p. 50 - 54, 2009.

 [5] Altium, I2CM Controller,
http://www.altium.com/files/learningguides/CR0105 I2CM
Controller.pdf

 [6] OPENCORES.ORG, Wishbone Version B3,
http://www.opencores.org/projects.cgi/web/wishbone/wbsp
ec_b3.pdf

 [7] D & R, FPGA Soft Processor Design Considerations,
http://www.design-reuse.com/news/?id=11622

 [8] R. Chamberlain, J. Lockwood, S. Gayen, R. Hough, P.
Jones, “Use of a soft-core processor in a hardware/software
codesign laboratory”, Proceedings of the 2005 IEEE
International Conference on Microelectronic Systems
Education, p. 97 - 98, 2005.

 [9] H. Calderón and S. Vassiliadis, “Soft Core Processors and
Embedded Processing: a survey and analysis”, Proceedings
of ProRISC, p. 483 - 488, 2005.

TABLE III
DESIGN PHASE COMPLEXITIES

Solution Written In # Lines of Code

OpenCores VHDL 500

PicoBlaze Assembler 200

Altium Designer C 200

