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Abstract - A typical embedded system encompasses logic 
design, processors, and access to the peripheral devices. In the 
embedded systems design usage of Field Programmable Gate 
Arrays (FPGAs) allows a system designer to customize both 
processor and digital logic to the specific needs of a target 
application. Usually, it also requires appropriate access to the 
peripheral devices. One of the approaches to access peripheral 
devices is the usage of the I2C bus which is currently the 
industry de-facto standard for low-speed IC-to-IC 
communication. The I2C bus is a simple two wire serial bi-
directional bus supported by wide range of peripheral devices 
such as memories, A/D and D/A converters, real-time clocks, 
video drivers, and microprocessor. 
In this paper, we present comparison of different I2C bus 
implementations approaches as IP-cores using FPGA: an 
open-source core written in VHDL, PicoBlaze soft 
microcontroller core, and proprietary IP core component. We 
have analyzed features and implementation issues such as area 
and timing performance on different FPGA architectures. 

 
 

I. INTRODUCTION 
 

Rapid embedded system design usually starts using test 
and development platforms that include Field 
Programmable Gate Array (FPGA) devices and numerous 
peripheral devices for accessing the outer world. The 
spectrum of available platforms is wide as it is the choice 
of FPGA’s and peripheral devices. The most common 
peripherals are all types of memories, audio and video 
ports, Ethernet, USB, and peripheral busses. Including their 
functionalities into some design puts a demand of accessing 
them through various buses and protocols. The 
communication can be based on serial communication 
buses such that are RS-232, I2C, I2S, SPI or CAN. 

There is no doubt that the FPGA technology has an 
enormous impact on embedded computing. The concept of 
a programmable logic device enables designer the 
flexibility to implement customized digital logic circuits 
from dedicated logical function to complex processors. In 
developing process designers have, depending of problem 
complexity, a variety of choices used to develop designs 
from using Hardware Description Languages (HDLs) to 
use of advanced methodologies based on extensive 
Intellectual Property component reuse. Minimizing design 
and development time and cost is the goal of an efficient 
design methodology.  

Today FPGA based design is typically realized using 
appropriate Computer Aided Design tools. These tools 
support design entry using several different methods. As 
the design complexity grows, HDLs become leading choice 
since they handle low-level implementation details 
automatically. They are also suitable for the development 

of the different forms of IP cores which are used to build a 
larger or more complex system. IP cores are divided into 
three categories according to the flexibility of reuse: soft 
cores, firm cores, and hard cores. 

It this paper, we present comparison of three I2C bus 
implementation approaches on two development platforms. 
Section II. talks on I2C bus standard specifications, and 
Section III. presents different implementation approaches. 
Section IV. deals with implementation details for two 
FPGA platforms and presents approaches comparisons. 
The last section, Section V., gives conclusions on 
presented aspects of undertaken implementation 
approaches. 

 
 

II. I2C BUS STANDARD 
 

An Inter IC bus widely known as I2C bus is a multi-
master serial bus introduced in 1982 by Philips 
Semiconductors [1]. It was primary designed for efficient 
inter-IC control and nowadays is widespread in consumer 
electronics, telecommunications and industrial electronics. 
The bus protocol basis is a simple two wire bi-directional 
serial master/slave communication. The communication 
lines are connecting devices in the system and are denoted 
as SCL and SDA lines, as illustrated in Fig. 1. 

The SCL line is a serial port clock line and it is driven 
by the master device. The SDA line is a bi-directional 
serial port data line. The master can demand reading and 
writing to a slave device, and the SDA line is used for the 
data interchange during the realization of those operations. 
The data transfer is 8-bit oriented. The protocol defines 
several data transfer rates from up to 100 kbits/s in the 
Standard mode to maximum of 3.4 Mbits/s in the High-
speed mode. 

The master device uses I2C bus protocol for reading and 
writing to a slave device internal registers. Fig. 2. shows 
patterns of read and write operations. As I2C bus protocol 
figures out, start of the communication is marked using 
START condition and it ends using STOP condition. When 
the bus is in the idle state, the SCL and SDA lines are kept 
high. The START condition is recognized when the SDA 
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Fig. 1. Example of I2C bus applications 



line is driven high-to-low while the SCL line is high. The 
STOP condition is recognized when the SDA line is driven 
low-to-high while the SCL line is high. Since I2C bus 
protocol allows multiple slave devices, a specific slave 
device is accessed by setting appropriate address on the 
SDA line. After this, the addressing of the device’s internal 
register follows. The steps following the addressing phase 
depends of the type of the operation that master device 
wants to perform. The types of the operation are read or 
write. The I2C protocol uses 7-bit slave address and the 
eighth bit specifies whether master wants to read or write to 
slave. In a case of writing, next byte of data contains 
contents to be written to the slave device register, and the 
master finishes the transfer using the STOP condition, as in 
Fig. 2a. During the read operation, master repeats the 
START condition and the slave addressing sequence, but 
with a last bit in slave address byte set low to signify the 
read operation. After that the master expects appropriate 
data on the SDA line set by the slave and finishes the 
transfer with the STOP condition, as in Fig. 2b. 

During initiation of communication and addressing 
phase the slave device is required to respond to every 
received byte with acknowledgment signal. Using low 
leveled signal the slave affirms its presence on the bus and 
its preparedness for the transfers. After receiving data from 
the slave, master device is also required to acknowledge 
every received byte except for the last received byte. By 
not acknowledging the last received byte it is announcing 
to slave not to send more bytes what concludes the read 
sequence. 

 
 

III. I MPLEMENTATION APPROACHES 
 

In this work, we examine different approaches for I2C 
master implementation using FPGA technologies. The first 
studied implementation is based on an open source I2C 
controller core from OpenCores [2]. The second is based 
on a software implementation using Xilinx PicoBlaze soft 
core processor [3, 4]. The third is based on a proprietary 
I2CM IP core from Altium Limited [5]. The features of the 
approaches are described in following subsections. 

 
A. OpenCores.org I2C Controller 

 

The solution from OpenCores represents one of the 
open-source I2C controller cores. The advantage of using 
such an approach is in the full accessibility to low-level 
implementation of I2C bus protocol. The scheme of the 
implementation is presented in Fig. 3. In this case, typical 
code consists of several entities written in VHDL: the core 
module, the interface module and the intermediate module. 

There are two purposes of the interface module: it 
defines access points to I2C pins on the target and enables 
the user to specify the device’s and its internal registers’ 
addresses. Also, this module implements the protocol 
command sequences as a Moore state machine, as shown in 
Fig 4. The states of the machine are defined at higher level 
easily understandable to user. The intermediate module is 
used to interpret these states and translate them to I2C 
commands. The core module interprets the commands into 
bit-level data for sending over SDA and SCL lines.  The 
SDA and SCL signals are “wired” with other data through 
all three modules and in the interface module they are 
connected to target SDA and SCL pins. 
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Fig. 2. I2C read (a) and write (b) patterns. 
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Fig. 4. OpenCores.org Interface module state machines for  

read (a) and write (b) operation. 
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Fig. 3. The configuration of OpenCores.org based 
implementation. 

 



B. Xilinx PicoBlaze I2C Controller 
 

The PicoBlaze solution is one of the soft processors 
based solution. The soft processor core generally refers to 
an IP core that is every time synthesized through a logic 
synthesis process and can be implemented on different 
FPGA architectures. The PicoBlaze is a specific 
implementation of 8-bit RISC soft processor core which is 
optimized and embedded within Xilinx FPGA 
architectures. Inside the FPGA device it is interfaced to 
available peripheral logic through its input and output 
ports. 

The PicoBlaze core is delivered as synthesizable HDL 
source code and accompanying development suite. The 
suite consists of assembler for writing an application and a 
template code for generating HDL source that represents 
the instruction memory. 

The implementation scheme of the I2C master is 
presented in Fig. 5. It consists of top-level interface 
module, controller module, PicoBlaze processor core and 
assembled PicoBlaze code. 

Top-level interface module defines access points to I2C 
user interface pins on the target. The application code is 
written in assembler and translated into assembled HDL 
source which represents the instruction memory for the 
PicoBlaze processor core. Controller module serves as a 
wrapper for the assembled HDL code and PicoBlaze 
processor core and ensures their mutual mapping. During 
execution the processor core reads the instructions coded 
inside the assembled code and runs the application. 

 
C. Altium Designer I2C Controller 

 

The Altium Designer tool is digital design development 
environment with graphical interface and fully integrated 
libraries of Altium proprietary IP cores. These IP cores are 
logic and data blocks designed to support the design reuse 
concept in electronic design automation industry. In more 
complex designs’ development process they are used as 
reliable and portable design elements. The Altium Designer 
environment provides the user with numerous soft IP cores 
what means that they can be instantiated in design 
schematic as boxes with well-known functionalities. There 
are core components libraries with generic components, 
instruments, memories, peripherals, processors, and board 

port-plugins. A wide spectrum of present IP cores opens 
the horizon for rapid development of complex designs. 

Altium I2C master core is implemented in two versions: 
non-Wishbone compliant (I2CM) and Wishbone compliant 
(I2CM_W) version. Schematic representation of the 
components in Altium Designer environment is presented 
in Fig. 6. 

The non-Wishbone compliant core has the basic SCL 
and SDA I2C lines and interface lines for accepting user's 
demands; address and data buses, read/write select, reset 
and input clock. It is suitable for use in designs with 
simpler communication overhead and no demands for 
higher level bus standards. 

The Wishbone compliant version introduces the 
additional Wishbone interconnect lines. Advantage of 
using standard bus is robust and flexible solution for 
enforcing compatibility between IP cores and allowing 
design reuse using standard bus components [6]. 

To implement the I2C master with Altium’s IP cores a 
soft processor core is needed. Its task is to control the I2C 
master core. The final design includes RISC processor 
core, Wishbone interconnect, and I2C Wishbone-compliant 
controller. For the soft processor cores the environment 
provides adequate compiler support for assembler or C 
source code. Fig. 7. presents I2C controller architecture 
using the Wishbone interconnect features. Through the 
Wishbone interconnect the user application controls I2C 
master component. 

The control of I2C sequences is done by C code 
application, as in portion of code below: 

 
void SendI2CByte(unsigned char data, int last) { 

cmd = 0; 
 
 i2c_int = 0; 
 if (last) { 

cmd = I2C_CTRL_EN | I2C_CTRL_IEN | I2C_CTRL_WR | 
I2C_CTRL_STOP; 

 } else { 
cmd = I2C_CTRL_EN | I2C_CTRL_IEN | I2C_CTRL_WR; 

 } 
 *I2C_WRIT_REG = data; 
 *I2C_CTRL_REG = cmd; 
 
 while(!i2c_int); 
} 
 
unsigned char GetI2CByte(int last) { 
 cmd = 0; 
 
 i2c_int = 0; 
 if (last) { 

cmd = I2C_CTRL_EN | I2C_CTRL_IEN | I2C_CTRL_RD | 
I2C_CTRL_ACK | I2C_CTRL_STOP; 

 } else { 
cmd = I2C_CTRL_EN | I2C_CTRL_IEN | I2C_CTRL_RD; 

 } 
 *I2C_CTRL_REG = cmd; 
 

while (!i2c_int); 
  
 return *I2C_READ_REG; 
} 
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Fig. 5. The configuration of PicoBlaze based implementation. 

 

CLK
RST

DATAO[7..0]
DATAI[7..0]

ADDR[2..0]
WR
RD

INT

SDATA_EN

SDATAO

SDATAI

SCLK_EN

SCLKO

SCLKI

U?

I2CM

I2C Master Wishbone

STB_I
CYC_I
ACK_O
ADR_I[2..0]
DAT_O[7..0]
DAT_I[7..0]

WE_I
CLK_I
RST_I
INT_O

SDATA_EN

SDATAO

SDATAI

SCLK_EN

SCLKO

SCLKI

U?

I2CM_W  
a)                                                    b) 

 
Fig. 6. I2C controller cores from Altium Designer library: non-

Wishbone version (a) and Wishbone-compliant version (b). 



The routines for sending (SendI2CByte) and receiving 
(GetI2CByte) data handle the communication sequences 
through a set of pointers. The user fills the pointer location 
I2C_WRIT_REG with byte of data to send, and receives the 
byte of data at I2C_READ_REG pointer location. The 
control of the communication is realized by combining 
special constants (I2C_CTRL_EN, I2C_CTRL_IEN, 
I2C_CTRL_WR, I2C_CTRL_RD, I2C_CTRL_ACK, 
I2C_CTRL_STOP) to the pointer location I2C_CTRL_REG 
which represents the control register. After issuing the 
commands, the communication is held inside those routines 
until variable i2c_int is set by interrupt from slave device. 
In such way the user is mastering the bus protocol in a 
higher level languages style of handling constants, 
variables and pointers. Since IP core takes care of low level 
protocol communication, there is no need of making the 
data sequences from bit-level pieces and coordinating them 
with the clock signal as in hardware description languages. 
Also, the C code higher level constructs allow that handling 
jumps, logic operations and moving the data between 
registers, as in a case of assembler code, are avoided. 

 
 

IV. I2C PROTOCOL IMPLEMENTATION 
 

Previously described implementations are investigated 
on two development platforms with different FPGA 
devices: Spartan-IIE and Virtex-5. 

 
A. Spartan-IIE 

 

The Spartan-IIE device is present on Altium’s 
NanoBoard-NB1 platform developed for test and education 
purposes. The board utilizes I2C bus for accessing A/D and 
D/A converters. 

Two successful implementations on Altium NanoBoard-
NB1 were the OpenCores and Altium Designer based. The 
PicoBlaze processor core is not supported for Spartan-IIE 
device so the related implementation has been omitted. The 
information on device slices used and resulting cycles’ 
periods after place and route phase is presented in Table I.  

The assessment of presented results will be done in 
comparison with results on other platform in following 
sections. 

 
B. Virtex-5 

 

The Virtex-5 device populates the Xilinx’s ML506 DSP 
development platform. The I2C bus is used for accessing 
EEPROM, Fan Controller, VGA Input, DVI Output and 
Serial Presence Detect (SPD) to the DDR DIMM. 

The information on device resources consumed and 
resulting best possible timings after place and route phase 
is presented in Table II. The Virtex-5 platform has more 
available resources what reflects in slice occupation 
records and leaves space for development of more complex 
designs. Besides that, its slice organization is more 
advanced with 6-input LUT based logic what allows 
achieving the higher frequencies. 

 
C. Implementation Approaches Comparison 

 

Comparing proposed approaches the usage of Altium 
Designer environment with fully integrated proprietary IP 
cores eases the design process. It is especially useful when 
a soft processor core is already included in the design. 
However, the usage of such cores brings initial overhead to 
the device resources occupation. The solution based on 
Altium Designer environment on both platforms takes 
much more of available resources. Further, first two 
solutions are designed and optimized for use on lower 
levels of abstraction and consequently offer better 
performance in terms of resulting clock cycle periods. The 
size of solution reflects also on duration of synthesis and 
implementation process. The duration time for this process 
is 15 seconds for first two solutions, and over 1 minute for 
the third solution. 

TABLE I 
IMPLEMENTATION RESULTS FOR SPARTAN-IIE 

 

Occupied 
Slices (out of  

3072) 

Solution 

# % 

Min. 
Period / 

ns 

Max. 
Frequency 

/ MHz 

OpenCores 58 1 6.6 151.3 

PicoBlaze Not applicable 

Altium Designer 1885 61 31.0 32.3 
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Fig. 7. Schematic of I2C Altium Designer based implementation. 

TABLE II 
IMPLEMENTATION RESULTS FOR VIRTEX-5 

 

Occupied 
Slices (out of  

8160) 

Solution 

# % 

Min. 
Period / 

ns 

Max. 
Frequency 

/ MHz 

OpenCores 37 1 3.1 322.9 

PicoBlaze 66 1 8.5 117.6 

Altium Designer 1073 13 13.7 73.0 

 



 
Table III. reveals the complexity from application 

programming view in a sense of approximate code sizes 
and programming language levels. The inclusion of soft 
processor cores enables usage of conventional software 
programming languages and makes the job more familiar to 
application designer. In comparison to hardware 
description language (VHDL) such approach reduces the 
number of code lines to be written. The portion of C code 
given in Section III.C. particularly emphasizes the higher 
level approach in application programming. 

 
 

V. CONCLUSION 
 

The reality of embedded systems and hardware/software 
co-design environments assumes running of hardware base 
and development of software Electronic Design 
Automation (EDA) support. The hardware base could be 
the custom hardware component or development board 
based on flexible FPGA technology. The affordable 
development boards populated with FPGA device, memory 
elements and diverse peripheral devices lately became very 
popular choice for creating relatively quick solution 
prototypes. 

To drive input and output peripheral ports the usage of 
soft processor cores often appears as a best choice [7, 8, 9]. 
Conventional approach of writing a HDL code that directly 
controls the components is moving towards higher levels of 
abstraction and is successfully replaced with a higher level 
code that runs on the processor core. 

We explored approaches to I2C bus protocol 
implementation on three different levels of abstraction. The 
prerequisites are different and each implementation has its 
own advantages and disadvantages. Implementation details 
for two different boards are presented. 

The results are showing that writing a driver at lower 
levels of abstraction is still the most precise way which 
minimizes resources demands and maximizes the final 
frequencies. Unfortunately, it requires specific knowledge 
of special purpose languages, and consequently its design 
time is the most demanding. In the same time, introduction 
of soft processor cores represents a significant shift in 
designer’s perspective. Considering more complex designs, 
with higher resource volumes and advances in FPGA 
device organization, the usage of soft processor cores 
essentially decreases the design time and improves the 
further integration in larger systems. 
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TABLE III 
DESIGN PHASE COMPLEXITIES 

 

Solution Written In # Lines of Code 

OpenCores VHDL 500 

PicoBlaze Assembler 200 

Altium Designer C 200 

 


