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Abstract - A typical embedded system encompassesgio

design, processors, and access to the peripheravdes. In the
embedded systems design usage of Field Programmai@ate

Arrays (FPGAs) allows a system designer to custon@zboth

processor and digital logic to the specific needsf @ target

application. Usually, it also requires appropriateaccess to the
peripheral devices. One of the approaches to accgsaripheral

devices is the usage of the’@ bus which is currently the

industry de-facto standard for low-speed IC-to-IC
communication. The PC bus is a simple two wire serial bi-
directional bus supported by wide range of peripheal devices
such as memories, A/D and D/A converters, real-timelocks,

video drivers, and microprocessor.

In this paper, we present comparison of different iC bus

implementations approaches as IP-cores using FPGAan

open-source core written in VHDL, PicoBlaze soft
microcontroller core, and proprietary IP core compament. We

have analyzed features and implementation issuescuas area
and timing performance on different FPGA architectues.

I. INTRODUCTION

of the different forms of IP cores which are useduild a
larger or more complex system. IP cores are dividéol
three categories according to the flexibility ofise: soft
cores, firm cores, and hard cores.

It this paper, we present comparison of thr&@ tus
implementation approaches on two development plago
Section II. talks on?C bus standard specifications, and
Section lll. presents different implementation aygmhes.
Section V. deals with implementation details favot
FPGA platforms and presents approaches comparisons.

The last section, Section V., gives conclusions on
presented aspects of undertaken implementation
approaches.

Il. 1°C BUS STANDARD

An Inter IC bus widely known asC bus is a multi-
master serial bus introduced in 1982 by Philips
Semiconductors [1]. It was primary designed foicefht
inter-IC control and nowadays is widespread in oomer
electronics, telecommunications and industrial tetenics.
The bus protocol basis is a simple two wire bi-cli@al

Rapid embedded system design usually starts uestg t serial master/slave communication. The communioatio

and development platforms that include Fieldjines are connecting devices in the system andieneted
Programmable Gate Array (FPGA) devices and numeroygs SCL and SDA lines, as illustrated in Fig. 1.

peripheral devices for accessing the outer worltde T

spectrum of available platforms is wide as it ie tihoice

peripherals are all types of memories, audio artkwi
ports, Ethernet, USB, and peripheral busses. |imauheir
functionalities into some design puts a demanccoéssing
them through various

buses such that are RS-23Z,11°S, SPI or CAN.

There is no doubt that the FPGA technology has an
enormous impact on embedded computing. The cordept
h

a programmable logic device enables designer
flexibility to implement customized digital logicircuits
from dedicated logical function to complex processdn
developing process designers have, depending diemo

buses and protocols. Th
communication can be based on serial communicati

The SCL line is a serial port clock line and itdisven
by the master device. The SDA line is a bi-diretio

Yerial port data line. The master can demand rgaaiml

writing to a slave device, and the SDA line is ufmdthe
data interchange during the realization of thoseragons.
The data transfer is 8-bit oriented. The protoceliregs

Several data transfer rates from up to 100 kbits/the
O8tandard mode to maximum of 3.4 Mbits/s in the High

speed mode.

The master device us€€lbus protocol for reading and
writing to a slave device internal registers. Fig.shows
Satterns of read and write operations. A3 bus protocol
figures out, start of the communication is markesihg
START condition and it ends using STOP conditiorhe
the bus is in the idle state, the SCL and SDA l|exeskept

complexity, a variety of choices used to developigtes high. The START condition is recognized when theASD

from using Hardware Description Languages (HDLS) tc
1°C Master #1 12C Master #2

use of advanced methodologies based on extensi
Intellectual Property component reuse. Minimizirggidn

and development time and cost is the goal of agiefit Voo
design methodology. i o
Today FPGA based design is typically realized using SDA
appropriate Computer Aided Design tools. These stool | | | |
support design entry using several different meshats I’c I’c 1c A d_'ZAC/_d
the design complexity grows, HDLs become leadingjah ADOrDIA | ol || ReakTime || A s

since they handle low-level implementation details

automatically. They are also suitable for the depeient Fig. 1. Example ofC bus applications
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Fig. 2. BC read (a) and write (b) patterns.

line is driven high-to-low while the SCL line isdhi. The
STOP condition is recognized when the SDA linerigeh
low-to-high while the SCL line is high. SincéCl bus
protocol allows multiple slave devices, a specsiave
device is accessed by setting appropriate addnesthe
SDA line. After this, the addressing of the devicigiternal
register follows. The steps following the addreggiase
depends of the type of the operation that masteicee
wants to perform. The types of the operation assl rer

User Input

g 1w

entity CH7301C_interface is ...

States iI

entity simple_i2c is ...

Interface Module
(Application Level)

Intermediate Module
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I

Commands iI

entity i2c_core is ...

Core Module
(Physical Level)

R

Fig. 3. The configuration of OpenCores.org based
implementation.

A. OpenCores.org 1°C Controller

The solution from OpenCores represents one of the
open-source’C controller cores. The advantage of using
such an approach is in the full accessibility te-level
implementation of 3 bus protocol. The scheme of the
implementation is presented in Fig. 3. In this caggical
code consists of several entities written in VHEhe core
module, the interface module and the intermediaidute.

There are two purposes of the interface module: it
defines access points t&Cl pins on the target and enables

write. The fC protocol uses 7-bit slave address and th%e user to Specify the device’s and its intermﬂjigters’

eighth bit specifies whether master wants to reasrite to

slave. In a case of writing, next byte of data aorg

contents to be written to the slave device registed the
master finishes the transfer using the STOP cangitis in
Fig. 2a. During the read operation, master repéads
START condition and the slave addressing sequendte,
with a last bit in slave address byte set low tmiéy the

read operation. After that the master expects apjaie

data on the SDA line set by the slave and finisties
transfer with the STOP condition, as in Fig. 2b.

During initiation of communication and addressing

phase the slave device is required to respond &yev

addresses. Also, this module implements the prbtoco
command sequences as a Moore state machine, as show
Fig 4. The states of the machine are defined dtehitevel
easily understandable to user. The intermediateutaod
used to interpret these states and translate tlefiCt
commands. The core module interprets the commantds i
bit-level data for sending over SDA and SCL lineBhe
SDA and SCL signals are “wired” with other dataotigh

all three modules and in the interface module they
connected to target SDA and SCL pins.

received byte with acknowledgment signal. Using low

leveled signal the slave affirms its presence enbihss and
its preparedness for the transfers. After receidat from
the slave, master device is also required to aclaune
every received byte except for the last receivett.bBy
not acknowledging the last received byte it is amuing
to slave not to send more bytes what concludeseahd
sequence.

[ll. IMPLEMENTATION APPROACHES

In this work, we examine different approaches f@ |
master implementation using FPGA technologies. firee
studied implementation is based on an open soutce |
controller core from OpenCores [2]. The secondaseil
on a software implementation using Xilinx PicoBlas#t
core processor [3, 4]. The third is based on a netpy
I2CM IP core from Altium Limited [5]. The features the
approaches are described in following subsections.

action = senc
e start = TRUE
data = slave_address & ‘0’
ack
. action = senc
action = senc e start = TRUE
data = register_address data = slave address & ‘0’
ack
ack
action = senc action = senc
e start = TRUE e data = register_address
data = slave_address & ‘1’
ack
ack

action = senc
stop = TRUE
data =<data_to_write>

action = receive
stop = TRUE

a) b)

Fig. 4. OpenCores.org Interface module state mashior
read (a) and write (b) operation.



B. Xilinx PicoBlaze I°C Controller port-plugins. A wide spectrum of present IP coreerns
the horizon for rapid development of complex design

The PicoBlaze solution is one of the soft processor Altium I°C master core is implemented in two versions:
based solution. The soft processor core generelrs to  non-Wishbone compliant (12CM) and Wishbone comgtlian
an IP core that is every time synthesized throudbgic  (I2CM_W) version. Schematic representation of the
synthesis process and can be implemented on differecomponents in Altium Designer environment is présen
FPGA architectures. The PicoBlaze is a specifign Fig. 6.
implementation of 8-bit RISC soft processor corachhs The non-Wishbone compliant core has the basic SCL
optimized and embedded within Xilinx FPGA and SDA fC lines and interface lines for accepting user's
architectures. Inside the FPGA device it is inteethto  demands; address and data buses, read/write selset,
available peripheral logic through its input andtpett  and input clock. It is suitable for use in designih
ports. simpler communication overhead and no demands for

The PicoBlaze core is delivered as synthesizable. HDhigher level bus standards.
source code and accompanying development suite. TheThe Wishbone compliant version introduces the
suite consists of assembler for writing an applicend a  additional Wishbone interconnect lines. Advantage o
template code for generating HDL source that repmss ysing standard bus is robust and flexible solutfon

the instruction memory. enforcing compatibility between IP cores and alluyyi
The implementation scheme of théCl master is design reuse using standard bus components [6].
presented in Fig. 5. It consists of top-level ifsee To implement the’C master with Altium’s IP cores a
module, controller module, PicoBlaze processor @e soft processor core is needed. Its task is to abtite FC
assembled PicoBlaze code. master core. The final design includes RISC prawess

Top-level interface module defines access point€@o core, Wishbone interconnect, arf€ IWishbone-compliant
user interface pins on the target. The applicatiode is controller. For the soft processor cores the envirent
written in assembler and translated into assembiBd provides adequate compiler support for assemble€ or
source which represents the instruction memorytf@ source code. Fig. 7. presenfC Icontroller architecture
PicoBlaze processor core. Controller module seags using the Wishbone interconnect features. Throuwh t
wrapper for the assembled HDL code and PicoBlaz&ishbone interconnect the user application conttt®
processor core and ensures their mutual mappingndu master component.

execution the processor core reads the instructodgd The control of IC sequences is done by C code
inside the assembled code and runs the application. application, as in portion of code below:
C. Altlum Deﬂgner |ZC Controller voi dcﬁsnglglCByt e(unsigned char data, int last) {
The Altium Designer tool is digital design develogm [ Tase ¢
environment with graphical interface and fully igtated Po8 it Cavop | T2CCTRIEN | 12C CTRLVR |
libraries of Altium proprietary IP cores. Thesed&es are b ool 12CCTRLEN | 12C.CTRLIEN | 12C CTRL VR
logic and data blocks designed to support the desigse e VAT REG < data T T

concept in electronic design automation industnymiore *1 2C_CTRL_REG = cn;

complex designs’ development process they are ased while(1i2c_int):

reliable and portable design elements. The Altiuesibner !

environment provides the user with numerous softdfes  unsigned char Geti2cByte(int last) {
what means that they can be instantiated in design

schematic as boxes with well-known functionaliti€sere 1oy

1 1 1 i nd = | 2C_CTRL_EN 12C_CTRL_I EN 12C_CTRL_RD
are core components I|bra_r|es with generic compten oo TR A zc'_chL:smp;‘ | 12CCTRLRD |
instruments, memories, peripherals, processors,baadd } else {

cmd = 12C CTRL_EN | 12C CTRL_IEN | |2C_CTRL_RD;
}
*| 2C_CTRL_REG = cnmd;

while (li2c_int);

User Input
(Assembler Code) return *12C_READ REG
}

Interface Module

D module CH7301C_DEMO .. ,
il ﬁ U 12C Master Wishbone
Controller Module

H - CLK SDATA_EN [— —=f|STB | SDATA_EN'l—
o | |5 - RST —=f|CYC_|
*., .~ module CH7301C_DEMO_CTRL ... SDATAO |~ —}|ACK_O SDATAOH~—
- —<| DATAQ[7..0] ->f| ADR_I[2..0]
ADDRESS - DATAI[7..0] SDATAI |< —f|DAT_O[7..0] SDATAI{<+
~>f| DAT_I[7..0]
ggdgﬁnsolc . s | MOdule KCPSM3 .. = ADDR[2.0] SCLK_EN | SCLK_EN=—
8 = — = WR > WE_I
INSTRUCTION . = RD SCLKO [— -=f{ CLK_I SCLKOf—
PicoBlaze I RSTI
Assembled PicoBlaze Code Processor Core ﬁZICNJ = 121;3 s
(Instruction Memory) -
ey —— a) b)

Fig. 6. EC controller cores from Altium Designer library:mo
Fig. 5. The configuration of PicoBlaze based im@atation. Wishbone version (a) and Wishbone-compliant vergign



TABLE |

¢ A A v A A

2 3
Wstbone Interconnect TSK3000A 328 RSC Processor IMPLEMENTATION RESULTS FOR SPARTAN-IIE
—{{s0_STB O m0_STB_fj<—}{10_STB O ME_STB_ Qf>x
*<qlso.cco mo_Cvc_fj<—<ff10_cYc.o ME_CYC QX
{10 ACK | m0_ACK_di>—ef] 10_ACK | ME_ACK_Iff<+
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B PR T A (Tl o Solution Occupied Min. Max.
X<fs0_SEL_0[3.0] m0_SEL_I[3.0ff<—<}|10_SEL_O3.0] ME_SEL_O[3. (=X . .
Yoo mo g+ 6.0 P o Slices (out of | Period / | Frequency
~q|s0_RsT_O moO_RST_f{<—<}{10_RST O ME_RST_QI>X .
m0_INT_OfaL. >—olf INT_I3L.0] 3072 ns /| MHz
v Current Configuration 0
SDATA EN S8 | SLSTB O | ST8 0 MJJ N Installed # %
ocl L OO CYCO Debug Hrchare - Installed
SDATAO AWA(‘:[;_E?J RO ’ﬁé"o o Internal Menory : 4 KB .
o ot SOy ) OpenCore 58 1 6.€ 151.%
Sl weyfoHED P et PicoBlaze Not applicable
SCLKO %SQ‘ :%_p}: g TSK3000A
o [k L — Altium Designer 1885 61 31.0 328
- WB_INTERCON
Fig. 7. Schematic ofC Altium Designer based implementation.
B. Virtex-5

The routines for sendings¢ndi2CByte) and receiving
(Getl2CByte) data handle the communication SEqUENCes tq virtex-5 device populates the Xilinx's ML506 BS
through a set of pointers. The user fills the pimbcation  yo elonment platform. Théa bus is used for accessing
12C_WRIT_REG with byte of data to send, and receives theEEPROM Fan Controller, VGA Input, DVI Output and

byte of data atI2C_READ__REQ pointgr location. The Serial Presence Detect (SPD) to the DDR DIMM.
control of the communication is realized by combgni

special constants 13C_CTRL_EN, 12C_CTRL_IEN, Thg information_on Qe_vice resources consumed and
12C CTRL WR, 12C CTRL RD, 12C CTRL ACK, _resultmg best_ possible timings qﬂer place andeq@hase
12C_CTRL_STOP) to the pointer locatioleC_CTRL_REG IS Presented in Table Il. The Virtex-5 platform hasre
which represents the control register. After isguthe available resources what reflects in slice occopati
commands, the communication is held inside thostimes ~ €c0rds and leaves space for development of manple

until variablei2c_int is set by interrupt from slave device. d€Signs. Besides that, its slice organization isremo

In such way the user is mastering the bus protgeal advanced with 6-input LUT based logic what allows

higher level languages style of handling constants2chieving the higher frequencies.

variables and pointers. Since IP core takes cal@nofevel

protocol communication, there is no need of makimg C. Implementation Approaches Comparison

data sequences from bit-level pieces and coordigdtiem

with the clock signal as in hardware descriptiamglzages. Comparing proposed approaches the usage of Altium

Also, the C code higher level constructs allow thatdling  Designer environment with fully integrated propaist |P

jumps, logic operations and moving the data betweepores eases the design process. It is especiafylughen

registers, as in a case of assembler code, ardeaizoi a soft processor core is already included in thsige
However, the usage of such cores brings initiatloead to
the device resources occupation. The solution based

IV. 12C PROTOCOL IMPLEMENTATION Altium Designer environment on both platforms takes

much more of available resources. Further, firsb tw

solutions are designed and optimized for use onedow

levels of abstraction and consequently offer better

performance in terms of resulting clock cycle pésioThe

size of solution reflects also on duration of sysik and

implementation process. The duration time for griscess

A. Spartan-11E is 15 seconds for first two solutions, and overifute for
the third solution.

The Spartan-llE device is present on Altium's
NanoBoard-NB1 platform developed for test and etioca
purposes. The board utilizeCIbus for accessing A/D and
D/A converters.

Previously described implementations are invesidjat
on two development platforms with different FPGA
devices: Spartan-lIE and Virtex-5.

TABLE Il
IMPLEMENTATION RESULTS FOR VIRTEX-5

Two successful implementations on Altium NanoBoard Solution Occupied Min. Max.
NB1 were the OpenCores and Altium Designer baskd. T Slices (out of | Period / | Frequency
PicoBlaze processor core is not supported for SpdtE 8160 ns / MHz
device so the related implementation has been emifthe # %
information on device slices used and resultingles/c
periods after place and route phase is presentédite I. OpenCore 37 1 3.1 322.¢

The assessment of presented results will be done PicoBlaze 66 1 8.5 117.6
comparison with results on other platform in follog Altium Designer | 1073 13 13.7 73.0
sections.




TABLE 11l

DESIGN PHASE COMPLEXITIES

The results are showing that writing a driver avdo
levels of abstraction is still the most precise wealyich
minimizes resources demands and maximizes the final
frequencies. Unfortunately, it requires specifiowtedge
of special purpose languages, and consequentjegign
time is the most demanding. In the same time, éhtction
of soft processor cores represents a significaift sh
designer’s perspective. Considering more compleigds,
with higher resource volumes and advances in FPGA

device organization, the usage of soft processaesco
essentially decreases the design time and imprthves
further integration in larger systems.

Solutior Written In | # Lines of Cod
OpenCore VHDL 50C
PicoBlaze Assembler 200
Altium Designer C 200
Table Ill. reveals the complexity from application

programming view in a sense of approximate codessiz
and programming language levels. The inclusion aft s
processor cores enables usage of conventional aeftw
programming languages and makes the job more famdi  [1]
application designer. In comparison to hardware
description language (VHDL) such approach redubes t
number of code lines to be written. The portiorCo€ode
given in Section III.C. particularly emphasizes thigher
level approach in application programming.

(2]
(3]
V. CONCLUSION

The reality of embedded systems and hardware/saftwa [4]
co-design environments assumes running of hardbase
and development of software Electronic Design [5]
Automation (EDA) support. The hardware base cowdd b
the custom hardware component or development board
based on flexible FPGA technology. The affordable 6]
development boards populated with FPGA device, nngmo
elements and diverse peripheral devices latelyrhecgery
popular choice for creating relatively quick soduti
prototypes.

To drive input and output peripheral ports the esaf
soft processor cores often appears as a best digide9].
Conventional approach of writing a HDL code thatdily
controls the components is moving towards higheslteof
abstraction and is successfully replaced with adrdevel
code that runs on the processor core.

We explored approaches to®Cl bus protocol [0
implementation on three different levels of abgtoac The
prerequisites are different and each implementaiemits
own advantages and disadvantages. Implementatiaisde
for two different boards are presented.

(7]
(8]
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