WISHBONE Bus Interface for the No-Instruction-Set Computer (NISC)

Roko Grubist and Vlado Sruk
Department of Electronics, Microelectronics, Congpwtnd Intelligent Systems
Faculty of Electrical Engineering and Computingjvénsity of Zagreb
Unska 3, 10000 Zagreb, Croatia
{roko.grubisic, vlado.sruk}@fer.hr

Abstract - General-purpose processors are often ufde to ~ Such design approaches include many High-Level
effectively exploit the parallelism inherent to thesoftware Synthesis (HLS) tools and, more recently, the No
code. In such cases, additional hardware accelerato are Instruction Set Computer (NISC).

needed to enable meeting the performance goals. Thosten NISC approach [1,2] is based on the idea of elitioneof

time to market and enable meeting design constraist - . ! X . .

designers today use special tools and technologlé® the No- the instruction abstractlon and compiling programgni
language code directly to control words for a costo

Instruction-Set Computer (NISC) to automatically generate d h usi il | . EC
custom accelerators. However, it is often difficulto integrate atapath using a special cycle-accurate compileiN

these accelerators into general-purpose processgrstems and ~ Processor's architecture can be manually modelethen
use them from the main processor’s software. In tisi paper ~ Generic Netlist Representation (GNR) architecture
we present a simple and efficient method for usinthe NISC ~ description language [4], automatically generated o
processor as a loosely-coupled coprocessor. To erabl selected from a Iibrary of standard or previou&tﬁigned
communication with the NISC processor, a simple sebf architectures. NISC Toolset [5] generates the RTddeh
coprocessor services exposed to the application grmmmer of the processor and control words for the desired
is defined. A hardware solution based on standardd& bus application written inC to be implemented in the desired
architectures for implementing these services is deribed. technology. Advantage of the NISC approach isaatlbn
Using a standard SoC bus interface enables simple of instruction-level parallelism (ILP) which enable
integration of the NISC design flow into an existig design speeding up the execution of an algorithm. The geead
flow. A practical implementation of the NISC copro@ssor NjsC processor is usually capable of executing reéve

WISHBONE interface was realized and tested in a sysi : ; : : ;

: equivalent RISC instructions in a single clock eycl
based on a WISHBONE-compatible general-purpose soft q g ey .
ProCessor. However, the NISC Toolset at present doesn't pwdy

standard facilities for communication with gengratpose
processors. This represents a problem when attegjii

|. INTRODUCTION use the NISC processor as a coprocessor and iteeigra
into an existing system to help meet desired design

Embedded computer systems are no longer used enly %onstrairr:_ts. We proposgl us,\ilrllgcan inter}‘ace to aciiatai
; ; , us architecture to enable 's simple integraiio a
simple control devices. Instead, today's embedgetems wide variety of systems with differer?t procgssoml a
hgvg to_eff|C|er_1tIy perform complex.tasks and a_lgmms peripherals. This approach allows using the NISC
within increasingly stringent design constraintsd an processor from the main processor's software thioag
Zgggz'n%:mi(;tpc:;pnaerrlft?ﬁgTh;pmggﬁgaiadi: ezlgfi\r,viaurep fosimple set of coprocessor services. This enableplsi
general-purpose processors offers high design%pigration of performance-critical parts of the apation
productivity. However, this approach offers low iges 0 hardware without the need for significant changethe
quality in terms of performance and power-efficignc rest of the program code. In this way, it is easintegrate

because general-purpose processors are often umableNIS(.: into an existing design flow..

exploit the parallelism inherent in the softwareleoOne In this paper we present the design of NISC WISHEON

of the solutions for increasing the design qualisy Interface [6,7]. This interface provides commurimat
migration of computationally-intensive parts of thefacilities necessary for using the NISC processsraa
system’s task to hardware accelerators and creetisgpm 00sely-coupled coprocessor in systems based on the
Systems-On-Chip (SoCs). Custom hardware accelsratofVISHBONE standard bus architecture. Using this
enable utilizing parallelism and provide an effeetivay to interface, the NISC processor was successfully ected

meet design’s performance goals for certain clagfes 0 & WISHBONE system based on a general-purpos€ RIS
applications. soft processor using a commercial EDA tool. Thengxa

system was implemented and tested on two different
FPGA boards. In this way, we have shown that th8QNI
processor can be connected to a standard busesntciné
using a commercial EDA tool and used as a coprocess
from general-purpose processor’s software.

Custom hardware is conventionally designed at eéléster
transfer level (RTL), which entails manually coditige
RTL model in a hardware description language (HDL),
such as VHDL or Verilog and exhaustive testing. sThi
process is often tedious and error-prone and lirtits
designer productivity. To overcome this problem,ist
necessary to raise the level of abstraction forhgrelware
design and use special tools to synthesize thealactu
circuitry. The most interesting design methodolediecus i) .
on synthesizing the hardware directly form softweoede ~ One of the major design challenges for any SoCgdeisi

written in a high-level programming language, sasfC. ~ System integration. Increased number of componeses
in such systems requires simple and efficient cotioie

Il. STANDARD SOC BUS ARCHITECTURES

mechanism and generic interfaces to decrease defayh
and promote reuse. Standard bus architecturesigirtipd
process of system integration, shorten time to staskd
support portability and reuse of IP cores.

Renowned SoC bus architectures of the day inclug#A
Advanced Microcontroller Bus Architecture (AMBA),

simple, logical, fully synchronous MASTER/SLAVE bus
and IP core interfaces that require very few lagates. It
supports different technology-independent intereation
topologies ranging from simple point-to-point arthed
bus interconnections to data flow interconnecti@msl
complex switch fabrics. It also supports a full ganof

IBM CoreConnect, WISHBONE and Altera Avalon. The Standard data transfer protocols including SINGLE
use of standard bus architectures also provides tHREAD/WRITE cycles, BLOCK READ/WRITE cycles and

opportunities for using special tools that autooaly
generate bus interfaces and interconnections, inviay

read-modify-write (RMW) cycles with various datazess
and byte ordering. A handshake mechanism enalies fl

further shortening time to market and reducing the&ontrol and communication between different-spemes

possibility of human error.

Presented standard bus architectures provide desiamul

These standard SoC bus architectures all share sor@fficient way of connecting coprocessors to genreral

common traits. Unlike traditional backplane bussegh

as VME or PCIl, SoC busses are usually defined
synchronous logical busses. Logical bus means ttieat
functionality of a bus is defined only at the Iagidevel

and not at the electrical level or mechanical levigie

logical specification defines logical signals, theieanings,
active levels, the relationship between differeghals and
their relationship to the clock signal. This makbe bus
interface independent on the way the hardwaressrie=d
(e.g. RTL, schematic or a gate-level netlist) amdtbe

implementation tools and technologies (e.g. FPGA
ASIC).

Standard SoC bus architectures define synchronosseb,

i.e. they must adhere to the synchronous desigriptiise
which states that the system changes state onlyhen

active edge of the clock signal. Synchronous design

principle enables simple and efficient design ofitei
circuits and increases the reliability of the citcby
eliminating race hazards. This is why synchronoesigh
is the most widely used digital design methodoltagay
and the methodology of choice for SoC busses.

Another common trait in standard SoC bus architestis
the master-slave architecture. IP cores conneotétktbus

are distinctly divided into master and slave module

Master modules play the active role on the busey ttan
initiate the transfer of data to and from slave oies,

while slave modules only respond to requests. Thé\(/)

distinctions between master and slave modules aastem
and slave bus interfaces enable a flexible basetHer
design of different types of systems.

Standard SoC bus architectures differ in the dewfilbus
interfaces, supported data transfer
transfers, burst transfers, read-modify-write), maped
bus interconnection topologies (e.g.
multiplexed shared bus, crossbar switch) and wiettey
define a single bus or several different busses part of

the specification. For example, AMBA and CoreCorinec

specifications provide a complex high-performanas for
processors and other fast modules and a simplgheeal
bus for devices like the UART or GPIO. On the othand,

WISHBONE defines only a single universal bus. High-
speed busses like WISHBONE, AMBA Advanced High-
Performance Bus (AHB) and CoreConnect Process

Local Bus (PLB) also support bus arbitration andtipie
master modules.

The WISHBONE System-on-chip (SoC) architecture fo

portable IP cores [8] is a flexible design methodgl
developed by Silicore Corp. targeted at SoC intamra

and design reuse. This is accomplished by defirang
interconnection scheme and data exchan
protocols. WISHBONE specification defines a single,

standard

protocols Iging

point-to-poin

purpose processor systems. This is also the apgprnwac
aRropose for the NISC processor to overcome integrat
challenges and enable coprocessor communication.
WISHBONE bus architecture was chosen for the
implementation of the NISC coprocessor interfacénipa
because of its flexibility and the fact it impose®
licensing and application restrictions. WISHBONE
specification is currently maintained by OpenCaes.
and today it representsde facto standard for open-source
hardware. It is also offers CAD tool support antame
olibrary of free processors and other IP cores. d=siree
processor IP, many popular commercial soft progesso
such as Xilinx MicroBlaze and Altera Nios have a
WISHBONE-compatible variant available.

I1l. NISC WISHBONE INTERFACE

To be able to use the automatically generated NISC
processor as a coprocessor we must provide a way to
connect it to other IP cores in the system and yafaathe
main processor's software to access its coprocessor
functionality. Since the NISC processor itself tsn’
compatible with any of the standard bus architectur
specifications, we had to define necessary comratinit
services and design special interface IP to enable
nnecting NISC to the chosen bus architecture
ISHBONE. Our approach enables mapping the NISC
processor into the main processor's memory spack an
allows it to be controlled by the main processepftware.

The designed NISC WISHBONE Interface IP is targeted
fully synchronous WISHBONE systems, with the NISC
coprocessor sharing a common clock with the main
t Processor and the WISHBONE bus. Both the NISC Basic
WISHBONE Interface and the NISC Data Memory
WISHBONE Interface are SLAVE interfaces and support
SINGLE READ/WRITE WISHBONE classic bus cycles
with 32-bit data size and 32-bit data granularitis
enables connecting the NISC processor to a widetyasf
WISHBONE-compatible 32-bit general-purpose
processor cores. The designed interface is conigatiith
the existing NISC design flow and requires no clesnig
&pe NISC Toolset.

soft

A. Interfacing overview

"The interface between a main processor and a cegsoc
must enable basic data and control flow transfevices.
This interface is exposed to the application progreer
via a memory-mapped programming model or a
%processor APl which must efficiently hide all the
implementation details of the underlying hardwaked it

must also enable simple migration of software fiomg to

hardware. We have identified and implemented the T T T T =" N
following essential set of services: |
ﬁ ¢ AT Controller fqup 1
NISC Basic ['F o |
1) Send the data to be processed to the coprocessor s B = |
2) Initiate the data processing & AL = 4-’| amem |
3) Detect processing completion % 2 :
4) Get the results from the coprocessor Z — S I
(m\ .I dmem external access > 1
To implement these services, we have designed g Memory A I\ﬁsf 4
communication scheme which takes advantage of the BN
existing features of the NISC processor — the abl \%
external reset and halt signals and the possilidityse an
arbitrary number of external input and output pdrtsn Fig. 1. The NISC WISHBONE Interface architecture

NISC's application software using the prebinding

mechanism [9]. Our goal was to eliminate the nesdhy

modifications to the NISC Toolset and still makesteyn 4) Detect processing completion: When the NISC
integration as simple as possible. processor finishes processing the data, it assieetsalt
Our complete interfacing solution integrated intéS8 signal. The main processor can either detect thisdiiing
architecture with two input ports and one outputtge the status of the halt signal using the NISC Basic
shown in Fig 1. The parts of the NISC processoatapath, WISHBONE Interface or by setting the interface to
controller and control and data memories are shiovithe generate an interrupt when NISC sets its halt signa

figure, together with the extensions we designed an

implemented (highlighted in gray). The NISC Basic5) Get the results from the NISC processor: After the main
WISHBONE Interface enables control functions andprocessor has detected that the NISC processor has
enables transfer of small amounts of special-p@mteta finished execution, it can transfer the resultsitsolocal
directly to and from the NISC processor's datapdthe memory for further processing. A smaller number of
NISC Data Memory WISHBONE Interface and the Dataresults (such as the return value @ programming
Memory Multiplexer enable transfer of large amouots language functions) can be stored to output regigte the
general-purpose data directly to and from the NISQNISC processor and then transferred to the maingssor
processor’s data memory. using the NISC Basic WISHBONE Interface. Larger
These extensions, together with the software sugpmn amounts of data (results normally returned by esfee)
NISC’s application enable the communication faeilit can be transferred directly from NISC's data memory
necessary to provide the desired coprocessor serwie using NISC Data Memory WISHBONE Interface and the
use NISC's reset signal to start data processialgsignal Data Memory Multiplexer.

for completion detection, the external /O portsr fo

transferring smaller amounts of special-purposa datd These five simple steps of our communication scheme
our Data Memory Multiplexer for transferring large translate almost perfectly to the four servicesidemtified
amOUntS. of data. O.Ur Communication scheme is dedlgn as necessary for using the NISC processor as aCeEgsor.

to work in the following fashion: The only difference is the additional first stepisthis

_ necessary to put the NISC processor into the statt and
1) Stop the NISC processor: The main processor asserts theenable other steps.

NISC processor’s reset signal to insure it is hadusive

access to NISC's 1/O registers and data memory. B. NISC Basic WI SHBONE Interface

2) Send data to the NISC processor: The main processor the NISC Basic WISHBONE Interface enables
sends the data to be processed to the NISC ProCeSStoprocessor control, i.e. starting or stopping data

Special-purpose data (special parameter variabisp- processing and detecting when the data processing i
used constants and other function arguments ngrmal :
completed. It also enables transferring smaller wart® of

passed by value) is written to shared registeragugiie X) ;
- ; special purpose data directly into the NISC prooess
NISC Basic WISHBONE Interface. These registers loan datapath. This is the main part of the NISC WISHEDN

accessed through NISC's external input ports aretl us - L :

directly in the NISC processor's datapath. Genprapose Interface and it is necessary for the communicasione it

data (arrays, structures and other function argmnenena_bles coprocessor Conf[rol and_mterr_upt capiasilitlt is

normally passed by reference) are transferred tijjréc designed for seamless integration with the RTL rhode

the NISC processor's data memory using the NISCaDatdenerated by the NISC Toolset.

Memory WISHBONE Interface and the Data MemoryNISC Basic WISHBONE Interface implements fast sagl

Multiplexer. cycle data transfers to and from shared registerenable
the transfer of the data and control flow, the NIB&sic

3) Sart the NISC processor: Initiate data processing by de- WISHBONE Interface’s provides shared registersifiput

asserting the NISC processor’s reset signal. arguments and special control registers. Contrgisters
are used to set the state of the NISC processesstr

signal, read the state of the halt signal and eniaibdrrupts.
Result registers are implemented using NISC externa

output ports which provide an internal registerisTineans
that these registers are a part of the NISC processl not
the interface. So, the result output ports can ib@lg
routed to the interface’s output multiplexer to leieathe
main processor to read the results. On the othed,ha
external input ports work as proxies for exterreisters
and that’'s why the actual registers are provided part of
the interface.

In a typical WISHBONE system, the most significagtes
of the address are decoded in the interconnect imdthe
so called WISHBONE Intercon), which enables thdrdds

C. NISC Data Memory WISHBONE Interface and the Data
Memory Multiplexer

NISC Basic WISHBONE Interface provides capabilities
for transferring small amounts of arguments andiltes
using shared registers. Transferring large amoohtiata
using this approach would require using a large bemof
registers, large decoders and multiplexers. Thisldco
result in lower performance, especially when impating

the design in the FPGA technology. The NISC Data
Memory WISHBONE Interface was designed to overcome

peripheral using the active cycle (CYC_I) and strob this by enabling transfer of data directly to amdnf the

(STB_I) signals, and only the required number adrads

bits is forwarded to the peripheral’'s ADDR_I inputhe

peripheral’s internal address decoding then detami
which of its internal memory locations is addressad

this is also the way the NISC Basic WISHBONE |raed

addresses shared registers.

Fig. 2. shows the simplified internal organizatiohthe

data memory of the NISC processor. In this wayaysr
and structures can be transferred to the NISC psoteand
accessed as local variables from the NISC’s appica

The role of the NISC Data Memory WISHBONE Interface
is essentially converting WISHBONE read and write
cycles to the protocol used by NISC's data memory
controller. An additional IP, the Data Memory Mpléxer

NISC Basic WISHBONE Interface. The figure shows allis used to multiplex and arbitrate the access & data

the internal registers, output multiplexer and litngic for

memory controller so it can be accessed by the NISC

generating interrupts and the WISHBONE acknowledggrocessor itself and also over the WISHBONE busgisi

signal. Addressing logic is not shown on the figure

Reading the data from the interface is implemenigidg
the output multiplexer which
WISHBONE address lines. The write operation
implemented using register enable signals contidiiethe
address decode logic and the write enable quakfigmal
WE_I. The WISHBONE clock signal CLK_| is routed to
the NISC processor and the interface to createllg fu
synchronous system.
mechanism is implemented using only combinatodgid,
as there are no slow modules in the design. l.ee d the
modules requires more than one cycle for read dtewr
operations so no memory elements for delay areinestju

The WISHBONE handshak&/ISHBONE mechanism with byte-enables),

external access ports (see Fig. 1.).
Fig. 3. shows the internal organization of the NIB&a

is controlled by the Memory WISHBONE Interface. The address bits are
isforwarded directly from the WISHBONE address lines

data memory’s address lines. Since NISC’'s memory
controller doesn’t require word access addressgsesl on

4 byte borders and requires the data with widts khan
32-bits to be aligned to the lower data bits (umlik
special
alignment logic was designed to handle the traiosiat
Also, depending on the access type, WISHBONE byte
enable lines are translated to appropriate typesdéar the
NISC memory controller. Write and read enable digase

WISHBONE reset signal RST_|I resets the NISC pramess derived from the WISHBONE write enable qualifier WE

and the interface’s internal registers.

The handshaking mechanism is implemented with one

Interrupt mechanism is implemented in such way thagycle acknowledge delay to allow for the Block RAM

setting the interrupt signal INT_O only occurs wheath
the interrupt enable flag (the INT_EN register) &nel halt
signal are set. INT_O is not a standard WISHBONE4,

(BRAM) latency, since NISC uses synchronous BRANIs t
implement data memory.

The Data Memory Multiplexer's arbitration scheme is

but it can easily be connected directly to the mairguite simple: if the NISC processor’s reset or Ilsiinals
processor and several commercial tools (e.g. Altiunare active, then the main processor has controt the

Designer) even provide interrupt connections asd @f
the WISHBONE interconnect module.

[@c Basic WISHBONE InterfaA
CLK_I
— I

RESET
RST_I REG
cvell N NISC
> >
¢ | reset
e & [har |
Wel | REG < halt
Ll ACK_O
Z INPUT1
O ADDR_I REG External Input 1
m —
I SEL_| e
n T [NPUT2 External Input 2
DAT_O / o,
\ External Output
INT_O N —
< &
K |~ INT_EN
REG

A

Fig 2. NISC Basic WISHBONE Interface organization

data memory. Otherwise, the control is left to HSC
processor, the main processor has no means ohgytiti
the data memory and reads the value of all dat dst
zeroes. The implementation of the data memory
multiplexer is shown in Fig. 4.

KISC Data Memory WISHBONE Interfacx

TYPE

(CLK_I
—>

RST_|
cvc_l

TYPE
p—

DECODE
ACK

DELAY
REG

&

STB_|

DATAIN

READEN >
WRITE EN

ADDR

ALIGN

ACK_O

Yo

ADDR_I |

&

WISHBONE

SEL_|

SS800Jk [eulalxe wawp JSIN

DAT_O

DAT_I J
< >

Fig 3. NISC Data Memory WISHBONE Interface organiaat

ALIGN

Fonta out /DataMemory Multiplexe\

ADDR+CTRL
8 { DATAN DATA_OUT) >
> <
RESET oR o ‘g
HALT =z
©
(DATA ouT 2
o DATA_IN > =}
< MUX <
pd (@]
@/ AporecTR o
w 2
W | oatan ADDR+CTRL | =
MUX MUX p—) =

Ny [o] 7

Fig 4. Data Memory Multiplexer organization

D. Programming model

Using the NISC coprocessor attached to the WISHBONE

bus from the main processor’'s software using th8QNI
WISHBONE Interface is very straightforward. It ised
according to the five simple steps and the foueetssl
coprocessor services presented earlier in thistehdgrst,
the value ‘1’ is written to the reset register td the NISC
processor in reset state and to insure that ordyntlain
processor has access to the shared registers. Tten,
arguments are written to appropriate registers
transferred to the data memory. This is followedaifing
the value ‘0O’ to the reset register to start theS®k
application execution. After that, the main prooessan
poll the value of the halt signal until it beconadive or
wait on the coprocessor interrupt and then retrithe
results by reading appropriate registers or datmong
locations.

The full memory map of the NISC Basic WISHBONE
Interface is shown on Table 1. The first memoryatan,

at the base address, is reserved for the conydtes, i.e.
reset and halt registers. One register is accesdezh
writing and the other when reading that memory aesislr
Because 32-bit addressing is used and registeaigreed
on 32-bit boundaries, the next register's address
displaced by 4 from the base address. This isdbatibn
of the interrupt enable register, INT_EN. After tttallow
the result registers and registers for argumertis. NISC
Data Memory WISHBONE Interface maps the whole dat
memory of the NISC processor to the main processor
memory space, starting from a separate base address

The example register address layout shown in Tdble
enables simple implementations of traditio@afunctions
with arbitrary number of arguments and one retuatue.
Of course, for different applications with additamesult
values and matching result registers, different reskl
layouts are possible with differently laid-out irfeece
datapath and NISC I/O ports.

E. Design flow

The main purpose of the NISC WISHBONE Interfactois
enable improving the system’s performance using th
NISC processor if the purely software implementatbm a
general-purpose processor doesn’'t meet the comistrai

TABLE 1
NISC BASIC WISHBONE INTERFACE MEMORY MAP

Addr Name \ﬁ/)'sst]h Description
00 CTRL BitO:
1 read: status of the halt
RESET signal is read
HALT write: reset register is
I(INT_FLAG) written to — '1' sets the
NISC to reset state, '0'
initializes the execution
(‘0" also serves as the
interrupt acknowledge)
04 INT_EN 1 _BitO: reads/writes the
interrupt enable flag —
‘1" enables the
Interrupts, '0' disables
them
08 RESULT 32 | Read/Write — result
12 ARG 1 32 | Read/Write— I
argument
16 ARG 2 32 | Read/MWrite— 2"
argument
ARGN 32 Read/Write — other
arguments

ince designers tend to use familiar platforms endge
software, NISC WISHBONE Interface was designed in
such a way to enable easy integration in an egistasign
flow. In cases when the general-purpose processor’s
software fails to meet design constraints usingetkisting
design flow, designers first need to profile thedeao
identify the performance-critical functions. These
functions are candidates for implementation in tee as
NISC processors using the NISC design flow.

During NISC design, GNR ADL is used to add I/O port
for the function’s arguments and results that arebé¢
communicated through shared registers and conheat t
to appropriate datapath locations. Desired funidicode
is modified to read the arguments and write thalltes

iusing the prebinding mechanism. Static variables will

be accessed by the main processor through the D&

Memory WISHBONE Interface are provided for other

results and arguments, e.g. arrays and structlihes the
ISC toolset is used to implement the actual hardwa

,The NISC WISHBONE Interface is parameterized to fit

the application, i.e. appropriate number of argurreerd
result registers is added. The resulting accelesatwe
connected to the WISHBONE bus using the NISC
WISHBONE Interfaces.

Bodies of performance-critical function can then be
replaced with coprocessor calls. Shared registerd a
shared variables in NISC's data memory are used to
transfer the arguments. NISC Toolset’s outputstifiethe
addresses of the shared variables (offsets fromNIg&
Data Memory Interface’s base address) so they @n b
accessed via pointers. Starting coprocessor execatid
detecting completion is implemented using the NE&Sic
WISHBONE Interface, as already described. This
approach uses polling to detect completion ancheaalls

fo these functions are blocking. After NISC finishe
execution, results are retrieved from the appro@ishared
registers and shared memory locations.

When the body of a function is replaced with blocki
coprocessor call, there is no need to change amgtifuns
calling this function. This enables simple migratiof
software functions to hardware and exploiting aaz#
instruction-level parallelism. More complex
communication schemes using non-blocking calls an
interrupts could also be used to exploit task-leve
parallelism and achieve further speed-up.

IV. EXPERIMENTAL RESULTS

The complete NISC WISHBONE Interface was
implemented using VHDL, integrated with a generated
NISC processor and wrapped in a WISHBONE compatible
module to be used as a coprocessor in systems bagtbd
WISHBONE bus architecture. The generated NISC
processor was based on a generic NISC architeetitine
necessary 1/0 datapath extensions and simple appls
designed to test the communication capabilities.

As a proof-of-concept for the presented coprocelased
approach, we implemented and tested a WISHBON@
system based on Altium’s TSK3000A general-purpdse 3
bit RISC soft processor. TSK3000A is based on th
MIPS/DLX instruction set and is FPGA vendor
independent. Altium’s configurable Wishbone Intensect
module designed for integration with TSK3000A whs t
bus module used in this proof-of-concept system.

Communication routines for the main processor were
developed and then tested in conjunction with thep
hardware using the Altium LiveDesign Evaluation Bba
with a Spartan3 FPGA and Xilinx ML506 with a Virtéx
FPGA. The schematic for the complete system is show
Fig. 5.

(2]
(3]
V. CONCLUSION

In this paper we presented a method for using tbe N [4]
Instruction-Set Computer (NISC) as a loosely-codple
coprocessor in SoCs based on the WISHBONE open bus
specification. This approach allows designers &lgaise |5
the NISC technology in general-purpose processstenys

with very few modifications to the existing softwacode.
Coprocessor communication services necessary tbleena6]
using NISC as a coprocessor were defined. Hardaade
software extensions needed to implement these cesrvi
were explained and the implementation of the NISC
WISHBONE Interface was described. The proposed’]
approach is compatible with existing design flowsd a
enables quick and easy migration of software fangtito
NISC hardware for application acceleration. An eglm
WISHBONE system designed using this approach wal%]
presented as a proof-of-concept.

[9]

m

‘TSK3000A 32.Bit RISC Pro

5 W54
L) s —Josmo

Fig. 5. TSK3000A with a NISC coprocessor

ACKNOWLEDGMENTS

The work presented in this paper was done as apdre project
Application-oriented Embedded System Technology supported by
the Unity through Knowledge Fund (UKF). This workilds on
any years of NISC processor research at the Cewoter f
bedded Computer Systems (CECS), University of Galdo
at Irvine. The authors wish to thank CECS for pravidithe
?\IISC Toolset and Mehrdad Reshadi for his help andcaden
how to use the toolset.

REFERENCES

D. Gajski, "NISC: The Ultimate Reconfigurable
Component”, Center for Embedded Computer Systems, TR
03-28, October 2003.

M. Reshadi: ,NISC Modeling and Compilation®,
dissertation, University of California, Irvine, 2007

M. Reshadi, D. Gajski, "A Cycle-Accurate Compilation
Algorithm for Custom Pipelined Datapathdtternational
Symposium on Hardware/Software Codesign and System
Synthesis (CODESHISSS), pp 21-26, September 2005.

B. Gorjiara, M. Reshadi, D. Gajski, "Generic Architee
Description for Retargetable Compilation and Synthedi
Application-Specific ~ Pipelined IPs", International
Conference on Computer Design (ICCD), October 2006.

NISC Technology & Toolset

URL: http://www.ics.uci.edu/~nisc/, availability véed in
January 2009.

R. Grubis¢, ,Design of the NISC processor WISHBONE
Interface”, diploma thesis (in Croatianlniversity of
Zagreb, Faculty of Electrical Engineering and Corimuut
(FER), May 2008.

R. Grubis¢, V. Sruk, ,The Use of the No-Instruction-Set
Computer (NISC) for Acceleration in WISHBONE-Based
Systems”, Technical ReporDepartment of Electronics,
Microelectronics, Computer and Intelligent SysteResulty

of Electrical Engineering and Computing, Novemb@d&
~Specification for the: WISHBONE System-on-Chip (SoC)
Interconnect Architecture for Portable IP Cores”, iRiew:
B.3, Silicore/OpenCores.org, 2002.

M. Reshadi, D. Gajski, "Interrupt and Low-level
Programming Support for Expanding the Application
Domain of Statically-scheduled Horizontally-microeal
Architectures in Embedded System®&esign Automation
and Test in Europe (DATE), April 2007.

