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Abstract - General-purpose processors are often unable to 
effectively exploit the parallelism inherent to the software 
code. In such cases, additional hardware accelerators are 
needed to enable meeting the performance goals. To shorten 
time to market and enable meeting design constraints, 
designers today use special tools and technologies like the No-
Instruction-Set Computer (NISC) to automatically generate 
custom accelerators. However, it is often difficult to integrate 
these accelerators into general-purpose processor systems and 
use them from the main processor’s software. In this paper 
we present a simple and efficient method for using the NISC 
processor as a loosely-coupled coprocessor. To enable 
communication with the NISC processor, a simple set of 
coprocessor services exposed to the application programmer 
is defined. A hardware solution based on standard SoC bus 
architectures for implementing these services is described. 
Using a standard SoC bus interface enables simple 
integration of the NISC design flow into an existing design 
flow. A practical implementation of the NISC coprocessor 
WISHBONE interface was realized and tested in a system 
based on a WISHBONE-compatible general-purpose soft 
processor. 
 
 

I. INTRODUCTION 
 

Embedded computer systems are no longer used only as 
simple control devices. Instead, today’s embedded systems 
have to efficiently perform complex tasks and algorithms 
within increasingly stringent design constraints and 
shrinking time-to-market. The widespread design approach 
based on implementing applications in software for 
general-purpose processors offers high designer 
productivity. However, this approach offers low design 
quality in terms of performance and power-efficiency 
because general-purpose processors are often unable to 
exploit the parallelism inherent in the software code. One 
of the solutions for increasing the design quality is 
migration of computationally-intensive parts of the 
system’s task to hardware accelerators and creating custom 
Systems-On-Chip (SoCs). Custom hardware accelerators 
enable utilizing parallelism and provide an effective way to 
meet design’s performance goals for certain classes of 
applications.  
Custom hardware is conventionally designed at the register 
transfer level (RTL), which entails manually coding the 
RTL model in a hardware description language (HDL), 
such as VHDL or Verilog and exhaustive testing. This 
process is often tedious and error-prone and limits the 
designer productivity. To overcome this problem, it is 
necessary to raise the level of abstraction for the hardware 
design and use special tools to synthesize the actual 
circuitry. The most interesting design methodologies focus 
on synthesizing the hardware directly form software code 
written in a high-level programming language, such as C. 

Such design approaches include many High-Level 
Synthesis (HLS) tools and, more recently, the No 
Instruction Set Computer (NISC).  
NISC approach [1,2] is based on the idea of elimination of 
the instruction abstraction and compiling programming 
language code directly to control words for a custom 
datapath using a special cycle-accurate compiler [3]. NISC 
processor’s architecture can be manually modeled in the 
Generic Netlist Representation (GNR) architecture 
description language [4], automatically generated or 
selected from a library of standard or previously designed 
architectures. NISC Toolset [5] generates the RTL model 
of the processor and control words for the desired 
application written in C to be implemented in the desired 
technology. Advantage of the NISC approach is utilization 
of instruction-level parallelism (ILP) which enables 
speeding up the execution of an algorithm. The generated 
NISC processor is usually capable of executing several 
equivalent RISC instructions in a single clock cycle.  
However, the NISC Toolset at present doesn’t provide any 
standard facilities for communication with general-purpose 
processors. This represents a problem when attempting to 
use the NISC processor as a coprocessor and integrate it 
into an existing system to help meet desired design 
constraints. We propose using an interface to a standard 
bus architecture to enable NISC’s simple integration in a 
wide variety of systems with different processors and 
peripherals. This approach allows using the NISC 
processor from the main processor’s software through a 
simple set of coprocessor services. This enables simple 
migration of performance-critical parts of the application 
to hardware without the need for significant changes to the 
rest of the program code. In this way, it is easy to integrate 
NISC into an existing design flow. 
In this paper we present the design of NISC WISHBONE 
Interface [6,7]. This interface provides communication 
facilities necessary for using the NISC processor as a 
loosely-coupled coprocessor in systems based on the 
WISHBONE standard bus architecture. Using this 
interface, the NISC processor was successfully connected 
to a WISHBONE system based on a general-purpose RISC 
soft processor using a commercial EDA tool. The example 
system was implemented and tested on two different 
FPGA boards. In this way, we have shown that the NISC 
processor can be connected to a standard bus architecture 
using a commercial EDA tool and used as a coprocessor 
from general-purpose processor’s software. 
 
 

II. STANDARD SOC BUS ARCHITECTURES 
 

One of the major design challenges for any SoC design is 
system integration. Increased number of components used 
in such systems requires simple and efficient connection 



mechanism and generic interfaces to decrease design effort 
and promote reuse. Standard bus architectures simplify the 
process of system integration, shorten time to market and 
support portability and reuse of IP cores.  
Renowned SoC bus architectures of the day include ARM 
Advanced Microcontroller Bus Architecture (AMBA), 
IBM CoreConnect, WISHBONE and Altera Avalon. The 
use of standard bus architectures also provides the 
opportunities for using special tools that automatically 
generate bus interfaces and interconnections, in this way 
further shortening time to market and reducing the 
possibility of human error. 
These standard SoC bus architectures all share some 
common traits. Unlike traditional backplane busses, such 
as VME or PCI, SoC busses are usually defined as 
synchronous logical busses. Logical bus means that the 
functionality of a bus is defined only at the logical level 
and not at the electrical level or mechanical level. The 
logical specification defines logical signals, their meanings, 
active levels, the relationship between different signals and 
their relationship to the clock signal. This makes the bus 
interface independent on the way the hardware is described 
(e.g. RTL, schematic or a gate-level netlist) and on the 
implementation tools and technologies (e.g. FPGA or 
ASIC). 
Standard SoC bus architectures define synchronous busses, 
i.e. they must adhere to the synchronous design discipline 
which states that the system changes state only on the 
active edge of the clock signal. Synchronous design 
principle enables simple and efficient design of digital 
circuits and increases the reliability of the circuit by 
eliminating race hazards. This is why synchronous design 
is the most widely used digital design methodology today 
and the methodology of choice for SoC busses. 
Another common trait in standard SoC bus architectures is 
the master-slave architecture. IP cores connected to the bus 
are distinctly divided into master and slave modules. 
Master modules play the active role on the bus – they can 
initiate the transfer of data to and from slave modules, 
while slave modules only respond to requests. The 
distinctions between master and slave modules and master 
and slave bus interfaces enable a flexible base for the 
design of different types of systems. 
Standard SoC bus architectures differ in the details of bus 
interfaces, supported data transfer protocols (single 
transfers, burst transfers, read-modify-write), supported 
bus interconnection topologies (e.g. point-to-point, 
multiplexed shared bus, crossbar switch) and whether they 
define a single bus or several different busses as a part of 
the specification. For example, AMBA and CoreConnect 
specifications provide a complex high-performance bus for 
processors and other fast modules and a simpler peripheral 
bus for devices like the UART or GPIO. On the other hand, 
WISHBONE defines only a single universal bus. High-
speed busses like WISHBONE, AMBA Advanced High-
Performance Bus (AHB) and CoreConnect Processor 
Local Bus (PLB) also support bus arbitration and multiple 
master modules.  
The WISHBONE System-on-chip (SoC) architecture for 
portable IP cores [8] is a flexible design methodology 
developed by Silicore Corp. targeted at SoC integration 
and design reuse. This is accomplished by defining a 
standard interconnection scheme and data exchange 
protocols. WISHBONE specification defines a single, 

simple, logical, fully synchronous MASTER/SLAVE bus 
and IP core interfaces that require very few logic gates. It 
supports different technology-independent interconnection 
topologies ranging from simple point-to-point and shared 
bus interconnections to data flow interconnections and 
complex switch fabrics. It also supports a full range of 
standard data transfer protocols including SINGLE 
READ/WRITE cycles, BLOCK READ/WRITE cycles and 
read-modify-write (RMW) cycles with various data sizes 
and byte ordering. A handshake mechanism enables flow 
control and communication between different-speed cores.  
Presented standard bus architectures provide a simple and 
efficient way of connecting coprocessors to general-
purpose processor systems. This is also the approach we 
propose for the NISC processor to overcome integration 
challenges and enable coprocessor communication. 
WISHBONE bus architecture was chosen for the 
implementation of the NISC coprocessor interface mainly 
because of its flexibility and the fact it imposes no 
licensing and application restrictions. WISHBONE 
specification is currently maintained by OpenCores.org 
and today it represents a de facto standard for open-source 
hardware. It is also offers CAD tool support and a large 
library of free processors and other IP cores. Besides free 
processor IP, many popular commercial soft processors 
such as Xilinx MicroBlaze and Altera Nios have a 
WISHBONE-compatible variant available. 
 
 

III. N ISC WISHBONE INTERFACE 
 

To be able to use the automatically generated NISC 
processor as a coprocessor we must provide a way to 
connect it to other IP cores in the system and a way for the 
main processor’s software to access its coprocessor 
functionality. Since the NISC processor itself isn’t 
compatible with any of the standard bus architecture 
specifications, we had to define necessary communication 
services and design special interface IP to enable 
connecting NISC to the chosen bus architecture - 
WISHBONE. Our approach enables mapping the NISC 
processor into the main processor’s memory space and 
allows it to be controlled by the main processor’s software.  
The designed NISC WISHBONE Interface IP is targeted at 
fully synchronous WISHBONE systems, with the NISC 
coprocessor sharing a common clock with the main 
processor and the WISHBONE bus. Both the NISC Basic 
WISHBONE Interface and the NISC Data Memory 
WISHBONE Interface are SLAVE interfaces and support 
SINGLE READ/WRITE WISHBONE classic bus cycles 
with 32-bit data size and 32-bit data granularity. This 
enables connecting the NISC processor to a wide variety of 
WISHBONE-compatible 32-bit general-purpose soft 
processor cores. The designed interface is compatible with 
the existing NISC design flow and requires no changes in 
the NISC Toolset. 
 
A. Interfacing overview 
 

The interface between a main processor and a coprocessor 
must enable basic data and control flow transfer services. 
This interface is exposed to the application programmer 
via a memory-mapped programming model or a 
coprocessor API which must efficiently hide all the 
implementation details of the underlying hardware. And it 



must also enable simple migration of software functions to 
hardware. We have identified and implemented the 
following essential set of services: 
 

1) Send the data to be processed to the coprocessor 
2) Initiate the data processing 
3) Detect processing completion 
4) Get the results from the coprocessor 
 

To implement these services, we have designed a 
communication scheme which takes advantage of the 
existing features of the NISC processor – the available 
external reset and halt signals and the possibility to use an 
arbitrary number of external input and output ports from 
NISC’s application software using the prebinding 
mechanism [9]. Our goal was to eliminate the need for any 
modifications to the NISC Toolset and still make system 
integration as simple as possible.  
Our complete interfacing solution integrated into NISC 
architecture with two input ports and one output port is 
shown in Fig 1. The parts of the NISC processor – datapath, 
controller and control and data memories are shown in the 
figure, together with the extensions we designed and 
implemented (highlighted in gray). The NISC Basic 
WISHBONE Interface enables control functions and 
enables transfer of small amounts of special-purpose data 
directly to and from the NISC processor’s datapath. The 
NISC Data Memory WISHBONE Interface and the Data 
Memory Multiplexer enable transfer of large amounts of 
general-purpose data directly to and from the NISC 
processor’s data memory.  
These extensions, together with the software support from 
NISC’s application enable the communication facilities 
necessary to provide the desired coprocessor services. We 
use NISC’s reset signal to start data processing, halt signal 
for completion detection, the external I/O ports for 
transferring smaller amounts of special-purpose data and 
our Data Memory Multiplexer for transferring large 
amounts of data. Our communication scheme is designed 
to work in the following fashion: 
 

1) Stop the NISC processor: The main processor asserts the 
NISC processor’s reset signal to insure it is has exclusive 
access to NISC’s I/O registers and data memory. 
 

2) Send data to the NISC processor: The main processor 
sends the data to be processed to the NISC processor. 
Special-purpose data (special parameter variables, often-
used constants and other function arguments normally 
passed by value) is written to shared registers using the 
NISC Basic WISHBONE Interface. These registers can be 
accessed through NISC’s external input ports and used 
directly in the NISC processor’s datapath. General-purpose 
data (arrays, structures and other function arguments 
normally passed by reference) are transferred directly to 
the NISC processor’s data memory using the NISC Data 
Memory WISHBONE Interface and the Data Memory 
Multiplexer. 
 

3) Start the NISC processor: Initiate data processing by de-
asserting the NISC processor’s reset signal. 
 

 
 

Fig. 1. The NISC WISHBONE Interface architecture 
 
 

4) Detect processing completion: When the NISC 
processor finishes processing the data, it asserts the halt 
signal. The main processor can either detect this by polling 
the status of the halt signal using the NISC Basic 
WISHBONE Interface or by setting the interface to 
generate an interrupt when NISC sets its halt signal.  
 
5) Get the results from the NISC processor: After the main 
processor has detected that the NISC processor has 
finished execution, it can transfer the results to its local 
memory for further processing. A smaller number of 
results (such as the return value in C programming 
language functions) can be stored to output registers by the 
NISC processor and then transferred to the main processor 
using the NISC Basic WISHBONE Interface. Larger 
amounts of data (results normally returned by reference) 
can be transferred directly from NISC’s data memory 
using NISC Data Memory WISHBONE Interface and the 
Data Memory Multiplexer.   
 
These five simple steps of our communication scheme 
translate almost perfectly to the four services we identified 
as necessary for using the NISC processor as a coprocessor. 
The only difference is the additional first step which is 
necessary to put the NISC processor into the reset state and 
enable other steps. 
 
B. NISC Basic WISHBONE Interface  
 
The NISC Basic WISHBONE Interface enables 
coprocessor control, i.e. starting or stopping data 
processing and detecting when the data processing is 
completed. It also enables transferring smaller amounts of 
special purpose data directly into the NISC processor’s 
datapath. This is the main part of the NISC WISHBONE 
Interface and it is necessary for the communication since it 
enables coprocessor control and interrupt capabilities.  It is 
designed for seamless integration with the RTL model 
generated by the NISC Toolset.  
NISC Basic WISHBONE Interface implements fast single-
cycle data transfers to and from shared registers. To enable 
the transfer of the data and control flow, the NISC Basic 
WISHBONE Interface’s provides shared registers for input 
arguments and special control registers. Control registers 
are used to set the state of the NISC processor’s reset 
signal, read the state of the halt signal and enable interrupts. 
Result registers are implemented using NISC external 
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output ports which provide an internal register. This means 
that these registers are a part of the NISC processor and not 
the interface. So, the result output ports can be simply 
routed to the interface’s output multiplexer to enable the 
main processor to read the results. On the other hand, 
external input ports work as proxies for external registers 
and that’s why the actual registers are provided as a part of 
the interface. 
In a typical WISHBONE system, the most significant bytes 
of the address are decoded in the interconnect module (the 
so called WISHBONE Intercon), which enables the desired 
peripheral using the active cycle (CYC_I) and strobe 
(STB_I) signals, and only the required number of address 
bits is forwarded to the peripheral’s ADDR_I inputs. The 
peripheral’s internal address decoding then determines 
which of its internal memory locations is addressed, and 
this is also the way the NISC Basic WISHBONE Interface 
addresses shared registers.  
Fig. 2. shows the simplified internal organization of the 
NISC Basic WISHBONE Interface. The figure shows all 
the internal registers, output multiplexer and the logic for 
generating interrupts and the WISHBONE acknowledge 
signal. Addressing logic is not shown on the figure. 
Reading the data from the interface is implemented using 
the output multiplexer which is controlled by the 
WISHBONE address lines. The write operation is 
implemented using register enable signals controlled by the 
address decode logic and the write enable qualifier signal 
WE_I. The WISHBONE clock signal CLK_I is routed to 
the NISC processor and the interface to create a fully 
synchronous system. The WISHBONE handshake 
mechanism is implemented using only combinatorial logic, 
as there are no slow modules in the design. I.e. none of the 
modules requires more than one cycle for read or write 
operations so no memory elements for delay are required. 
WISHBONE reset signal RST_I resets the NISC processor 
and the interface’s internal registers.   
Interrupt mechanism is implemented in such way that 
setting the interrupt signal INT_O only occurs when both 
the interrupt enable flag (the INT_EN register) and the halt 
signal are set. INT_O is not a standard WISHBONE signal, 
but it can easily be connected directly to the main 
processor and several commercial tools (e.g. Altium 
Designer) even provide interrupt connections as a part of 
the WISHBONE interconnect module.  
 

 
 

Fig 2. NISC Basic WISHBONE Interface organization 

C. NISC Data Memory WISHBONE Interface and the Data 
Memory Multiplexer  
 

NISC Basic WISHBONE Interface provides capabilities 
for transferring small amounts of arguments and results 
using shared registers. Transferring large amounts of data 
using this approach would require using a large number of 
registers, large decoders and multiplexers. This could 
result in lower performance, especially when implementing 
the design in the FPGA technology. The NISC Data 
Memory WISHBONE Interface was designed to overcome 
this by enabling transfer of data directly to and from the 
data memory of the NISC processor. In this way, arrays 
and structures can be transferred to the NISC processor and 
accessed as local variables from the NISC’s application. 
The role of the NISC Data Memory WISHBONE Interface 
is essentially converting WISHBONE read and write 
cycles to the protocol used by NISC’s data memory 
controller. An additional IP, the Data Memory Multiplexer 
is used to multiplex and arbitrate the access to the data 
memory controller so it can be accessed by the NISC 
processor itself and also over the WISHBONE bus using 
external access ports (see Fig. 1.).  
Fig. 3. shows the internal organization of the NISC Data 
Memory WISHBONE Interface. The address bits are 
forwarded directly from the WISHBONE address lines to 
data memory’s address lines. Since NISC’s memory 
controller doesn’t require word access addresses aligned on 
4 byte borders and requires the data with width less than 
32-bits to be aligned to the lower data bits (unlike 
WISHBONE mechanism with byte-enables), special 
alignment logic was designed to handle the translation. 
Also, depending on the access type, WISHBONE byte 
enable lines are translated to appropriate type codes for the 
NISC memory controller. Write and read enable signals are 
derived from the WISHBONE write enable qualifier WE_I. 
The handshaking mechanism is implemented with one 
cycle acknowledge delay to allow for the Block RAM 
(BRAM) latency, since NISC uses synchronous BRAMs to 
implement data memory.  
The Data Memory Multiplexer’s arbitration scheme is 
quite simple: if the NISC processor’s reset or halt signals 
are active, then the main processor has control over the 
data memory. Otherwise, the control is left to the NISC 
processor, the main processor has no means of writing to 
the data memory and reads the value of all data bits as 
zeroes. The implementation of the data memory 
multiplexer is shown in Fig. 4.  
 

 
 

Fig 3. NISC Data Memory WISHBONE Interface organization 
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Fig 4. Data Memory Multiplexer organization 
 
 
D. Programming model 
 

Using the NISC coprocessor attached to the WISHBONE 
bus from the main processor’s software using the NISC 
WISHBONE Interface is very straightforward. It is used 
according to the five simple steps and the four essential 
coprocessor services presented earlier in this chapter. First, 
the value ‘1’ is written to the reset register to put the NISC 
processor in reset state and to insure that only the main 
processor has access to the shared registers. Then, the 
arguments are written to appropriate registers or 
transferred to the data memory. This is followed by writing 
the value ‘0’ to the reset register to start the NISC’s 
application execution. After that, the main processor can 
poll the value of the halt signal until it becomes active or 
wait on the coprocessor interrupt and then retrieve the 
results by reading appropriate registers or data memory 
locations.  
The full memory map of the NISC Basic WISHBONE 
Interface is shown on Table 1. The first memory location, 
at the base address, is reserved for the control register, i.e. 
reset and halt registers. One register is accessed when 
writing and the other when reading that memory address. 
Because 32-bit addressing is used and registers are aligned 
on 32-bit boundaries, the next register’s address is 
displaced by 4 from the base address. This is the location 
of the interrupt enable register, INT_EN. After that follow 
the result registers and registers for arguments. The NISC 
Data Memory WISHBONE Interface maps the whole data 
memory of the NISC processor to the main processor’s 
memory space, starting from a separate base address.  
The example register address layout shown in Table 1 
enables simple implementations of traditional C functions 
with arbitrary number of arguments and one return value. 
Of course, for different applications with additional result 
values and matching result registers, different address 
layouts are possible with differently laid-out interface 
datapath and NISC I/O ports.  
 
 
E. Design flow 
 

The main purpose of the NISC WISHBONE Interface is to 
enable improving the system’s performance using the 
NISC processor if the purely software implementation on a 
general-purpose processor doesn’t meet the constraints.  

TABLE 1 
NISC BASIC WISHBONE INTERFACE MEMORY MAP 

 
 

Since designers tend to use familiar platforms and reuse 
software, NISC WISHBONE Interface was designed in 
such a way to enable easy integration in an existing design 
flow. In cases when the general-purpose processor’s 
software fails to meet design constraints using the existing 
design flow, designers first need to profile the code to 
identify the performance-critical functions. These 
functions are candidates for implementation in hardware as 
NISC processors using the NISC design flow.  
During NISC design, GNR ADL is used to add I/O ports 
for the function’s arguments and results that are to be 
communicated through shared registers and connect them 
to appropriate datapath locations. Desired function’s code 
is modified to read the arguments and write the results 
using the prebinding mechanism. Static variables that will 
be accessed by the main processor through the NISC Data 
Memory WISHBONE Interface are provided for other 
results and arguments, e.g. arrays and structures. Then the 
NISC toolset is used to implement the actual hardware. 
The NISC WISHBONE Interface is parameterized to fit 
the application, i.e. appropriate number of argument and 
result registers is added. The resulting accelerators are 
connected to the WISHBONE bus using the NISC 
WISHBONE Interfaces.  
Bodies of performance-critical function can then be 
replaced with coprocessor calls. Shared registers and 
shared variables in NISC’s data memory are used to 
transfer the arguments. NISC Toolset’s outputs identify the 
addresses of the shared variables (offsets from the NISC 
Data Memory Interface’s base address) so they can be 
accessed via pointers. Starting coprocessor execution and 
detecting completion is implemented using the NISC Basic 
WISHBONE Interface, as already described. This 
approach uses polling to detect completion and so the calls 
to these functions are blocking. After NISC finishes 
execution, results are retrieved from the appropriate shared 
registers and shared memory locations.   
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When the body of a function is replaced with blocking 
coprocessor call, there is no need to change any functions 
calling this function. This enables simple migration of 
software functions to hardware and exploiting available 
instruction-level parallelism. More complex 
communication schemes using non-blocking calls and 
interrupts could also be used to exploit task-level 
parallelism and achieve further speed-up. 
 
 

IV . EXPERIMENTAL RESULTS 
 

The complete NISC WISHBONE Interface was 
implemented using VHDL, integrated with a generated 
NISC processor and wrapped in a WISHBONE compatible 
module to be used as a coprocessor in systems based on the 
WISHBONE bus architecture. The generated NISC 
processor was based on a generic NISC architecture with 
necessary I/O datapath extensions and simple applications 
designed to test the communication capabilities.  
As a proof-of-concept for the presented coprocessor-based 
approach, we implemented and tested a WISHBONE 
system based on Altium’s TSK3000A general-purpose 32-
bit RISC soft processor. TSK3000A is based on the 
MIPS/DLX instruction set and is FPGA vendor 
independent. Altium’s configurable Wishbone Interconnect 
module designed for integration with TSK3000A was the 
bus module used in this proof-of-concept system.  
Communication routines for the main processor were 
developed and then tested in conjunction with the 
hardware using the Altium LiveDesign Evaluation Board 
with a Spartan3 FPGA and Xilinx ML506 with a Virtex-5 
FPGA. The schematic for the complete system is shown in 
Fig. 5.  
 
 

V. CONCLUSION 
 

In this paper we presented a method for using the No-
Instruction-Set Computer (NISC) as a loosely-coupled 
coprocessor in SoCs based on the WISHBONE open bus 
specification. This approach allows designers to easily use 
the NISC technology in general-purpose processor systems 
with very few modifications to the existing software code. 
Coprocessor communication services necessary to enable 
using NISC as a coprocessor were defined. Hardware and 
software extensions needed to implement these services 
were explained and the implementation of the NISC 
WISHBONE Interface was described. The proposed 
approach is compatible with existing design flows and 
enables quick and easy migration of software functions to 
NISC hardware for application acceleration. An example 
WISHBONE system designed using this approach was 
presented as a proof-of-concept. 

 
 

Fig. 5. TSK3000A with a NISC coprocessor 
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