
WISHBONE Bus Interface for the No-Instruction-Set Computer (NISC)

Roko Grubišić and Vlado Sruk
Department of Electronics, Microelectronics, Computer and Intelligent Systems

Faculty of Electrical Engineering and Computing, University of Zagreb
Unska 3, 10000 Zagreb, Croatia

{roko.grubisic, vlado.sruk}@fer.hr

Abstract - General-purpose processors are often unable to
effectively exploit the parallelism inherent to the software
code. In such cases, additional hardware accelerators are
needed to enable meeting the performance goals. To shorten
time to market and enable meeting design constraints,
designers today use special tools and technologies like the No-
Instruction-Set Computer (NISC) to automatically generate
custom accelerators. However, it is often difficult to integrate
these accelerators into general-purpose processor systems and
use them from the main processor’s software. In this paper
we present a simple and efficient method for using the NISC
processor as a loosely-coupled coprocessor. To enable
communication with the NISC processor, a simple set of
coprocessor services exposed to the application programmer
is defined. A hardware solution based on standard SoC bus
architectures for implementing these services is described.
Using a standard SoC bus interface enables simple
integration of the NISC design flow into an existing design
flow. A practical implementation of the NISC coprocessor
WISHBONE interface was realized and tested in a system
based on a WISHBONE-compatible general-purpose soft
processor.

I. INTRODUCTION

Embedded computer systems are no longer used only as
simple control devices. Instead, today’s embedded systems
have to efficiently perform complex tasks and algorithms
within increasingly stringent design constraints and
shrinking time-to-market. The widespread design approach
based on implementing applications in software for
general-purpose processors offers high designer
productivity. However, this approach offers low design
quality in terms of performance and power-efficiency
because general-purpose processors are often unable to
exploit the parallelism inherent in the software code. One
of the solutions for increasing the design quality is
migration of computationally-intensive parts of the
system’s task to hardware accelerators and creating custom
Systems-On-Chip (SoCs). Custom hardware accelerators
enable utilizing parallelism and provide an effective way to
meet design’s performance goals for certain classes of
applications.
Custom hardware is conventionally designed at the register
transfer level (RTL), which entails manually coding the
RTL model in a hardware description language (HDL),
such as VHDL or Verilog and exhaustive testing. This
process is often tedious and error-prone and limits the
designer productivity. To overcome this problem, it is
necessary to raise the level of abstraction for the hardware
design and use special tools to synthesize the actual
circuitry. The most interesting design methodologies focus
on synthesizing the hardware directly form software code
written in a high-level programming language, such as C.

Such design approaches include many High-Level
Synthesis (HLS) tools and, more recently, the No
Instruction Set Computer (NISC).
NISC approach [1,2] is based on the idea of elimination of
the instruction abstraction and compiling programming
language code directly to control words for a custom
datapath using a special cycle-accurate compiler [3]. NISC
processor’s architecture can be manually modeled in the
Generic Netlist Representation (GNR) architecture
description language [4], automatically generated or
selected from a library of standard or previously designed
architectures. NISC Toolset [5] generates the RTL model
of the processor and control words for the desired
application written in C to be implemented in the desired
technology. Advantage of the NISC approach is utilization
of instruction-level parallelism (ILP) which enables
speeding up the execution of an algorithm. The generated
NISC processor is usually capable of executing several
equivalent RISC instructions in a single clock cycle.
However, the NISC Toolset at present doesn’t provide any
standard facilities for communication with general-purpose
processors. This represents a problem when attempting to
use the NISC processor as a coprocessor and integrate it
into an existing system to help meet desired design
constraints. We propose using an interface to a standard
bus architecture to enable NISC’s simple integration in a
wide variety of systems with different processors and
peripherals. This approach allows using the NISC
processor from the main processor’s software through a
simple set of coprocessor services. This enables simple
migration of performance-critical parts of the application
to hardware without the need for significant changes to the
rest of the program code. In this way, it is easy to integrate
NISC into an existing design flow.
In this paper we present the design of NISC WISHBONE
Interface [6,7]. This interface provides communication
facilities necessary for using the NISC processor as a
loosely-coupled coprocessor in systems based on the
WISHBONE standard bus architecture. Using this
interface, the NISC processor was successfully connected
to a WISHBONE system based on a general-purpose RISC
soft processor using a commercial EDA tool. The example
system was implemented and tested on two different
FPGA boards. In this way, we have shown that the NISC
processor can be connected to a standard bus architecture
using a commercial EDA tool and used as a coprocessor
from general-purpose processor’s software.

II. STANDARD SOC BUS ARCHITECTURES

One of the major design challenges for any SoC design is
system integration. Increased number of components used
in such systems requires simple and efficient connection

mechanism and generic interfaces to decrease design effort
and promote reuse. Standard bus architectures simplify the
process of system integration, shorten time to market and
support portability and reuse of IP cores.
Renowned SoC bus architectures of the day include ARM
Advanced Microcontroller Bus Architecture (AMBA),
IBM CoreConnect, WISHBONE and Altera Avalon. The
use of standard bus architectures also provides the
opportunities for using special tools that automatically
generate bus interfaces and interconnections, in this way
further shortening time to market and reducing the
possibility of human error.
These standard SoC bus architectures all share some
common traits. Unlike traditional backplane busses, such
as VME or PCI, SoC busses are usually defined as
synchronous logical busses. Logical bus means that the
functionality of a bus is defined only at the logical level
and not at the electrical level or mechanical level. The
logical specification defines logical signals, their meanings,
active levels, the relationship between different signals and
their relationship to the clock signal. This makes the bus
interface independent on the way the hardware is described
(e.g. RTL, schematic or a gate-level netlist) and on the
implementation tools and technologies (e.g. FPGA or
ASIC).
Standard SoC bus architectures define synchronous busses,
i.e. they must adhere to the synchronous design discipline
which states that the system changes state only on the
active edge of the clock signal. Synchronous design
principle enables simple and efficient design of digital
circuits and increases the reliability of the circuit by
eliminating race hazards. This is why synchronous design
is the most widely used digital design methodology today
and the methodology of choice for SoC busses.
Another common trait in standard SoC bus architectures is
the master-slave architecture. IP cores connected to the bus
are distinctly divided into master and slave modules.
Master modules play the active role on the bus – they can
initiate the transfer of data to and from slave modules,
while slave modules only respond to requests. The
distinctions between master and slave modules and master
and slave bus interfaces enable a flexible base for the
design of different types of systems.
Standard SoC bus architectures differ in the details of bus
interfaces, supported data transfer protocols (single
transfers, burst transfers, read-modify-write), supported
bus interconnection topologies (e.g. point-to-point,
multiplexed shared bus, crossbar switch) and whether they
define a single bus or several different busses as a part of
the specification. For example, AMBA and CoreConnect
specifications provide a complex high-performance bus for
processors and other fast modules and a simpler peripheral
bus for devices like the UART or GPIO. On the other hand,
WISHBONE defines only a single universal bus. High-
speed busses like WISHBONE, AMBA Advanced High-
Performance Bus (AHB) and CoreConnect Processor
Local Bus (PLB) also support bus arbitration and multiple
master modules.
The WISHBONE System-on-chip (SoC) architecture for
portable IP cores [8] is a flexible design methodology
developed by Silicore Corp. targeted at SoC integration
and design reuse. This is accomplished by defining a
standard interconnection scheme and data exchange
protocols. WISHBONE specification defines a single,

simple, logical, fully synchronous MASTER/SLAVE bus
and IP core interfaces that require very few logic gates. It
supports different technology-independent interconnection
topologies ranging from simple point-to-point and shared
bus interconnections to data flow interconnections and
complex switch fabrics. It also supports a full range of
standard data transfer protocols including SINGLE
READ/WRITE cycles, BLOCK READ/WRITE cycles and
read-modify-write (RMW) cycles with various data sizes
and byte ordering. A handshake mechanism enables flow
control and communication between different-speed cores.
Presented standard bus architectures provide a simple and
efficient way of connecting coprocessors to general-
purpose processor systems. This is also the approach we
propose for the NISC processor to overcome integration
challenges and enable coprocessor communication.
WISHBONE bus architecture was chosen for the
implementation of the NISC coprocessor interface mainly
because of its flexibility and the fact it imposes no
licensing and application restrictions. WISHBONE
specification is currently maintained by OpenCores.org
and today it represents a de facto standard for open-source
hardware. It is also offers CAD tool support and a large
library of free processors and other IP cores. Besides free
processor IP, many popular commercial soft processors
such as Xilinx MicroBlaze and Altera Nios have a
WISHBONE-compatible variant available.

III. N ISC WISHBONE INTERFACE

To be able to use the automatically generated NISC
processor as a coprocessor we must provide a way to
connect it to other IP cores in the system and a way for the
main processor’s software to access its coprocessor
functionality. Since the NISC processor itself isn’t
compatible with any of the standard bus architecture
specifications, we had to define necessary communication
services and design special interface IP to enable
connecting NISC to the chosen bus architecture -
WISHBONE. Our approach enables mapping the NISC
processor into the main processor’s memory space and
allows it to be controlled by the main processor’s software.
The designed NISC WISHBONE Interface IP is targeted at
fully synchronous WISHBONE systems, with the NISC
coprocessor sharing a common clock with the main
processor and the WISHBONE bus. Both the NISC Basic
WISHBONE Interface and the NISC Data Memory
WISHBONE Interface are SLAVE interfaces and support
SINGLE READ/WRITE WISHBONE classic bus cycles
with 32-bit data size and 32-bit data granularity. This
enables connecting the NISC processor to a wide variety of
WISHBONE-compatible 32-bit general-purpose soft
processor cores. The designed interface is compatible with
the existing NISC design flow and requires no changes in
the NISC Toolset.

A. Interfacing overview

The interface between a main processor and a coprocessor
must enable basic data and control flow transfer services.
This interface is exposed to the application programmer
via a memory-mapped programming model or a
coprocessor API which must efficiently hide all the
implementation details of the underlying hardware. And it

must also enable simple migration of software functions to
hardware. We have identified and implemented the
following essential set of services:

1) Send the data to be processed to the coprocessor
2) Initiate the data processing
3) Detect processing completion
4) Get the results from the coprocessor

To implement these services, we have designed a
communication scheme which takes advantage of the
existing features of the NISC processor – the available
external reset and halt signals and the possibility to use an
arbitrary number of external input and output ports from
NISC’s application software using the prebinding
mechanism [9]. Our goal was to eliminate the need for any
modifications to the NISC Toolset and still make system
integration as simple as possible.
Our complete interfacing solution integrated into NISC
architecture with two input ports and one output port is
shown in Fig 1. The parts of the NISC processor – datapath,
controller and control and data memories are shown in the
figure, together with the extensions we designed and
implemented (highlighted in gray). The NISC Basic
WISHBONE Interface enables control functions and
enables transfer of small amounts of special-purpose data
directly to and from the NISC processor’s datapath. The
NISC Data Memory WISHBONE Interface and the Data
Memory Multiplexer enable transfer of large amounts of
general-purpose data directly to and from the NISC
processor’s data memory.
These extensions, together with the software support from
NISC’s application enable the communication facilities
necessary to provide the desired coprocessor services. We
use NISC’s reset signal to start data processing, halt signal
for completion detection, the external I/O ports for
transferring smaller amounts of special-purpose data and
our Data Memory Multiplexer for transferring large
amounts of data. Our communication scheme is designed
to work in the following fashion:

1) Stop the NISC processor: The main processor asserts the
NISC processor’s reset signal to insure it is has exclusive
access to NISC’s I/O registers and data memory.

2) Send data to the NISC processor: The main processor
sends the data to be processed to the NISC processor.
Special-purpose data (special parameter variables, often-
used constants and other function arguments normally
passed by value) is written to shared registers using the
NISC Basic WISHBONE Interface. These registers can be
accessed through NISC’s external input ports and used
directly in the NISC processor’s datapath. General-purpose
data (arrays, structures and other function arguments
normally passed by reference) are transferred directly to
the NISC processor’s data memory using the NISC Data
Memory WISHBONE Interface and the Data Memory
Multiplexer.

3) Start the NISC processor: Initiate data processing by de-
asserting the NISC processor’s reset signal.

Fig. 1. The NISC WISHBONE Interface architecture

4) Detect processing completion: When the NISC
processor finishes processing the data, it asserts the halt
signal. The main processor can either detect this by polling
the status of the halt signal using the NISC Basic
WISHBONE Interface or by setting the interface to
generate an interrupt when NISC sets its halt signal.

5) Get the results from the NISC processor: After the main
processor has detected that the NISC processor has
finished execution, it can transfer the results to its local
memory for further processing. A smaller number of
results (such as the return value in C programming
language functions) can be stored to output registers by the
NISC processor and then transferred to the main processor
using the NISC Basic WISHBONE Interface. Larger
amounts of data (results normally returned by reference)
can be transferred directly from NISC’s data memory
using NISC Data Memory WISHBONE Interface and the
Data Memory Multiplexer.

These five simple steps of our communication scheme
translate almost perfectly to the four services we identified
as necessary for using the NISC processor as a coprocessor.
The only difference is the additional first step which is
necessary to put the NISC processor into the reset state and
enable other steps.

B. NISC Basic WISHBONE Interface

The NISC Basic WISHBONE Interface enables
coprocessor control, i.e. starting or stopping data
processing and detecting when the data processing is
completed. It also enables transferring smaller amounts of
special purpose data directly into the NISC processor’s
datapath. This is the main part of the NISC WISHBONE
Interface and it is necessary for the communication since it
enables coprocessor control and interrupt capabilities. It is
designed for seamless integration with the RTL model
generated by the NISC Toolset.
NISC Basic WISHBONE Interface implements fast single-
cycle data transfers to and from shared registers. To enable
the transfer of the data and control flow, the NISC Basic
WISHBONE Interface’s provides shared registers for input
arguments and special control registers. Control registers
are used to set the state of the NISC processor’s reset
signal, read the state of the halt signal and enable interrupts.
Result registers are implemented using NISC external

Controller

Datapath

cmem

dmem

CLK
RESET
HALT

ExternalInput1

ExternalOutput

D
ata M

em
 M

u
x

dmem external access

ExternalInput2

NISC Basic
WISHBONE

Interface

NISC Data
Memory

WISHBONE
Interface

NISC

W
IS

H
B

O
N

E

output ports which provide an internal register. This means
that these registers are a part of the NISC processor and not
the interface. So, the result output ports can be simply
routed to the interface’s output multiplexer to enable the
main processor to read the results. On the other hand,
external input ports work as proxies for external registers
and that’s why the actual registers are provided as a part of
the interface.
In a typical WISHBONE system, the most significant bytes
of the address are decoded in the interconnect module (the
so called WISHBONE Intercon), which enables the desired
peripheral using the active cycle (CYC_I) and strobe
(STB_I) signals, and only the required number of address
bits is forwarded to the peripheral’s ADDR_I inputs. The
peripheral’s internal address decoding then determines
which of its internal memory locations is addressed, and
this is also the way the NISC Basic WISHBONE Interface
addresses shared registers.
Fig. 2. shows the simplified internal organization of the
NISC Basic WISHBONE Interface. The figure shows all
the internal registers, output multiplexer and the logic for
generating interrupts and the WISHBONE acknowledge
signal. Addressing logic is not shown on the figure.
Reading the data from the interface is implemented using
the output multiplexer which is controlled by the
WISHBONE address lines. The write operation is
implemented using register enable signals controlled by the
address decode logic and the write enable qualifier signal
WE_I. The WISHBONE clock signal CLK_I is routed to
the NISC processor and the interface to create a fully
synchronous system. The WISHBONE handshake
mechanism is implemented using only combinatorial logic,
as there are no slow modules in the design. I.e. none of the
modules requires more than one cycle for read or write
operations so no memory elements for delay are required.
WISHBONE reset signal RST_I resets the NISC processor
and the interface’s internal registers.
Interrupt mechanism is implemented in such way that
setting the interrupt signal INT_O only occurs when both
the interrupt enable flag (the INT_EN register) and the halt
signal are set. INT_O is not a standard WISHBONE signal,
but it can easily be connected directly to the main
processor and several commercial tools (e.g. Altium
Designer) even provide interrupt connections as a part of
the WISHBONE interconnect module.

Fig 2. NISC Basic WISHBONE Interface organization

C. NISC Data Memory WISHBONE Interface and the Data
Memory Multiplexer

NISC Basic WISHBONE Interface provides capabilities
for transferring small amounts of arguments and results
using shared registers. Transferring large amounts of data
using this approach would require using a large number of
registers, large decoders and multiplexers. This could
result in lower performance, especially when implementing
the design in the FPGA technology. The NISC Data
Memory WISHBONE Interface was designed to overcome
this by enabling transfer of data directly to and from the
data memory of the NISC processor. In this way, arrays
and structures can be transferred to the NISC processor and
accessed as local variables from the NISC’s application.
The role of the NISC Data Memory WISHBONE Interface
is essentially converting WISHBONE read and write
cycles to the protocol used by NISC’s data memory
controller. An additional IP, the Data Memory Multiplexer
is used to multiplex and arbitrate the access to the data
memory controller so it can be accessed by the NISC
processor itself and also over the WISHBONE bus using
external access ports (see Fig. 1.).
Fig. 3. shows the internal organization of the NISC Data
Memory WISHBONE Interface. The address bits are
forwarded directly from the WISHBONE address lines to
data memory’s address lines. Since NISC’s memory
controller doesn’t require word access addresses aligned on
4 byte borders and requires the data with width less than
32-bits to be aligned to the lower data bits (unlike
WISHBONE mechanism with byte-enables), special
alignment logic was designed to handle the translation.
Also, depending on the access type, WISHBONE byte
enable lines are translated to appropriate type codes for the
NISC memory controller. Write and read enable signals are
derived from the WISHBONE write enable qualifier WE_I.
The handshaking mechanism is implemented with one
cycle acknowledge delay to allow for the Block RAM
(BRAM) latency, since NISC uses synchronous BRAMs to
implement data memory.
The Data Memory Multiplexer’s arbitration scheme is
quite simple: if the NISC processor’s reset or halt signals
are active, then the main processor has control over the
data memory. Otherwise, the control is left to the NISC
processor, the main processor has no means of writing to
the data memory and reads the value of all data bits as
zeroes. The implementation of the data memory
multiplexer is shown in Fig. 4.

Fig 3. NISC Data Memory WISHBONE Interface organization

STB_I

CYC_I

CLK_I

RST_I

WE_I

ACK_O

DAT_O

DAT_I

ADDR_I

SEL_I

&

ALIGN

DATA IN

TYPE
DECODE

TYPE

DATA OUT

WRITE EN

ADDR

NISC Data Memory WISHBONE Interface

READ EN

ALIGN

&

ACK
DELAY

REG

W
IS

H
B

O
N

E

N
IS

C
 d

m
em

 extern
al access

ACK_O

WE_I

STB_I

CYC_I

RST_I

CLK_I

DAT_O

DAT_I

ADDR_I

clk

reset
halt

External Input 1

External Output

External Input 2
SEL_I

INT_O

RESET
REG

INPUT1
REG

INPUT2
REG

INT_EN
REG

NISC

NISC Basic WISHBONE Interface

&

&

W
IS

H
B

O
N

E

. . .

HALT
REG

Fig 4. Data Memory Multiplexer organization

D. Programming model

Using the NISC coprocessor attached to the WISHBONE
bus from the main processor’s software using the NISC
WISHBONE Interface is very straightforward. It is used
according to the five simple steps and the four essential
coprocessor services presented earlier in this chapter. First,
the value ‘1’ is written to the reset register to put the NISC
processor in reset state and to insure that only the main
processor has access to the shared registers. Then, the
arguments are written to appropriate registers or
transferred to the data memory. This is followed by writing
the value ‘0’ to the reset register to start the NISC’s
application execution. After that, the main processor can
poll the value of the halt signal until it becomes active or
wait on the coprocessor interrupt and then retrieve the
results by reading appropriate registers or data memory
locations.
The full memory map of the NISC Basic WISHBONE
Interface is shown on Table 1. The first memory location,
at the base address, is reserved for the control register, i.e.
reset and halt registers. One register is accessed when
writing and the other when reading that memory address.
Because 32-bit addressing is used and registers are aligned
on 32-bit boundaries, the next register’s address is
displaced by 4 from the base address. This is the location
of the interrupt enable register, INT_EN. After that follow
the result registers and registers for arguments. The NISC
Data Memory WISHBONE Interface maps the whole data
memory of the NISC processor to the main processor’s
memory space, starting from a separate base address.
The example register address layout shown in Table 1
enables simple implementations of traditional C functions
with arbitrary number of arguments and one return value.
Of course, for different applications with additional result
values and matching result registers, different address
layouts are possible with differently laid-out interface
datapath and NISC I/O ports.

E. Design flow

The main purpose of the NISC WISHBONE Interface is to
enable improving the system’s performance using the
NISC processor if the purely software implementation on a
general-purpose processor doesn’t meet the constraints.

TABLE 1
NISC BASIC WISHBONE INTERFACE MEMORY MAP

Since designers tend to use familiar platforms and reuse
software, NISC WISHBONE Interface was designed in
such a way to enable easy integration in an existing design
flow. In cases when the general-purpose processor’s
software fails to meet design constraints using the existing
design flow, designers first need to profile the code to
identify the performance-critical functions. These
functions are candidates for implementation in hardware as
NISC processors using the NISC design flow.
During NISC design, GNR ADL is used to add I/O ports
for the function’s arguments and results that are to be
communicated through shared registers and connect them
to appropriate datapath locations. Desired function’s code
is modified to read the arguments and write the results
using the prebinding mechanism. Static variables that will
be accessed by the main processor through the NISC Data
Memory WISHBONE Interface are provided for other
results and arguments, e.g. arrays and structures. Then the
NISC toolset is used to implement the actual hardware.
The NISC WISHBONE Interface is parameterized to fit
the application, i.e. appropriate number of argument and
result registers is added. The resulting accelerators are
connected to the WISHBONE bus using the NISC
WISHBONE Interfaces.
Bodies of performance-critical function can then be
replaced with coprocessor calls. Shared registers and
shared variables in NISC’s data memory are used to
transfer the arguments. NISC Toolset’s outputs identify the
addresses of the shared variables (offsets from the NISC
Data Memory Interface’s base address) so they can be
accessed via pointers. Starting coprocessor execution and
detecting completion is implemented using the NISC Basic
WISHBONE Interface, as already described. This
approach uses polling to detect completion and so the calls
to these functions are blocking. After NISC finishes
execution, results are retrieved from the appropriate shared
registers and shared memory locations.

Addr Name
Width
[bits]

Description

00 CTRL

RESET
HALT

!(INT_FLAG)

1

Bit0:
read: status of the halt
signal is read
write: reset register is
written to – '1' sets the
NISC to reset state, '0'
initializes the execution
('0' also serves as the
interrupt acknowledge)

04 INT_EN 1 Bit0: reads/writes the

interrupt enable flag –
‘1' enables the
Interrupts, '0' disables
them

08 RESULT 32 Read/Write – result
12 ARG 1 32 Read/Write – 1st

argument
16 ARG 2 32 Read/Write – 2nd

argument
... ARG N 32 Read/Write – other

arguments

OR

'0'

N
IS

C

E
X

T
E

R
N

A
L

DATA_OUT

DATA_IN

ADDR+CTRL

N
IS

C
 M

em
o

ry C
o

n
tro

ller

DATA_IN

DATA_OUT

ADDR+CTRL

RESET

 HALT

DATA_OUT

ADDR+CTRL

DATA_IN
MUX MUX

MUX

Data Memory Multiplexer

When the body of a function is replaced with blocking
coprocessor call, there is no need to change any functions
calling this function. This enables simple migration of
software functions to hardware and exploiting available
instruction-level parallelism. More complex
communication schemes using non-blocking calls and
interrupts could also be used to exploit task-level
parallelism and achieve further speed-up.

IV . EXPERIMENTAL RESULTS

The complete NISC WISHBONE Interface was
implemented using VHDL, integrated with a generated
NISC processor and wrapped in a WISHBONE compatible
module to be used as a coprocessor in systems based on the
WISHBONE bus architecture. The generated NISC
processor was based on a generic NISC architecture with
necessary I/O datapath extensions and simple applications
designed to test the communication capabilities.
As a proof-of-concept for the presented coprocessor-based
approach, we implemented and tested a WISHBONE
system based on Altium’s TSK3000A general-purpose 32-
bit RISC soft processor. TSK3000A is based on the
MIPS/DLX instruction set and is FPGA vendor
independent. Altium’s configurable Wishbone Interconnect
module designed for integration with TSK3000A was the
bus module used in this proof-of-concept system.
Communication routines for the main processor were
developed and then tested in conjunction with the
hardware using the Altium LiveDesign Evaluation Board
with a Spartan3 FPGA and Xilinx ML506 with a Virtex-5
FPGA. The schematic for the complete system is shown in
Fig. 5.

V. CONCLUSION

In this paper we presented a method for using the No-
Instruction-Set Computer (NISC) as a loosely-coupled
coprocessor in SoCs based on the WISHBONE open bus
specification. This approach allows designers to easily use
the NISC technology in general-purpose processor systems
with very few modifications to the existing software code.
Coprocessor communication services necessary to enable
using NISC as a coprocessor were defined. Hardware and
software extensions needed to implement these services
were explained and the implementation of the NISC
WISHBONE Interface was described. The proposed
approach is compatible with existing design flows and
enables quick and easy migration of software functions to
NISC hardware for application acceleration. An example
WISHBONE system designed using this approach was
presented as a proof-of-concept.

Fig. 5. TSK3000A with a NISC coprocessor

ACKNOWLEDGMENTS

The work presented in this paper was done as a part of the project
Application-oriented Embedded System Technology supported by
the Unity through Knowledge Fund (UKF). This work builds on
many years of NISC processor research at the Center for
Embedded Computer Systems (CECS), University of California
at Irvine. The authors wish to thank CECS for providing the
NISC Toolset and Mehrdad Reshadi for his help and advice on
how to use the toolset.

REFERENCES

[1] D. Gajski, "NISC: The Ultimate Reconfigurable

Component", Center for Embedded Computer Systems, TR
03-28, October 2003.

[2] M. Reshadi: „NISC Modeling and Compilation“,
dissertation, University of California, Irvine, 2007.

[3] M. Reshadi, D. Gajski, "A Cycle-Accurate Compilation
Algorithm for Custom Pipelined Datapaths", International
Symposium on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), pp 21-26, September 2005.

[4] B. Gorjiara, M. Reshadi, D. Gajski, "Generic Architecture
Description for Retargetable Compilation and Synthesis of
Application-Specific Pipelined IPs", International
Conference on Computer Design (ICCD), October 2006.

[5] NISC Technology & Toolset
URL: http://www.ics.uci.edu/~nisc/, availability verified in
January 2009.

[6] R. Grubišić, „Design of the NISC processor WISHBONE
Interface“, diploma thesis (in Croatian), University of
Zagreb, Faculty of Electrical Engineering and Computing
(FER), May 2008.

[7] R. Grubišić, V. Sruk, „The Use of the No-Instruction-Set
Computer (NISC) for Acceleration in WISHBONE-Based
Systems”, Technical Report, Department of Electronics,
Microelectronics, Computer and Intelligent Systems; Faculty
of Electrical Engineering and Computing, November 2008.

[8] „Specification for the: WISHBONE System-on-Chip (SoC)
Interconnect Architecture for Portable IP Cores“, Revision:
B.3, Silicore/OpenCores.org, 2002.

[9] M. Reshadi, D. Gajski, "Interrupt and Low-level
Programming Support for Expanding the Application
Domain of Statically-scheduled Horizontally-microcoded
Architectures in Embedded Systems", Design Automation
and Test in Europe (DATE), April 2007.

