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A. Koslow: A Structuralist
Theory of Logic

• The lynch-pin of the theory is the definition of 
logical operators with respect to implication 
relations, i.e. relative to implication structures.

• What is an implication structure?



Implication structure

• (S, ⇒);  S≠∅,  “⇒” is an implication relation.

• An implication relation is any relation that satisfies 
the following conditions:



(1) Reflexivity:          A ⇒ A, for every A in S

(2)Projection:         A1, A2, …, An ⇒ Ak,  for every k=1, …, n,

and for all Ai in S (i = 1, …,n)

(3)Simplification:    If  A1, A1, A2, …, An ⇒ B, 

then  A1, A2, …, An ⇒ B, for each Ai

(i = 1, …,n) and B in S

(4)Permutation:      If  A1, A2, …, An ⇒ B, then  

Af(1), Af(2), …, Af(n) ⇒ B, for any



Examples

• Semantic consequence
• Syntactic notion of deducibility
• Set inclusion
• Implication structures on names
• Erotetic (interrogative) logic
• ...

• Implication structures – comparable to equivalence 
relations



Logical operators

• Defined with respect to an implication structure 
i.e.,

• any explanation of the operators is based exclusively
on the notion of implication structure:



Because the elements of an implication structure need 
not be syntactical objects having a special sign design, 
and they need not have some special semantic value, 
an explanation of what can count as hypothetical, 
disjunctions, negations, and quantifies items 
(existential or universal) can proceed in a way that is 
free of such restrictions. 
(Koslow, 1992, A Structuralist Theory of Logic)



Logical operators - examples



Logical operators - examples
• Conjunction: given an implication structure (S, ⇒), 

the conjunction operator is a function C that assigns 
to any elements A and B of S, a subset C⇒(A, B) of S 
containing all those members (if any) that satisfy the 
following conditions: 

• (C1)  C⇒(A, B)  ⇒ A and C⇒(A, B)  ⇒ B
• (C2)  C⇒(A, B) is the weakest member of the 

implication structure that satisfies (C1); 
i.e. if T is any member of the implication struc. such 
that T ⇒ A, T ⇒ B, then T  ⇒ C⇒(A, B).



• Hypothetical: for any elements A and B in the 
implication structure (S, ⇒), H⇒(A, B) is the 
hypothetical having A as the antecedent and B 
as a consequent, if and only if the following 
conditions are fulfilled:

• (H1) A, H⇒(A, B) ⇒ B

• (H2) H⇒(A, B) is the weakest element 
satisfying the condition (H1). It means that, 
for any element T of the implication structure 
such that A, T ⇒ B, it follows that    
T ⇒ H⇒(A, B)



May the operators fail to exist?
• Let us take the implication structure (S, ⇒), in 

which S={A, B, C, D} and the implication 
relation is given in the following way:

A

B

C         D



• In such a structure, the hypothetical 

H⇒(A, B) does not exist; 

namely, H⇒(A, B) is, by definition, the weakest 
member T of S such that: A, T ⇒ B. Since A⇒B, the 
condition is fulfilled by any element of S, but there 
is no weakest element. 

C cannot be the weakest element since  

A, D ⇒ B, while D≠> C (see the condition (H2). 

D cannot be the weakest one for the same reason. 



Other non–standard examples
• (S, ⇒), S is a non-empty set of sets and the implication 

relation is set inclusion “⊆”. In this case the conjunction 
of two sets A and B, is some set 
C⇒(A, B) such that:

• (C1)  C⇒(A, B)  ⊆ A and C⇒(A, B)  ⊆ B
• (C2)  C⇒(A, B) is the weakest member of the 

implication structure that satisfies (C1); 
• i.e. if T is any element of S such that T ⊆ A, 
• T ⊆ B, then T  ⊆ C⇒(A, B).
• Given the definition, C⇒(A, B) corresponds to A∩B. 

Hence, it turns out that the intersection of two sets is 
not just analogous to conjunction – it is the conjunction 



Stability and Distinctness

• Given that operators are defined as special 
functions relative to implication relations, 
such relativization to implication structures 
make the problems of stability and 
distinctness naturally arise. 



Stability
• The problem concerns the following issue: 

if C⇒(A, B) is a conjunction in one 
implication structure, will it be a 
conjunction in a different implication 
structure in which the same elements are 
included? 
And the answer is positive: given an 
implication structure, any conjunction of 
two elements will still be the conjunction of 
those elements in every conservative 
extension of the structure 



Distinctness

• The problem of distinctness is due to the 
general character of any implication structure 
and it amounts to distinguishing the operators 
from each other. 

Koslow defines two operators as distinct 
(given an implication structure) if and only if 
for some items in the structure the two yield at 
least two nonequivalent members of the 
structure.



The structuralist account: Why not?
• Set inclusion
• satisfies the conditions (1)-(6) for any implication relation. 
• the conjunction of sets = their intersection. 
• what does the left-hand side of the conditions (1)-(6)

amount to? The left-hand side = the intersection of sets: 
A1 ∩ A2 ∩ …∩ An. 

We ought to know what the intersection of sets is prior to 
having defined the implication relation on sets even though 
formally the definition of conjunction, i.e. intersection 
should follow the one of implication structure. 



• Erotetic (interrogative) logic

• We shall use the term “interrogative” to include any 
question that has a direct answer. The most important 
feature of the direct answers to a question is that they are 
statements that, whether they are true or false, tell the 
questioner exactly what he wants to know–neither more 
nor less.
(Koslow, 1992, A Structuralist Theory of Logic)

e.g. Belnap and Steel:
the direct answer…is what counts as completely, but just 
completely, answering the question. 
(Belnap and Steel, 1976, The Logic of Questions and 
Answers)



• Erotetic logic, the logic of questions and answers
• an implication relation for interrogatives is defined

in the following way:
Let Q be a collection of interrogatives (every 
question is denoted by a capital letter followed by 
a question mark), and S a set of sentences 
inclusive of the sentential direct answers to the 
questions in Q. We denote their union with S*:  
S*= S ∪ Q; 
while “⇒” is an implication relation on sentences 
of S. 



• What needs to be defined is an implication 
relation “⇒q” on the set S*, that involves 
just the questions of Q, or any combination 
of questions in Q and statements in S. 



• M1?, M2?, …, Mn? and R? - questions in Q,  
• F1, F2, …, Fm and G - statements of S (the set of M’s 

or the set of F’s may be empty but not both)
• Ai - a direct answer to the question Mi? (i=1,…,n) 

Then:
(1.) F1, F2, …, Fm, M1?, M2?, …, Mn? ⇒q R? iff
there is some direct answer B to the question R?
such that 

F1, F2, …, Fm, A1, A2, …, An ⇒ B

(2.) F1, F2, …, Fm, M1?, M2?, …, Mn? ⇒q G  iff
F1, F2, …, Fm, A1, A2, …, An ⇒ G



Problems?
• Example:
• S - collection of sentences in classical 

propositional logic  (the implication relation - the 
standard semantic notion of logical consequence)

• Q - collection of interrogatives that, among 
others, includes e.g. M1?: “How many satellites 
does the planet Earth have?” and R?: “Does the 
number ‘3’ solve the equation ‘x-4=0’?” and 

• Let us say, for the sake of simplicity, that the set 
of F’s is empty 



• The set S is infinite, there are infinitely 
many possible direct answers to the 
question M1?, given that the direct answer 
need not be the correct one.



• According to the definition of an 
implication relation “⇒q”, it follows that:

M1? ⇒q R?  iff there is some direct answer 
B to the question R? 
such that  A1 ⇒ B

If B is a logical consequence of A1 or not, 
depends on what answer A1 (to the question 
M1?) we decide to choose.



• Given the possibility of choosing a wrong 
answer, i.e. “The planet Earth has n satellites”, 
where n is any natural number different from 1
and 

• given the possibility to do the same for any 
question Mi? 
it turns out that 
for any questions Mi?, R? with a direct answer, 
we get: M1? ⇒q R?

• the application of such a definition?
• its fruitfulness?



• Slightly different case - a question implies a 
statement (the second condition in the 
definition) 

• Let us take the question to be the same as 
before 
M1?: “How many satellites does the planet 
Earth have?” and 
the statement G to be any false statement, 
e.g. the false answer to the previous 
question R?: “Yes, the number ‘3’ solves 
the equation ‘x-4=0’”



• In this case, whether M1? ⇒q G or not
depends on whether A1 ⇒ G, 
and the latter depends on what answer A1 

(to the question M1?) we choose. 

• If the answer we choose is a false one, 
then M1? ⇒q G, 
otherwise M1? ≠>q G. 



more generally...
• the same problem appears whenever the 

statement G is a false one. 
In this case, given a collection of interrogatives 
Mi? (i=1,…n), their respective direct answers 
Ai, and a set of true statements Fi (i=1,…n),  
there is nothing in Koslow’s definition that 
allows us to uniquely determine whether 
F1, F2, …, Fm, M1?, M2?, …, Mn? ⇒q G or not,
or to rule out the possibility of discussing it in 
the first place. 



• As soon as we choose at least one false 
answer, it follows that 
Ai, F1, F2, …, Fm, M1?, M2?, …, Mn? ⇒q G

• while by choosing all the correct answers 
we get: 
F1, F2, …, Fm, M1?, M2?, …, Mn? ≠>q G



Mathematics and Logic – (dis)analogy
• Koslow’s programme might seem to be analogous to what 

the standard mathematical practice is, in the sense of 
defining a determinate structure that can be exemplified by 
totally different systems. 

• Example: vector space.
different objects – e.g., geometric vectors or real numbers -
count as vectors, in the same way in which 
e.g. either the standard conjunction in classical 
propositional logic (that have the sign “∧”) or the 
intersection of sets, both count as conjunctions C⇒(A, B). 
How far does the analogy go? 



in mathematics...

• the theory of vector spaces determines not just 
what a vector space (over a field) is, but it also 
allows the projection of many other properties 
from the structure to single templates (or 
systems), e.g. the existence a base for every 
finitely dimensional vector space.



In the structuralist account of logic...
• It is not the case with Koslow’s theory of 

implication structure. Let us observe one 
example. According to the definition, the 
conjunction operator C on an implication 
structure (S, ⇒), is a function which assigns 
to any two elements A and B of S, a 
conjunction of them, i.e. a subset C⇒(A, B) 
of S:

• C:   (S, ⇒)   → (S, ⇒)
• C:    A,  B C⇒(A, B)   



• C⇒(A, B) is the subset of all those elements of S
(if they exist) that satisfy the conditions (C1) and 
(C2)

• Example: C⇒(A, B) is the standard logical 
conjunction operator in classical propositional 
logic in which the implication structure is the set 
of formulas of the language together with the 
“standard” implication. 

• In this case the conjunction is not defined, as it is 
usually the case, through its truth tables nor 
through the Elimination and Introduction rules. 



• Given Koslow’s definition, we ought to be 
able to get such results for the conjunction 
operator out of Koslow’s definition, because 
there is simply no other way in which we 
could do it. 

• But, the conjunction is defined independently 
of any syntactic or semantic features, and it is 
unclear how this definition is to be combined 
with the syntactic rules for formula formation 
and (semantic) truth tables. 



• Once the implication structure is defined and it turns 
out that the semantic concept of logical consequence 
in classical propositional logic exemplifies the 
structure as well as the conjunction “∧” fulfils the 
conjunction C⇒(A, B) requirements, none of the 
semantic properties of the conjunction “∧” follow 
from the structure.

• How can we define the truth table for it? 

• How are such truth tables related to the 
characterisation of the operator within the theory? 



• Koslow very clearly endorses the view that 
“the tasks of a logical theory of statements can be 
carried out without appeal to either syntax or 
semantics”

• nevertheless, in order to develop the logical 
theories we are interested in both the syntax and 
the semantics are necessary. 
Otherwise our classical logical theories are 
exemplified by Koslow’s structures just 
fragmentally. And different logics turn out to have 
just partial fragments reducible to or exemplified 
by the same structure.


