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Abstract. Applying the cw laser fluorescence method, the cross sections for the fine structure
mixing and quenching of the Cs 6P state, induced by collisions with ground-state caesium atoms
and molecules, have been measured. Caesium atoms were optically excited to the 5DJ states
via quadrupole-allowed 6S1/2 → 5DJ transitions, while the resonance states were populated
by the radiative and collisional 5DJ → 6PJ transitions. The relative populations of the Cs
6PJ sublevels, as well as ratio of the 5D3/2 to 6P3/2 populations, were measured as a function
of the caesium ground-state number density. From these measurements we obtained the cross
section of(14± 5) × 10−16 cm2 at T = 585 K for the process Cs(6P1/2)→ Cs(6P3/2) induced
by collisions with ground-state caesium atoms. The applied experimental approach enabled the
determination of the effective spontaneous rates for the 6PJ states which are in agreement with
the predictions of Holstein’s theory. The cross sections for quenching of 6PJ by caesium atoms
and molecules were measured atT = 635 K and the obtained values are(1.6± 1.4)× 10−16 cm2

and (1210± 260) × 10−16 cm2, respectively. Using recently calculated Cs∗ + Cs potentials
we performed an analysis which shows a good agreement between the measured values and the
theoretical estimates.

1. Introduction

Investigations on excitation energy transfer (EET) processes give important contributions to our
understanding of the dynamics of inelastic collisions in gases and represent a very sensitive test
for our knowledge of potentials between atoms or molecules involved in collision processes.
In general, studies of EET collisions concern the determination of the cross sections for the
collisional processes between two particlesA andB, being in different excited states before
and after collision. These processes can be schematically described as

A(m) +B(n)→ A(m′) +B(n′). (1)

Usually, the number of such processes per unit volume and time are defined in the product
formNA(m)NB(n)vA−Bσ , whereNA(m) andNB(n) are the number densities of the particles
in initial statesm andn, respectively,vA−B is the relative velocity of the collisional partners
andσ is the velocity-dependent cross section for a particular reaction.

The alkali metals are known to be the most convenient subjects for studying these effects
both from the experimental and the theoretical point of view. The EET in collisions between
an excited alkali atom and a similar or dissimilar ground-state alkali atom has been the subject
of numerous experimental and theoretical investigations in the last four decades. A complete
review of experimental and theoretical studies in this field up to 1975 (Krause 1975) shows
that even in the case of the simplest systems, such as alkali atoms, these investigations
are characterized by significant disagreements between the results of different groups of
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investigators and, in addition, there is pronounced disagreement between experimental and
theoretical results. Laser spectroscopy methods, introduced in the last two and a half
decades, have enabled more sensitive measurements. However, radiation trapping effects,
uncertainties in determination of particle number densities as well as an incomplete insight
into all the attendant collisional mechanisms of a particular system, remained as main sources
of systematic errors in such experiments.

In the last decade, the investigations of collisional energy transfer between alkali atoms
have shifted to energy-pooling (EP) processes, i.e. collisions involving two excited atoms
producing one atom in the ground state and the other in a highly excited state. Very recently,
quantitative experimental results for the cross sections for EP collisions involving two excited
caesium atoms were published (Jabbouret al 1996, Vadlaet al 1996, Vadla 1998). In order
to define the optimum experimental conditions in such EP experiments, a knowledge about
cross sections for simpler transfer processes in the investigated system is often required. For
instance, collisional mixing processes between initial states for a certain EP process determine
whether the measurements under particular experimental conditions would yieldJ -selective or
J -nonselective EP cross sections. However, even for the simplest EET processes in caesium,
i.e. collisions between atoms excited to the 6PJ states and ground-state atoms, inconsistencies
in the published data still persist (Bunke and Seiwert 1962, Czajkowski and Krause 1965).
A few years ago Sassoet al (1992) published the first results for quenching of the 6P states
caused by collisions with caesium ground-state atoms and molecules. During the preparation
of this manuscript, we have learned (Huennekens and Sasso 1998) that the quenching cross
sections reported by Sassoet al (1992) were in error (see section 5.2). As for the fine-structure
mixing of the Cs 6PJ states, to our knowledge the cross section data can be found only in
two pioneering works (Bunke and Seiwert 1962, Czajkowski and Krause 1965). These two
results put together suggest that the cross sections for the 6P1/2→ 6P3/2 and 6P3/2→ 6P1/2

processes both decrease (the former mildly, and the latter by more than a factor of two) as the
temperature increases in the range between 323 and 473 K. This is not in accordance with the
expected temperature dependence (increase for endothermic and mild decrease for exothermic
processes).

For the above-mentioned reasons, in the course of EP experiments (Vadla 1998), we
performed measurements of EET processes involving caesium atoms excited to the 6PJ state
and colliding with caesium ground-state atoms or molecules. The cross section for the fine-
structure mixing of the Cs resonance 6PJ states due to ground-state caesium atoms

Cs(6P1/2) + Cs(6S)→ Cs(6P3/2) + Cs(6S), (2)

and the cross sections for quenching due to caesium molecules

Cs(6P) + Cs2→ Cs(6S) + Cs∗2, (3)

as well as due to caesium ground-state atoms

Cs(6P) + Cs(6S)→ Cs(6S) + Cs(6S), (4)

were measured. The method we employed differs from methods used previously by other
authors. It enables simultaneous determination of the cross sections for various processes
(mixing, quenching, EP) and it is not demanding regarding the experimental conditions under
which it is to be used. Also, it circumvents the necessity of applying any theory of resonant
radiation trapping in advance. Additionally, we performed a semi-quantitative theoretical
study of the measured processes.
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Figure 1. Experimental arrangement.

2. Experiment and methods

2.1. Experimental arrangement

A schematic diagram of the experimental set-up used is shown in figure 1. Pure caesium metal
was contained in the finger of the evacuated cylindrical Pyrex glass cell. The inner diameter
and the inner length of the cell wered = 2.7 cm andL = 13 cm, respectively. The cell was
placed in a two-chamber resistively heated oven. The temperatures of the cell and the cell
finger were measured by iron–constantan thermocouples. The temperatureT0 of the cell was
kept constant (585 K and 635 K for 6P fine-structure mixing and quenching measurements,
respectively) its value being about 30 K higher than the highest temperature of the caesium
metal bath in the cell finger. By changing the temperatureT of the metal bath, the caesium
number density in the cell was varied in the range between 3× 1014 and 5× 1016 cm−3. In
order to control the change in transparency of the cell windows, the absorption of the white
light beam at 700 nm was measured.

Caesium ground-state atoms were excited to the 5DJ states via dipole-forbidden, but
quadrupole-allowed 6S1/2 → 5DJ transitions using a cw single-mode (linewidth about
1 MHz), frequency-stabilized ring-dye laser (Spectra Physics, model 380, dye: DCM) pumped
by 5 W all-lines argon ion laser (Spectra Physics, model 2020). The frequency of the ring
laser was tuned to the centre of the stronger hyperfine component of either the 685 nm line
(6S1/2 → 5D5/2 transition) or 689 nm line(6S1/2 → 5D3/2 transition). The resonant 6PJ
states were populated due to the radiative and collisional depopulation of the 5DJ states. The
laser beam was split in three parts. The main part, henceforth called the pump beam, was
shone through the cell perpendicular to its axis at a distance of 5 mm from the cell window.
The pump beam had a diameter of about 1 mm and maximum power of 50 mW at 685 nm.
The second part (power: a fewµW) of the split laser beam was used to measure the absorption
at the pump transitions, needed for the caesium ground-state density determination. Using the
triple, double and single pass of the absorption beam along the cell axis, as well as the pass
perpendicular to the cell axis, the absorption lengths used (from 2.7 to 39 cm) enabled us to
determine the caesium ground-state number densities spanning over two orders of magnitude.
The third part of the split laser beam was used to control the laser frequency and power stability.

The cylindrical fluorescence zone (length: 5 mm) was imaged in 1:2 ratio onto the entrance
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Figure 2. Typical measured spectra of Cs: upper part, fluorescence of the resonance D1 and D2
lines; lower part, fluorescence of the pumped 685 nm and sensitized 689.6 nm components of the
Cs 5D doublet. The EP line at 687.2 nm (7FJ → 5D5/2 transition) is also indicated. The spectra
were obtained by scanning the monochromator while the pump laser frequency was locked to the
centre of the 685.0 nm line. The upper inset shows the partial caesium term diagram with the
relevant transitions indicated. The absorption on the pump transition is shown in the lower inset.

slit of a 1 mMcPherson monochromator and the fluorescence signals were detected by a RCA
photomultiplier (type C31034A). The spectral response of the detection system was determined
using a calibrated tungsten-ribbon lamp (type W2KGV22i). With slit widths of 0.25 mm, the
band pass of the monochromator was 0.21 nm at wavelength 700 nm. The monochromator
slits were parallel to the fluorescence zone axis (thez-direction, see figure 1) and with the
aforementioned slit width only the central slab (thickness: 0.5 mm) of the fluorescence zone
was observed. Typical obtained spectra are shown in figure 2. To determine the axially
symmetric spatial distributions of the atoms excited to the 5D and 6P states, the fluorescence
intensities of the sensitized quadrupole line and the intensities of the optically thin resonance
line wings were measured, respectively. For this part of the measurement the entrance slit was
narrowed to 0.1 mm and the observed layer within the fluorescence zone was discriminated by
moving the imaging lens in thex-direction (see figure 1).

2.2. Determination of the caesium ground-state number density

The caesium ground-state number densities were determined by the measurements of the peak
optical depthsκSD(νSD)L at the central frequencyνSD of the 6S→ 5D pump transition. The
profiles of the caesium quadrupole lines measured in this work are generally of the Voigt type,
i.e. a convolution of a Gaussian (Doppler broadening) and a Lorentzian (pressure and natural
broadening) function. The peak absorption coefficient is of the formκSD(νSD) = κ0H(0, a)
(Mitchell and Zemansky 1971), whereκ0 is the Doppler peak absorption coefficient, and
H(1ν, a) is the Voigt function with parametera = 0ν/21νD (0ν is the Lorentzian FWHM
expressed in Hertz, and1νD = (νSD/c)

√
2kT /M is the Doppler constant). At the highest

caesium number densities in the present work (∼5×1016 cm−3) we obtained the valuea ≈ 0.1
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from the measured line profiles of the hyperfine components of the Cs quadrupole lines. In
this case, the Voigt function in the line core is practically equal to the Gaussian function and
its valueH(0, 0.1) ≈ 1. Therefore, the quadrupole line profiles in the whole range of applied
caesium number densities can be fairly regarded as pure Doppler profiles. Thus, the number
density of the ground-state caesium atomsN0 can be determined from the measured peak
absorption coefficient at the wavelength of the pump 6S→ 5D transition using the following
relation:

N0 = κSD(νSD)meνSD
e2fSD

√
2kT

πM
, (5)

whereN0 is the caesium ground-state number density,fSD is the line oscillator strength,νSD
is the frequency of the line centre.

For the evaluation of caesium number densities we used the quadrupole oscillator strengths
measured by Niemax (1977), who reported the total oscillator strengths of Cs quadrupole lines
f685= (5.65±0.28)×10−7 andf689= (3.28±0.25)×10−7. The oscillator strengths of the
stronger hyperfine components amount to9

16 of the total values. For example, at the typical
temperatureT = 600 K, the caesium ground-state number densityN0 can be determined by
using the formulaN0 (cm−3) = 8.46×1016×κs685(νSD), where the peak absorption coefficient
κs685(νSD) of the stronger hyperfine component of the 685 nm line is expressed in units of cm−1.
It should be mentioned that only a small fraction (less than 1%) of the ground-state atoms was
transferred to the excited states by laser pumping and the measured ground-state number
density is practically equal to the total caesium number density.

The measurement of the caesium ground-state number density via the absorption
coefficient of the pump line is very convenient because it enables simultaneous measurements
of the fluorescence line intensities. In order to check the accuracy of the applied method,
which depends on the accuracy of the used oscillator strength, we determined separately
the caesium ground-state number density by the white light absorption measurements of the
absorption coefficient in the blue quasi-static wing of the self-broadened Cs D2 line. An
excellent agreement (within 5%) between these two approaches has been found. The method
for determination of caesium vapour density via absorption in the resonance line quasi-static
wings was tested by Horvaticet al (1993) and the accuracy of the obtained data for caesium
atom number density was found to be±3%.

2.3. Determination of relative number densities in excited caesium states

Typical EET experiments involve atoms excited in the first resonance states and in most cases
measurable transfer signals can be obtained at atomic number densities for which the resonance
radiation is optically thick and trapped. This fact requires the absorption corrections and the
determination of the effective radiative rates either by calculations applying the radiation
trapping theories to particular experimental conditions or by additional time-resolved effective
lifetime measurements. The method we used for determination of population density ratios
involving the Cs resonance state populations circumvents this problem.

The relative number densities of the excited caesium atoms were determined by use of the
resonance line wings as a quasi-continuous relative standard of radiation. As reported by Vadla
et al (1996), this approach is especially convenient for measurements performed at relatively
high ground-state number densities, where the resonance lines are optically thick and strongly
trapped in the line core and exhibit very pronounced quasi-static broadening in the line wings.

According to Mitchell and Zemansky (1971) the absorption coefficient is related to
the number density dNa of the absorbing species (in our case quasi-molecules), capable of
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absorbing in the frequency range(ν, ν + dν), through the relation

κ(ν) dν = λ2

8π
A
ge

ga
dNa, (6)

wherega andge are the statistical weights of the lower (absorbing) and upper (emitting) state
of the quasi-molecule, respectively, andA is the Einstein spontaneous emission coefficient.
Similarly, the power emitted per unit volume in the frequency range(ν, ν + dν) is given by

P(ν) dν = hνA dNe, (7)

where dNe labels the number density of emitting quasi-molecules. By combining equations
(6) and (7) we obtain

P(ν) = hν 8π

λ2

ga

ge

dNe

dNa
κ(ν). (8)

In the quasi-static approximation the number densities of homonuclear pairs are described
by

dNa = 1
2N

2
04πR2 dR exp(−V0(R)/kT ), (9)

dNe = NJN04πR2 dR exp(−VJ (R)/kT ), (10)

whereV0 andVJ are the corresponding interatomic potentials,N0 andNJ are the atom number
densities of the ground and first resonance state, respectively. The molecular statistical weights
arega = g0 × g0 andge = 2gJ × g0. Here,g0 andgJ label the atomic statistical weights of
the ground and first resonance state, respectively. Finally, with the preceding expressions and
definitions incorporated, equation (8) acquires the form

P(ν) = hν 8π

λ2

g0

gJ

NJ

N0
κ(ν) exp(−h1ν/kT ), (11)

whereh1ν = VJ (R)− V0(R).
The absorption coefficient in the outer quasi-static wings of the first resonance alkali lines

is of the form (Horvaticet al 1993)

κ(ν) = 4π2e2

3mec
fJC

J
3

N2
0

(1ν)2
. (12)

Here,fJ is the line oscillator strength, andCJ3 (expressed in cm3 s
−1

) is the effective resonance
interaction constant.

If we assume that the radiation emitted in the optically thin quasi-static wings is registered
at frequency detuning1ν which is large in comparison with the monochromator band pass
δν, then the wing intensity can be regarded constant within the interval(ν, ν + δν) and the
measured intensityIJ emitted from the volume1V can be, according to equations (11) and
(12), expressed in the form

IJ (±|1ν|) ∝ εJ hνJ βJNJN0 exp[∓h|1ν|/kT ]
δν

(1ν)2
1V. (13)

Here, the sign(+) stands forJ = 3
2 (blue wing) and(−) for J = 1

2 (red wing),
εJ labels the efficiency of the detection system at the transition frequency, andβJ =
64π3e2fJC

J
3 /(3mecλ

2
J (2J + 1)). Theoretical results (Movre and Pichler 1980) for caesium

resonance interaction constantsCJ3 for the 6S1/2 → 6PJ transitions have had thorough
experimental confirmation (Horvaticet al 1993). According to these works the effectiveC1/2

3

andC3/2
3 constants for caesium D lines are 3.4× 10−9 and 5.0× 10−9 cm3 s

−1
, respectively.

These values and the line shape described by equation (12) are, according to Movre and Pichler
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(1980), valid for outer wings of the resonance doublet and for the detuning from the line centre
1ν smaller than one-third of the fine-structure splitting. Using these data for the caesiumCJ3

constants, we find the valuesβ1/2 = 0.40 cm3 s
−2

andβ3/2 = 0.67 cm3 s
−2

.
According to equation (13), the population ratio for the fine-structure levels of the

resonance state reads:
N1/2

N3/2
= ε3/2

ε1/2
· I1/2(−|1ν|)
I3/2(+|1ν|)

ν3/2

ν1/2

β3/2

β1/2
exp[−2h|1ν|/kT ]. (14)

The measurement of optically thin resonance line wings intensities yields the relative
population density in resonancenPJ states. On the other hand, by comparing the line intensity
Imn ∝ εmnhνmnAmnNm1V of an optically thin line of them→ n transition, with the resonance
wing intensity, we obtain the formula for the determination of the upper-state-to-resonance-
state population ratio:

Nm

NJ
= εJ

εmn

Imn

IJ (±|1ν|)
νJ

νmn

δν

(1ν)2

βJ

Amn
N0 exp[∓h|1ν|/kT ]. (15)

The above considerations were made assuming the isotropic number densities of excited
states. In the case of inhomogeneous number densities, the integral

∫
Nm(Er) dV over the

observation volume should replace the productNm1V . For our experimental conditions the
population densities were constant along the pump beam axis and axially symmetric. Using the
distribution functionfm(r)normalized to unity at the beam axis(r = 0), the position dependent
population density can be described withNm(Er) = Nm

∫
f (r) dV , whereNm denotes the

population density at the beam axis. Taking these volume effects into account, the modified
equations (14) and (15) are related to the population ratios at the beam axis. As we shall show,
the spatial distributions of the 6PJ states are identical. Thus, equation (14) remains formally
the same, while equation (15) becomes

Nm

NJ
= εJ

εmn

Imn

IJ (±1ν)
νJ

νmn

δν

(1ν)2

βJ

Amn
N0 exp[∓h|1ν|/kT ]

∫
fJ (r) dV∫
fm(r) dV

. (16)

It should be noted that this method is based on the accurate data for the alkali resonance
line self-broadening parameters, and is applicable to other systems with known parameters of
quasi-static line broadening. TheCJ3 constants given above essentially depend on the value
of the oscillator strengthf3/2 for the 6S1/2 → 6P3/2 transition (see Movre and Pichler 1977,
Movre and Pichler 1980, Horvaticet al 1993). In obtainingCJ3 values the oscillator strength
reported by Link (1966) was used, which agrees within 0.5% with the values that can be
deduced from the recent precision 6P3/2 lifetime measurements (Tanneret al1992, Rafacet al
1994, Younget al 1994). The latest theoretical calculations (Marinescu and Dalgarno 1995)
would yieldf3/2 andCJ3 constants that are 4.5% higher than those used here. The choice of
theCJ3 values is of no importance for the population ratio defined by relation (14). The use of
the results of other authors would affect the ratio given by expression (15) by 1% (Tanneret al
1992, Rafacet al 1994, Younget al 1994) or 9% (Marinescu and Dalgarno 1995).

3. Mixing of the Cs 6PJ states

3.1. Rate equations and the method

Figure 3 shows the partial term scheme of caesium which includes the rates relevant for
population and depopulation of the resonant 6PJ states. The states 6S1/2, 6P1/2, 6P3/2, 5D3/2,
and 5D5/2 are denoted as states 0–4, respectively. The radiative and collisional fine-structure
mixing rates (due to ground-state caesium atoms) form→ n transitions are denoted byAmn
andRmn, respectively, while the quenching rates for particularm states are labelledQm.
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Figure 3. Partial term scheme of caesium, including the radiative(A), collisional (R), and
quenching(Q) rates relevant for the population and depopulation of the Cs 5DJ and 6PJ states.
The states 6S1/2, 6P1/2, 6P3/2, 5D3/2 and 5D5/2 are denoted as states 0–4, respectively.

In our experimental conditions, the radiative 5D→ 6P transition was not trapped and
the correspondingAmn rates are equal to the natural radiative rates. Using the data for the
quadrupole and dipole oscillator strengths published by Niemax (1977) and Hansen (1984),
respectively, we calculated the following values for the radiative ratesAmn: A30 = 23.0 s−1,
A40 = 26.8 s−1,A31 = 9.0×105 s−1,A32 = 1.0×105 s−1, andA42 = 7.2×105 s−1. In contrast
to 5D→ 6P, the resonance 6PJ → 6S1/2 radiation was optically thick and strongly trapped.
Therefore, the radiative relaxation of the 6PJ states is represented by effective radiative rates
A
eff

10 andAeff20 .
The fine-structure mixing ratesRnm due to collisions with the Cs ground-state atoms are of

the formN0vCs−Csσmn. The quenching of the 5DJ states is ascribed to 5D→ 6P depopulation
due to collisions with the ground-state atoms, since the quenching to the ground state is less
probable because of the large energy difference between the initial and final states. Thus, each
of theQm (m = 3, 4) rates branches to theQm1 andQm2 portions. We assume the resonance
states to be collisionally depopulated by the ratesQ1 andQ2 which include the 6PJ → 5DJ
back transfer and the quenching due to collisions with the ground-state caesium atoms and
molecules.

Within the frame of the present experiment we have also measured (Vadlaet al 1999)
the cross sectionsσ43 andσD for the fine-structure mixing and quenching of the Cs 5D state.
The values obtained are:σ43 = (45± 15) × 10−16 cm2 andσD = (30± 10) × 10−16 cm2

at T = 585 K. The quenching of the 5D state was found to be caused by collisions with
caesium ground-state atoms. These results agree well with the data obtained by Sassoet al
(1992), who performed experiments in both pulsed and cw regimes, and reported the values
σ43 = (55± 25) × 10−16 cm2 andσD = (30± 3) × 10−16 cm2 at T = 480–637 K (pulsed
experiment), andσ43 = (33±9)×10−16 cm2 andσD = (26±12)×10−16 cm2 atT = 601 K
(cw experiment). In the evaluation of the results we used our ownσ43 andσD, which almost
coincide with the mean of the pulsed and cw values of Sassoet al (1992).

In the experiment we used both 6S→ 5D5/2 and 6S→ 5D3/2 excitation pathways.
According to the model depicted in figure 3, the system of the steady-state rate equations for
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the population densitiesN1,N2,N3, andN4 can be written in the following matrix form:
−(Z1 +R12) R21 A31 +Q31 Q41

R12 −(Z2 +R21) A32 +Q32 A42 +Q42

0 0 −(A3P +Q3 +R34) R43

0 0 R34 −(A42 +Q4 +R43)

×

N1

N2

N3

N4



=


0
0
−P3

−P4

 . (17)

Here,Z1 = Aeff10 +Q1,Z2 = Aeff20 +Q2,A3P= A31+A32,Q3 = Q31+Q32,Q4 = Q41+Q42,
while P3 andP4 denote the pump rates. For 0→ 3 pumping ratesP3 andP4 areρB03N0 and
0, respectively, while in the case of 0→ 4 pumpingP3 = 0 andP4 = ρB04N0.

The rates of interest were determined using the above system of steady-state rate equations
and the data for population ratiosNi/Nj (i = 1, 2, 3, j = 1, 2). Using equations (14) and (16)
for the evaluation, we obtained the relevant population ratios from measurements of relative
intensities of the corresponding fluorescence lines.

According to data published by Sassoet al (1992) and our own (Vadlaet al 1999),
at caesium number densities of∼5 × 1014 cm−3 (typical for the 6P fine-structure mixing
measurements), the quenching ratesQ3 ≈ Q4 are of the order of magnitude 5× 104 s−1,
thus being negligible in comparison with the radiative ratesA31 = 9.0 × 105 s−1 and
A42 = 7.2× 105 s−1. Therefore, for this caesium density range these quenching rates can
be omitted wherever they appear added to the spontaneous ratesA31 or A42. Within this
approximation, the only remainingQ in the rate equation system (19) areQ32 andQ41. The
rateQ32 is most probably comparable withA32 = 1 × 105 s−1, while Q41 represents the
exclusive population mechanism for the 4→ 1 transition. The values forQ32 andQ41 are
unknown, and we were not able to determine their values from our experimental data. However,
introducing the approximationQ3 ≈ Q4 = QD in the samead hocmanner as in Sassoet al
(1992), and assuming the equipartition in the branching of the quenching rates, we estimate
both ratesQ32 andQ41 to be equal toQD/2. Nevertheless, as will be shown eventually, this
approximation has a minor influence on the final results. In this limit, using the principle of
detailed balancing (R21 = 1.93R12 andR34 = 1.18R43 atT0 = 585 K), from system (17) we
obtain the following expressions for the ratiom = Z1/Z2 and the ratesR12 andZ2:

m = Z1

Z2
=
ξhA31

A3P
+ t

η + hp
, (18)

R12 = mη − t
(1 + t)(1.93− η)Z2, (19)

Z2 = χ A42A3P

R43

1 + t

1 +mη
, (20)

where

h = (1 + t)(1.93− η)
(1− 1.93ξ)

, (21)

t = A31R43 +A3PQD/2

A3PA42
, (22)

p = A32 +QD/2 + 1.18R43

A3P
. (23)

The factorst andp can be calculated using the data listed above. The symbolsη, ξ and
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χ denote the population ratios(N1/N2)4, (N2/N1)3 and (N3/N2)4, respectively, while the
parenthesis index labels 0→ 3 or 0→ 4 pumping.

In this part of the experiment we measured the population density ratiosη, ξ , andχ
dependence on caesium ground-state number density. Theη andξ ratios suffice to determine
the rate ratiom. The complete set of data forη, ξ , χ andm (each obtained as a function ofN0)
enables the determination of the ratesR12 andZ2 = Aeff20 +Q2. From the obtained ground-state
density dependence of the rateR12 we determined the corresponding cross sectionsσ12 and
σ21 = 1.93σ12 (by the principle of detailed balance). The results forZ2, in fact, yielded the
values for the effective spontaneous rates, as will be shown in the following section.

3.2. Measurements and results

Figures 4(a) and (b) show the data for the relative populations of the 6PJ to 6PJ ′ and 5D3/2 to
6P3/2 states, respectively, obtained in series of measurements performed for caesium number
densities in the range between 3× 1014 and 3× 1015 cm−3 at constant cell temperature
T0 = 585 K. For 0→ 4 excitation we measured the ratiosη = (N1/N2)4 andχ = (N3/N2)4,
while in the case of 0→ 3 excitation the ratioξ = (N2/N1)3 was measured. The data
were extracted from the spectra measured by scanning the monochromator, while the pump
laser frequency was locked at the centre of the pump transition (see figure 2). The population
ratios for the resonance substates were determined by measurements of relative intensities in the
wings of the Cs D1 and Cs D2 lines for detuning1λ in the range from 1 to 2 nm. Equation (14)
was used for the evaluation. To determine the(N3/N2)4 ratio according to equation (16), the
peak intensityI689 of the sensitized quadrupole line and the intensityI3/2(1λ) in the blue wing
of the Cs D2 line were measured. The spatial distributions of the excited atoms (see figure 5)
were found to be independent of the caesium density range and the ratio of the volume integrals
in equation (16) was 1.1.

Figures 6(a) and (b) show the results form = Z1/Z2, Z2 andR12 obtained by use of
the data given in figure 4 for the lowest caesium densities. In this range, the mixing rateR12

exhibits linear dependence on caesium density. The error bars on the points in figures 6(a) and
(b) reflect the error bars of the measured ratiosη, ξ , andχ . The inaccuracy of the radiative
and collisional rates used in evaluation were not included here. The apparently complicated
formulae (18)–(23) used for evaluation imply a large overall uncertainty of the final results. The
main contribution to the overall uncertainty of the final results is due to the factorA42A3P/R43

appearing in expressions for evaluation ofZ2 andR12. This factor directly scales the obtained
results. Since the values for the radiative rates are very accurate (±5%), the largest error
source is the rateR43. However, the inaccuracies of the other similar terms have no such direct
influence on the overall uncertainty of our results. This is due to the fact that the factorst

andp comprising these terms are small compared with unity at lower caesium densities. For
instance, atN0 = 5× 1014 cm−3 the factorst andp amount to 0.19 and 0.25, respectively.
For this reason, our estimationQ3 ≈ Q4 = QD does not introduce major errors to the final
result either. For example, a variation of±100% inQD produces only±15% uncertainty in
Z2 andR12. Nevertheless, the error bars of the calculated values form, Z2, andR12 increase
significantly for higher densities. Additionally, for higher densities our approximate solutions
to the system (17) are no longer valid. Therefore, the data aboveN0 ∼ 1015 given in figure 4
cannot be used for the evaluation.

The least-squares fit to the straight line through the origin of the first five experimental
points forR12 in figure 6(b) yields the cross sectionσ12 = R12/vCs−CsN0 for the process (2):

σ12 = (14± 5)× 10−16 cm2. (24)

The error stated includes (adding in quadrature) the standard error of the fit obtained by
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Figure 4. (a) The relative populations of the fine-structure levels of the Cs 6P state as a
function of the caesium ground-state number densityN0. Ratiosη = N(6P1/2)/N(6P3/2) and
ξ = N(6P3/2)/N(6P1/2) were measured during the 6S1/2 → 5D5/2(0 → 4) and 6S1/2 →
5D3/2(0 → 3) excitations, respectively. (b) The population ratioχ = N(5D3/2)/N(6P3/2) in
dependence on the caesium ground-state number densityN0 obtained for 0→ 4 excitation.

Figure 5. The normalized radial distributionsN(r) of caesium atoms excited to 5D and 6P states.

weighting the data by the experimental error bars (17%), the inaccuracy in the determination
of theN0 (5%) and the uncertainty of the rateR43 (33%) used in the evaluation. The value
for the cross sectionσ21, obtained from detailed balancing, amounts to 27× 10−16 cm2 (note
that the evaluation procedure yields either of these two values; the other one follows from the
principle of detailed balance). In table 1, the obtained values forσ12 andσ21 are compared
with the results of previous investigations.

In order to estimate the radiative fraction of the depopulation ratesZi = Aeffi0 +Qi we
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Figure 6. (a) The ratiom of the depopulation ratesZ1 = A
eff

10 + Q1 andZ2 = A
eff

20 + Q2 of
the fine-structure components of the Cs resonance level as a function of the ground-state number
densityN0. (b) Depopulation rateZ2 and mixing rateR12 plotted against the ground-state number
densityN0. See section 3.1 for details.

Table 1. Cross sections for the fine-structure mixing of the Cs 6PJ states induced by collisions
with ground-state caesium atoms.

Reaction T (K) σ (10−16 cm2) References

Cs(6P1/2) + Cs(6S1/2) 473 6± 2 Bunke and Seiwert (1962)
→ Cs(6P3/2) + Cs(6S1/2) 323 6.4± 0.6 Czajkowski and Krause (1965)

585 14± 5 This work, experiment
585 11 This work, theory

Cs(6P3/2) + Cs(6S1/2) 473 13± 4 Bunke and Seiwert (1962)
→ Cs(6P1/2) + Cs(6S1/2) 323 31± 3 Czajkowski and Krause (1965)

585 27± 10 This work, from the
experimental value and principle
of detailed balance

585 22 This work, from the
calculated value and principle of
detailed balance

calculated the effective radiative rates using Holstein’s theory (Holstein 1947, 1951). In this
experiment the distance between the centre of the excitation zone and the cell window was
r0 ≈ 0.5 cm. For actual caesium densities, the kernel of the resonance line was thoroughly
absorbed and only the resonance photons in the impact region of the self-broadened resonance
line wings have a fair chance to escape out from the cell without being absorbed. For the
case of cylindrical geometry and the impact region, the escape factor (the effective-to-natural
radiative rate ratio) derived by Holstein (1947, 1951) is given by

G = A
eff

i0

Ai0
= 1.115√

πκpr0
, (25)
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where the Lorentzian peak absorption coefficientκp is given by

κp = λ2
i0

4π2

gi

g0

Ai0

0ν
N0. (26)

According to Sobel’manet al (1981), the Lorentzian FWHM in our case is given by
0ν(s−1) = 2π2C3(s−1 cm

3
)N0. Using the values for the resonance interactionC3 constants

given by Horvaticet al (1993) and Movre and Pichler (1980), and the natural radiative
ratesA10 = 2.84 × 107 s−1 and A20 = 3.24 × 107 s−1 derived from Hansen (1984),
we obtainedAeff10 ≈ A

eff

20 = 8.4 × 104 s−1. Since our experimentalZ2 value reads
Z2 = (8.3± 1.5) × 104 s−1, this theoretical estimate indicates that for the actual caesium
density range the measured depopulation rates are dominated by the effective radiative rates,
while the quenching ratesQ1 andQ2 are negligible within the experimental error bar. As
predicted by Holstein’s theory (Holstein 1947, 1951), the effective radiative rates at present
conditions are independent of the ground-state atom density and their ratio is nearly equal to
unity. From the experiment we obtainedm = Z1/Z2 = 0.9± 0.2, which is in fair agreement
with the theoretical prediction.

4. Quenching of the 6PJ states

4.1. Rate equations and methods

As shown in the previous section, the collisional depopulation ratesQ1 andQ2 of the 6P1/2

and 6P3/2 states, respectively, were not measurable in the low caesium density range. To
get information about these rates, we performed a separate set of measurements at higher
densities ranging between 1× 1016 and 5× 1016 cm−3. The cell temperature was kept at
T0 = 635 K, which is about 30 K higher than the highest metal bath temperature in this part
of the experiment. We found that for caesium densities above 1×1016 cm−3 complete mixing
of the 6PJ states occurred. For this reason, it is convenient to reduce the system (17) (by
adding together the first two equations) to a simpler three-state form with relevant populations
NP = N1 +N2,N3, andN4. Then, for 0→ 4 pumping the corresponding rate equation system
in matrix form is(−ZP A3P +QD A42 +QD

0 −(A3P +QD +R34) R43

0 R34 −(A42 +QD +R43)

)
×
(
NP

N3

N4

)
=
( 0

0
−ρB04N0

)
. (27)

Here,ZP = [Z1 + (N1/N2)Z2]/[1 + (N1/N2)] is effective depopulation rate of the 6P state,
and we use again the approximationQ3 ≈ Q4 ≡ QD.

The equilibrium ratioN1/N2 atT = 635 K amounts to 1.72 and the total 6PJ population
densityNP amounts to 2.72N2. The system (27) yields the depopulation rate of the 6P state:

ZP = 1

2.72

(
N3

N2

)
4

[
A3P +QD + (A42 +QD)

A3P +QD + 1.17R43

R43

]
, (28)

where, according to the principle of detailed balance, we usedR34 = 1.17R43 atT = 635 K.
The ratioχ = (N3/N2)4 was measured in dependence on the caesium ground-state number

density. Using these data we calculated theZP in dependence onN0. Generally, the rateZP

is a sum of the effective radiative depopulation rate and the quenching rates due to collisions
with caesium atoms and molecules:

ZP = AeffP + σaPva−aN0 + σmP va−mN(Cs2). (29)
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Here,σaP andσmP are the cross sections for the atomic and molecular quenching, respectively.
Since the density of the caesium molecules is related to theN0 by a temperature-dependent
equilibrium rateKeq(T ) through

N(Cs2) = N2
0

Keq(T )
, (30)

the depopulation rateZP can be, in terms ofN0, represented by a second-order polynomial:

ZP = b0 + b1N0 + b2N
2
0 . (31)

By fitting the experimental data forZP to the second-order polynomial, the quenching
cross sections can be obtained from derived coefficientsbi as σaP = b1/va−a and σmP =
b2Keq(T )/va−m. For the evaluation of the molecular cross section we usedKeq(T ) calculated
according to the expression

Keq(T ) = 1.37× 1022× T 1/2 × exp(−5.22× 103/T )× [1− exp(−60.46/T ], (32)

obtained by use of caesium molecular ground-state constants given by Weickenmeieret al
(1985).

4.2. Measurements and results

Figure 7(a) shows the population ratioχ = (N3/N2)4 measured in dependence on caesium
ground-state number density. To avoid excessive population density in the 6P states and
trapping of the 5D→ 6P transition, the pump power was reduced down to 5 mW. The ratioχ

was determined according to equation (16), by measuring the peak intensity of the sensitized
689 nm quadrupole line and the intensity in the blue wing of the Cs D2 line for detuning1λ

in the range from 3 to 7 nm. The transparency of the cell windows reduces equally at both
wavelengths of interest (852 and 689 nm), leaving the intensity ratio unaffected by its change.
Using these data and equation (28) we calculated theZP dependence on caesium ground-state
atom density. The ratesR43 andQD were calculated using ourσ43 andσD values given in
section 3.1. The results for the depopulation rateZP of the 6P states are plotted in figure 7(b)
against caesium atom number densityN0. Figure 7(c) displays theZP data versus density
of caesium moleculesNCs2. TheZP versusNCs2 plot is quite instructive, since it shows that
ZP is almost a linear function ofNCs2 and we can tell at a glance that in the investigated Cs
density range, except for the narrow interval at the very beginning, theZP is dominated by the
molecular quenching.

By fitting the data presented in figure 7(b) to the second-order polynomial (equation (31))
we obtained the following values for the coefficients:b0 = (1.6 ± 0.7) × 105 s−1,
b1 = (7.0 ± 6.3) × 10−12 s−1 cm3, b2 = (5.6 ± 1.2) × 10−28 s−1 cm6. The fitting was
done by the least square method using the plotted error bars as weights for the data. The
plotted error bars include the uncertainties inχ as well as the errors in the cross sections used
for evaluation ofZP.

The coefficientb0 gives the effective radiative rateAeffP which is two times greater than the
value obtained in the course of 6P fine-structure mixing measurements (section 3.2). However,
taking into account the overlapping error bars of these data, they may be regarded as consistent.
With the relative velocityva−a = 4.5× 104 cm s−1 we obtain fromb1 the following value for
the atomic quenching cross section:

σaP = (1.6± 1.4)× 10−16 cm2. (33)

At the experimental temperatureKeq(635) = 8.44× 1018 cm3, while the relative velocity
between caesium atoms and molecules amounts tova−m = 3.9× 104 cm s−1. Using these
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Figure 7. (a) The population ratioχ = N(5D3/2)/N(6P3/2) in dependence on the caesium
ground-state number densityN0 obtained for 0→ 4 excitation, measured in the range of higher
N0 densities. (b) Total depopulation rateZP of the 6P state plotted against the ground-state number
densityN0. The dashed curve represents equation (31). (c) Total depopulation rateZP of the 6P
state plotted against the number density of caesium moleculesNCs2.

Table 2. The cross sections for quenching of the Cs 6P state induced by collisions with caesium
ground-state atoms and molecules.

Reaction T (K) σ (10−16 cm2) References

Cs(6P) + Cs(6S)→ Cs(6S) + Cs(6S) 480–637 6.6± 3 Sassoet al (1992)
480–637 2.1 Huennekens and Sasso (1998)
635 1.6± 1.4 This work, experiment
635 <16 This work, theory

Cs(6P) + Cs2→ Cs(6S) + Cs∗2 480–637 863± 260 Sassoet al (1992)
480–637 546 Huennekens and Sasso (1998)
635 1210± 260 This work, experiment

data, from the coefficientb2, we obtain the following value for the molecular quenching cross
section:

σmP = (1210± 260)× 10−16 cm2. (34)

The values forσaP andσmP are listed in table 2 and compared with those measured by Sasso
et al (1992).

As mentioned previously, the atomic quenching rate includes not only the collisional
excitation transfer to the ground state described by (4) but also the collisional back transfer to
the 5D states. To estimate the back-transfer component of the measured cross sectionσaP we
used the principle of detailed balancing. At the temperature at hand, the ratioσ ′D/σD is equal
to 2×10−3 (σ ′D denotes the cross section for the 6P→ 5D back transfer), and according to the
values (Sassoet al 1992, Vadlaet al 1999) forσD mentioned in section 3.1, the cross section
σ ′D amounts to 0.06× 10−16 cm2. This means that the measured quenching cross sectionσaP
should be completely attributed to the process Cs(6P) + Cs(6S)→ Cs(6S) + Cs(6S).
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5. Discussion

5.1. Mixing of the 6PJ states

The first experimental investigation of the fine-structure mixing of the Cs 6P states due to
collisions with ground-state Cs atoms was performed by Bunke and Seiwert (1962), who
reportedσ1/2→3/2 = (6 ± 2) × 10−16 cm2 and σ3/2→1/2 = (13 ± 4) × 10−16 cm2 at
T = 473 K. This process was remeasured by Czajkowski and Krause (1965) who found
σ1/2→3/2 = (6.4± 0.6) × 10−16 cm2 andσ3/2→1/2 = (31± 3) × 10−16 cm2 at T = 323 K.
Bunke and Seiwert (1962) worked at Cs ground-state densities of∼1015 cm−3 and corrected
their results for radiation trapping by using a modified Holstein theory (Holstein 1947). On
the other hand, the experiment of Czajkowski and Krause (1965) was performed in optically
thin conditions and required no corrections for trapping of the resonance radiation. Both
experiments were done by means of classical spectroscopy, and no attempt to measure these
cross sections by laser spectroscopy methods has been done since. The ratio of the cross
sections measured by Czajkowski and Krause (1965) agrees very well with the value calculated
by the principle of detailed balancing, while that of Bunke and Seiwert (1962) is about 20%
higher than predicted by detailed balancing. These two results suggest that the cross section
for the endothermic process 6P1/2→ 6P3/2 decreases slightly, while the cross section for the
exothermic 6P3/2→ 6P1/2 process rapidly decreases with temperature (by more than a factor
of two in the considered temperature range). This is not in accordance with the expectation
that cross sections for endothermic reactions increase, while cross sections for exothermic
processes mildly decrease with increased temperature (see the discussion in Vadla (1998)).

There are three basic mechanisms which can contribute to the fine-structure-changing
collision cross section for the first excited P state in the homonuclear alkali dimers at room
temperature. Only one, the spin–orbit mixing of the 0+

u components of the A16+
u and b35+

u
states at their crossing near the minimum of the A16+

u potential, is dominant in the Cs case
(Julienne and Vigúe 1991). Using the nonrelativistic potentials of Krauss and Stevens (1990)
and the spin–orbit matrix element estimated by O’Callahanet al (1985), Julienne and Vigué
(1991) have calculated the cell average cross section for Cs fine-structure-changing collisions at
300 K, obtaining the valueσ3/2→1/2 = 33.6×10−16cm2. They also showed that the temperature
dependence of the fine-structure rate coefficient is that of the Langevin capture rate, i.e.T −1/6.
It follows that the temperature dependence of the corresponding thermal cross section isT −2/3.
The theoretical value forT = 300 K scaled toT = 585 K yieldsσ3/2→1/2 = 21.5×10−16 cm2

and by using the principle of detailed balancing,σ1/2→3/2 = 11.0× 10−16 cm2, which is in
good agreement with our measured value of(14± 5)× 10−16 cm2.

When our present resultsσ1/2→3/2 = (14± 5)× 10−16 cm2 andσ3/2→1/2 = (27± 10)×
10−16 cm2 obtained atT = 585 K are incorporated into the scheme of existing data it is possible
to resolve the inconsistency between previously (Bunke and Seiwert 1962, Czajkowski and
Krause 1965) reported values. The Cs 6P fine-structure mixing cross sections are depicted in
figure 8 together with previous experimental results (Bunke and Seiwert 1962, Czajkowski and
Krause 1965) and the theoretical predictions (Julienne and Vigué 1991) for their temperature
dependence. It can be seen that only the data of Czajkowski and Krause (1965), together
with our present ones, reproduce the theoretical predictions. It is also clear that the results of
Bunke and Seiwert (1962) are systematically about a factor of two too low to fit reasonably
into the body of existing values. This is not surprising, bearing in mind the assumptions about
the geometry of their system that were necessary in order to account for radiation trapping.
The present experiment also proceeded under conditions of radiation trapping, the important
distinction being that the method we applied enabled direct experimental determination of



Caesium 6P fine-structure mixing and quenching 4663

Figure 8. Temperature dependence of the Cs 6P fine-structure mixing cross sections:T = 323 K,
Czajkowski and Krause (1965);T = 473 K, Bunke and Seiwert (1962);T = 585 K, present
experiment; dashed curves, theory (Julienne and Vigué 1991).

the effective radiative rates for 6P levels, simultaneously with measurements of the mixing
rates. This method is advantageous since it circumvents the necessity of applying any theory
of radiation trapping in advance.

5.2. Quenching of the 6PJ states

To our knowledge there is a single result in the literature, by Sassoet al(1992), for the quenching
cross sections of the Cs 6P state. They reported the cross sectionsσat = (6.6±3)×10−16 cm2

andσmol = (863± 260) × 10−16 cm2, for quenching by caesium ground-state atoms and
molecules, respectively, in the temperature range 480–637 K. Our result (T = 635 K) for the
atomic quenching cross sectionσat = (1.6± 1.4) × 10−16 cm2 is about four times smaller,
while the molecular quenching cross sectionσmol = (1210± 260)× 10−16 cm2 is about 40%
greater than that reported by Sassoet al (1992). We attempted to find a cause of such great
disagreement between the results for atomic quenching by analysing the conditions in which
the two experiments were performed. Sassoet al (1992) performed the measurements in the
heat pipe, while we used a glass cell where the possible influence of impurities is much less
likely. However, we do not consider either this difference or the different techniques used (cw
and pulsed), to be the essential cause of the disagreement. In our opinion it is more likely that
basic experimental conditions which were different in the two experiments are responsible
for the disagreement. Our measurements were made under conditions of complete mixing
of the 6P states, while the measurements of Sassoet al (1992) also include the range of
low caesium densities far removed from the mixing saturation, where the measured outgoing
rate of the particular observed 6PJ state is predominantly governed by the 6P intermultiplet
mixing mechanism (see equation (14) in Sassoet al (1992)). Furthermore, the caesium vapour
temperature in their experiment changed simultaneously with the caesium number density,
since the experiment was performed in the heat pipe. As a consequence, the data obtained
had to be fitted to a second-order polynomial (equivalent to our equation (31)) in which the
coefficient of the quadratic term was temperature dependent (with one order of magnitude
change in the considered temperature range). In contrast, by using a sealed glass cell we
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were able to investigate these processes at a constant caesium vapour temperature. Therefore,
ourZP versusN0 data follow a true parabola, thus making our fitting (figure 7(b)) procedure
simpler anda priori more reliable.

In attempting to compare our results with the results of Sassoet al (1992), we noticed
that the declared cross sections were incompatible with the experimental data points given in
that work. Recently (Huennekens and Sasso 1998), we have learned that the quenching cross
sectionsσP(Cs) andσP(Cs2) reported by Sassoet al (1992) are in error, and that the correct
values should read 2.1 × 10−16 cm2 and 546× 10−16 cm2. We do not know whether the
corresponding error bars represent the same percentage as the original values or not. Both
data sets are listed in table 2. Taking the recent (Huennekens and Sasso 1998) values into
consideration, we can see that there is now a good agreement between the cross sections for
atomic quenching, but that the disagreement between the cross section values for molecular
quenching is even worse than before. We cannot think of any reason, other than those already
discussed, that would account for this discrepancy.

According to Nikitin and Shushin (1977), in the alkali homonuclear systems the quenching
of the first excited P state is due to rotational and spin–orbit coupling between the a36+

u and the
b35u potential curves which cross each other at short internuclear distances (see figure 9). In
the simple two-channel model the transition probability is given by the Landau–Zener formula:

PLZ = 2e−A(1− e−A) (35)

where

A = 2πV 2
x /(h̄vxDx) (36)

andVx , vx andDx are respectively the coupling matrix element, velocity and slope difference
of the potential curves at the crossing pointRx of the two curves. The selection rules for the
two couplings are different and the total quenching cross section is given as a sum of two
contributions. In the case of the rotational (Coriolis) coupling, the Landau–Zener treatment
would be applicable, provided that the coupling is not too strong (Nikitin and Umanskii
1984). If so, thenA � 1, andPLZ = 2A. The Coriolis coupling matrix element is
of the formV = −(bv∞/R2)〈 36+

u |L̂⊥| 35u〉, whereb is the impact parameter,v∞ is the
asymptotic velocity in the initial channel and̂L⊥ is that component of the electronic angular
momentum operator which is perpendicular to the collision plane. Assuming that the molecular
wavefunctions of the36 and the35 states are dominated by 6s and 6p atomic orbitals,
both (rotational and spin–orbit) coupling matrix elements take the form of the product of
the respective asymptotic value and a common factorf (0 < f < 1) which comprises the
amplitudes of the pσ and pπ atomic orbitals in the molecular wavefunctions of the6 and5
states (Nikitin and Shushin 1977).

Krauss and Stevens (1990) have calculated adiabatic potential energy curves of Cs2 in
the range of internuclear distancesR from 7 to 30a0. In order to estimate the crossing of
the relevant potential curves in the range of shorter internuclear distances where quantum
chemical methods usually lose accuracy we have extrapolated calculated potential curves
by simple exponentials. The extrapolation yields the crossing atRx = 5.94 a0 and energy
Ux = −0.011 545Eh relative to the S+P asymptote (see figure 9). Using these values we
have calculated the transition probability according to equation (35). The quenching cross
section, as a function of the factorf , is then obtained by integrating transition probability
over impact parameter and averaging over Maxwellian energy distribution. In variance with
the K2 case (Nikitin and Shushin 1997), quenching of the Cs 6P states is almost exclusively
given by the spin–orbit coupling. The (atomic) quenching cross section, as a function off ,
exhibits a maximum of 16× 10−16 cm2 for f = 0.6. Thisf value is rather unrealistic since
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Figure 9. Some of the nonrelativistic potential curves for Cs2 calculated by Krauss and Stevens
(1990). The dotted curves represent our extrapolation of a36+

u and b35u potentials. The circled
areas indicate the crossings considered in section 5.1.

it would imply that the wavefunction of the a36+
u state is dominated by the pπ atomic orbital,

which is not very likely. Therefore, when judging the agreement between the theory and the
experimental values, the theoretical upper bound of 16×10−16 cm2 should not be given much
significance, prior to knowing thef value more reliably. The experimental findings for this
quenching cross section suggest thatf should be about 0.1.

The dynamics of the collision is a complex problem not only because a large number
of electronic states may be involved but also due to the sensitivity to details of the potential
curves. In addition, the knowledge of various coupling matrix elements is required. To our
best knowledge, no radial or rotational coupling matrix elements are available in the literature.
Better insight into the collision dynamics of these processes certainly requires more complete
theoretical treatment, which, however, is beyond the scope of this paper.

6. Conclusion

EET processes involving caesium atoms excited to the 6P state and colliding with the caesium
ground-state atoms or molecules have been investigated. We have measured the cross section

σ1/2→3/2 = (14± 5)× 10−16 cm2

for the fine-structure mixing of the Cs 6PJ states (T = 585 K) induced by collisions with
ground-state caesium atoms. Our theoretical estimate for this process, based on the value
calculated by Julienne and Vigué (1991), yieldsσ1/2→3/2 = 11×10−16 cm2. The experimental
value is consistent with the results previously reported by Czajkowski and Krause (1965).
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The cross sectionsσaP = (1.6±1.4)×10−16 cm2 andσmP = (1210±260)×10−16 cm2 for
the quenching of the Cs 6P state by collisions with caesium ground-state atoms and molecules,
respectively, have been determined at the temperatureT = 635 K. The value for the atomic
quenching cross section communicated to us by Huennekens and Sasso (1998) is in good
agreement with the result reported here, while their molecular quenching cross section is
about two times smaller.

Finally, we would like to point out the need for further theoretical investigation of the
Cs2 collisional complex, which should include not only potential curves but also the various
coupling elements relevant for cross section calculations.
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