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Abstract-- In this paper, we compare different criterions of
adaptation in the proposed two-channel wavelet filter bank
with variable number of zero moments. Generally, filters with
more zero moments are more appropriate for representing
smooth parts of the analyzed signal, while shorter filters are
better for transients and singularities. Depending on the
criterion, filter banks that change number of zero moments at
each step of decomposition can outperform fixed banks in a
number of applications. When applied to signals, variable zero
moment wavelets result in low ripple on edges and good
concentration of wavelet coefficients in smooth parts. Error
signal is formed from filtered wavelet coefficients and
therefore available on the reconstruction side. We discuss
different adaptation algorithms based on spectral properties,
adaptation interval and causality. Chosen criterion determines
decomposition properties, as well as its reproducibility on the
reconstruction side. Results on synthetic and real signals are
presented.

Index Terms— adaptation criterions, variable zero moments,
wavelets, time-varying filter banks

1. INTRODUCTION

The number of vanishing moments of a fixed wavelet filter
bank is usually chosen as a compromise between filter
complexity and concentration of the wavelet coefficients.
More zero moments correspond to more regularity, which
gives better description of smooth and correlated parts of
the analyzed signal [1][2]. But, it results in longer filters
that cause spread of wavelet coefficients on sharp edges of
the analyzed signal. On the other hand, shorter filters are
more suitable for compact representation of transients and
singularities, as well as parts of the signal with narrower
correlation of samples.

In this paper we describe a wavelet filter bank that adapts
the number of zero moments. Adaptation is performed on
both filters in the bank at each step of decomposition. The
adaptation criterion is computed from wavelet coefficients.
In some cases it is reproducible on the reconstruction side.
We expect benefits of using adaptive number of zero
moments in many applications, such us [6].

In section I we describe the construction of the proposed
adaptive filter bank. Sweldens 96 [3] proposed a
construction of biorthogonal wavelet filter banks based on
the lifting scheme, using interpolation of samples in the
time domain. A short review is given in paragraph IL.A.
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Even samples are estimated from odds using Lagrange
interpolation functions of chosen order. In the proposed
scheme, we consider odd order Lagrange polynomials
corresponding to the even length FIR filters.

In paragraph 11.B we give the proposed factorization of the
adjustable lifting step. In paragraph II.C adjustable dual
lifting step is introduced.

In section III we discuss the adaptation criterions and
results. Proposed filter bank is applied on a synthetic and a
real-world signal. Decomposition of synthetic signal is
almost optimal. Unpredictable components of the real-
world signals cause modification of memoryless adaptation
criterion. It should be computed on interval. Depending on
the choice of interval boundaries, algorithm is reproducible
or not reproducible on the reconstruction side. It is shown
that the entropy of the wavelet coefficients computed by
adaptive filter bank is lower when compared to fixed banks.

II. FILTER BANK STRUCTURE

A.  Lifting scheme

Lifting scheme enables easy construction of perfect
reconstruction time-variant and non-linear filter banks.
Daubechies and Sweldens [4] show that any two-band FIR
filter bank can be factored in a set of lifting steps, using
Euclidean algorithm. Associated polyphase matrix is
factored in a cascade of triangular sub-matrices. An inverse
sub-matrix is obtained by a simple transposition followed
by the change in sign.
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Figure 1. Two-channel PR filter bank factored in lifting and
dual lifting steps.
The polyphase matrix of the filter bank from Figure 1 is
factored in 2 triangular sub-matrices:
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In this paper, a class of two-channel biorthogonal filter
banks constructed by Lagrange interpolation method is
used. Sweldens [3] described a lifting scheme construction
of Deslauriers - Dubuc filter banks [5] by interpolation of
samples in the time domain. The illustration of linear (II)
and cubic (IV) case is given below:
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We use S and T filters of the Lagrange interpolation type
with variable even number of zero moments.

B. Adaptive lifting step
We start from the filter bank structure given in Figure 1
and equations (II.1) and (II.3). For the simplicity, we limit
ourselves to the linear phase prediction filters with 6-taps
(N=3). Two zero moments of the high-pass filter are
equivalent to the requirements:

H(z)|_, =0, H'(z)|_ =0
These conditions decrease the freedom of choice of the
prediction filter coefficients {s;}, and lead to equations:
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The linear phase condition requires ss=so, $4=51, §3=52, SO We
have:
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Both conditions (I1.5) reduce to the same expression (I1.6).
Hence:

1 1
S2 = 5 _Zsk.
k=0

Now, we split the prediction filter into two additive
components; fixed and “free” part: Sy=Sg+Sgee, Where
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— (50 + sl)zf1 + slzf2 + s0273.
The next pair of zero moments additionally reduces
freedom in choice of the prediction filter coefficients:
H'G) =0, H"G)|_ =0

as well as the last pair. The results are presented in Table
1.1, Prediction filter is given as a sum of additive
components: Sy=S, for 2 zero moments, Syy=Sp+S; for 4,
and Syi=Sy+S1+S, for 6 zero moments.
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Table I1.1. Additive components of the 6 tap linear phase
prediction filter (ss=sq, s4=s;, $3=5,) providing 2, 4 or 6 zero
moments to the high-pass filter H(z).
Furthermore, additive components can be factored and
realized in a cascade:
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Finally, the proposed realization of the lifting step is shown
in Figure 2. Successive closing of switches S, Sy4 and S,
gives 2, 4 or 6 zero moments of the high-pass filter,
respectively. It corresponds to the prediction of odd samples
from neighboring even samples, using linear, cubic or 5™
order polynomial interpolation.
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Figure 2. Lifting step of the high-pass filter with 0, 2, 4 or 6
zero moments: bior(2xm).0. More zero moments corresponds
to higher order Lagrange polynomial interpolation.

If needed, the proposed adaptive realization can be easily
extended to more zero moments.

C. Adaptive dual lifting step

Let the high-pass filter have at least 2 vanishing moments.
From Figure 1, equations (11.2), (I1.4) and N=3 we have
following expressions for the first 2 zero moments of the
low-pass filter:
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Again, the linear phase condition reduces expressions (11.7)
to X0z t = 1/4. Now, we express #; from the rest of update
filter coefficients. Then, we repeat the procedure for 4 and 6
zero moments of the low-pass filter, times all switch
positions me {1,2,3} of the prediction filter. The factored
results are presented in Table I1L2. Gain constants 4;
depend on switch positions of the prediction filter.
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Table 11.2. Additive components of the 6 tap update filter
with linear phase (ts=to, t4=t, t;=t,) providing 2, 4 or 6
zero moments to the low-pass filter L(z).
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Gain constants A4, are shown in the following table:

HP zeros —» 2 4 6
Ao 1 1 1
Ay 372 1 1
A, 5/3 3/2 1

Table I1.3. Gain A4; depends on the actual number of zero
moments of the high-pass filter, unless n < m.

An interesting conclusion comes from Table I1.3. If the
number of zero moments of the LP filter is less or equal to
the number of zero moments of the HP filter, 4; equals 1 for
all 7 {1,2,3}. Hence, if the number of closed switches in
the update filter does not exceed the number of closed
switches in the prediction filter, we have “independent”
lifting and dual lifting switching networks.
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Figure 3. Dual lifting step of the low-pass filter with 0, 2,
4 or 6 zero moments: bior(2xm).2xn). If n < m,
AO=A 1=A2=] .

ITI. ADAPTATION CRITERIONS AND RESULTS

At first, we will adapt the filters in order to minimize the
absolute error of the prediction. We analyze a synthetic
signal that is concatenated from 3 polynomials of different
orders. Prediction error signal is calculated as the absolute
value of the wavelet coefficients d[k]. The number of
successively closed switches m is chosen to give minimum
|d[ k]| at each step of decomposition.
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Figure 4. Top left: analyzed signal x[k], composed from 3
polynomial sections of different order {3,1,5}. Top right:
wavelet coefficients d[k] computed by adaptive filter bank.
Bottom left: number of closed switches m[k]. Bottom
right: magnified detail d|k].
We see that the adapted prediction order exactly follows the
order of polynomials. Also, we notice that the prediction
order on the interval boundaries is low, thus reducing the
spread of the wavelet coefficients. Number of closed
switches is exactly zero on discontinuities, where the filter
bank degenerates to the polyphase decomposition. The
decomposition is almost optimal, so the majority of the
wavelet coefficients d[£] is equal to zero.
The dual lifting step adapts in the narrowed range ne(0,m).
Signal DC should be preserved in the approximation
coefficients a[k]. Hence, the error signal is computed from
the high-pass filtered coefficients a[£]:
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Figure 5. Wavelet filter bank with adaptive number of zero
moments bior(2xm).(2xn), n < m.
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Due to decimation, aliasing frequency of the analyzed
signal x[k] maps to the DC component of the wavelet
coefficients d[k]. To avoid its influence on the adaptation
criterion, we may use similar high-pass filtered scheme
(Figure 5) for the lifting step, too.

The approximation coefficients a[k] are very close to
decimated version of the analyzed signal x[k] (Figure 6).
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Figure 6. Left: number of closed switches n|k]. Right:
approximation coefficients ak]|.

Now we introduce a real world signal — a short sequence of
human speech. The spoken word consists from a consonant
followed by a vowel (Croatian word “da” — means “yes”).
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Figure 7. Top left: analyzed signal x|4|: word “da”. Top
right: number of closed switches m|k]. Bottom: m[k]
adapted on interval. Left: [k—15, k+15]. Right: [£-30,
k+30].

Memoryless adaptation criterion causes intensive variations
of switches” positions ml[k] (Figure 7, top right).
Unpredictable components of the real world signal x[k]
make the adaptation algorithm switches too fast. Entropy of
wavelet coefficients d[k] increases when compared to the
fixed wavelet analysis, which is exactly the opposite of our
intention. Because of that, we use an adaptation criterion
defined on interval [k—K;, k+K,]. The number of
successively closed switches m is chosen to give the
minimum value of err[k], which is computed using
expression
k+K,

at each step of decomposition.
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Figure 8. Left: Shannon entropy of the wavelet
coefficients d[k], compared to fixed wavelets. Right:
Spectrum bandwidth of m[k]. Both variables depend on
width of the adaptation interval: K;=K,=K, width = 2K.

Now, the adaptation is slower and more accurate (Figure 7,
bottom left and right). The entropy of coefficients d[k]
computed by adaptive filter bank is better then of the fixed
banks.

We introduce the spectrum bandwidth to measure the
intensity of  the switches’ variations mlk]:
[ IM(@)*dw /| |M(@w)fde. Clearly, switch variations are
slower for wide adaptation intervals (Figure 8). The
decision on the adaptation interval width is usually a trade-
off between computational complexity and desirable
properties of the criterion.

In general, we can reconstruct the analyzed signal from
wavelet coefficients plus information on switch positions
m[k] and n[k]. They can be coded very efficiently. But, if
the adaptation criterion is causal, e.g. if the current switch
positions are determined exclusively from previous wavelet
coefficients (—K; < K, < 0), the adaptation algorithm can be
reproduced on the reconstruction side. In that case, perfect
reconstruction does not require m and » to be separately
transferred to the reconstruction side.

IV. CONCLUSION

We describe an efficient realization of the two-channel
wavelet filter bank with adaptive number of zero moments.
A set of switches determines the desired number of zero
moments at each step of decomposition or reconstruction.
We used the least absolute error criterion, computed from
filtered wavelet coefficients. Adaptive filter bank is applied
on a synthetic and a real-world signal. Wavelet coefficients
get close to what we expect to be an optimal representation
of the analyzed signal. Real world signals usually contain
non-correlated components, inherent to the observed
phenomenon or caused by additive noise. They cause
intensive variance of the filter bank switches. Adaptation on
interval decreases the variance. Described time variant
wavelet filter bank is more suitable for analysis of non-
stationary signals then fixed banks. It gives lower entropy
of the wavelet coefficients.
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