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ABSTRACT

An efficient realization of two-channel wavelet filter bank that
maps integers to integers with adaptive number of zero moments
is presented. Filters with more zero moments result in better
representation of smooth parts of the analyzed signal, while less
zero moments is better for transients and singularities. Proposed
realization is based on the lifting scheme that enables mapping
integer signals to integer wavelet coefficients, preserving perfect
reconstruction property. The realization is derived from a method
of fixed wavelet filter bank design, using Lagrange interpolation
of samples in time domain. Adaptation criterion is computed from
integer wavelet coefficients, which is under some restrictions
reproducible on the reconstruction side. Quantization introduces
non-predictable components of the wavelet coefficients, thus
influencing behavior of the adaptation algorithm. Adaptation on
interval is used to reduce variance of the filter parameters.

1. INTRODUCTION

The number of zero moments of a fixed filter bank is usually
chosen as a trade-off between filter complexity and decomposition
properties. More vanishing moments correspond to more
regularity, which results in a compact representation of smooth
and correlated parts of the analyzed signal [1]. But, longer filters
cause ripple effects on discontinuities, where shorter filters are
more suitable. We want to change the number of zero moments on
both filters in the bank at each step of decomposition. Moreover,
our goal is to map integer signals to integer wavelet coefficients,
which have important applications in lossless coding |2]. The two-
channel PR filter bank should form wavelet tree or wavelet packet
tree, so the convergence and some degree of regularity of the limit
wavelet functions and scales must remain. The adaptation
criterion is computed from the wavelet coefficients, in purpose to
achieve more compact representation of the analyzed signal. Such
time-variant decompositions are not wavelets in a strict sense,
rather a generalized wavelet construct.

Sweldens 96 [3] constructed biorthogonal wavelet filter banks
based on the lifting scheme. Odd samples are estimated from
evens using Lagrange interpolation polynomials of chosen order.
In section 2 we give the construction of the proposed adaptive
filter bank. We use variable odd order interpolating polynomials
corresponding to the even length FIR filters.

In section 3 we discuss the adaptation criterion. To ensure the
convergence and minimum regularity, filters are split in a fixed
and a variable part. Number of zero moments is adjusted to
minimize the prediction error. Quantization of the wavelet
coefficients results in non-predictable components of the signal,
causing intensive variance of filter parameters. Averaging on
interval is used to reduce the variance.

2. ADAPTIVE FILTER BANK STRUCTURE
2.1 Lifting scheme

Daubechies and Sweldens 98 [4] show that any two-band FIR
filter bank can be factored in a set of lifting steps, using Euclidean
algorithm. Polyphase matrix is factored in a cascade of triangular
sub-matrices, where each sub-matrix corresponds to a lifting or a
dual lifting step. Its all-ones diagonal form guaranties existence of
the inverse sub-matrix.
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Figure 1. Two-channel PR filter bank factored in lifting
and dual lifting steps.

Polyphase matrix IT of the filter bank from Figure 1 is factored in
2 triangular sub-matrices, prediction (P) and update step (U):

, 1 0|1 =S(2)
H(z)=U(2)-P(z) = |:T(z) 1} -|:0 ) :| .

Determinant of sub-matrices P and U is always 1, for
arbitrary transfer functions S and 7. Inverse sub-matrix is
obtained by a simple transposition followed by the change
in sign, which enables easy construction of time-variant and
non-linear PR filter banks.

H(z)=z""-1-5(z%), 2.1
L(z)=1+H(z)- T(z?). (22)

We limit to FIR lifting steps S(z) and 7(z), with 2N taps:
S(z)= S02N71 +.o. Sy +sNz*1 +---+52N7127N s (2.3)
T(z)= tozN +otSsy_z+Sy +...+32N,127N+| R 24

Prediction of odd samples from neighboring even using linear (1)
and cubic (1V) interpolation polynomials of samples is illustrated
below:
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We use prediction filters of the Lagrange interpolation type, with

even number of zero moments that change in time.



2.2 Lifting step with variable number of zero moments

We start from the filter bank structure given in Figure 1 and
equations (2.1) and (2.3). Two zero moments of the high-pass
filter require H(z),.;=0 and H (z)|..;=0, which is equivalent to
conditions X;s,=1 and X N-1-k)s;=—1/2. We express central filter
parameters from the outer ones: sy=1/2+XZ; pM(N-1-k)s;, and
Syo=12=Z(N-1-k)s;—Zr.v-15% Now, we split the prediction filter
in two additive components: fixed and “free” part: Sy=So+Stee.
where So(z)=(1+z ')/2. The same procedure is repeated for the next
pair of zero moments: H'(2)l.-1=0 and H (z)|-=0, etc. For the
simplicity, we limit ourselves to the linear phase prediction filters
with 8-taps (N=4). The results are presented in Table 2.1.
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Table 2.1. Additive components of the 8 tap linear phase
prediction filter (S7=So, S6=S1, §5=S2, S4=S3) prOViding 2, 4-, 6
or 8 zero moments to the high-pass filter H(z).

Prediction filter is always a sum of additive components: e.g.

Sii=Sp for 2 zero moments, Syy=S¢+S, for 4, or Sy=Sy+S+S,+53
for 8 zero moments.

Additive components can be factored and realized in a cascade:

1 |
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Finally, the proposed realization of the lifting step is shown in
Figure 2. Successive closing of switches S5, Sy, Sys and Syg
gives 2, 4, 6 or 8 zero moments of the high-pass filter,
respectively. It corresponds to the prediction of odd samples from
neighboring even samples, using linear, cubic, 5™ or 7" order
polynomial interpolation.

2.3 Dual lifting step with variable zero moments

Let the high-pass filter has at least 2 vanishing moments. From
equations (2.2) and (2.4) two zero moments of the low-pass filter
lead to conditions L(z)|.-1=0 and L (z)|.-1=0, or, in terms of filter

parameters, X;2,=1/2 and X N—k)t,=1/4. Again, we express central
filter parameters from the outer ones: ty_ =1/4-2;.n | (N=k)t;, and
tn=1/4+2 ) (N=k)t,—Zi.y 4. Update filter is split in two additive
components: fixed and “free” part 7o5+7ee. Where 7o(z)=(z+1)/4.
We repeat the procedure for 4, 6 and 8 zero moments of the low-
pass filter, times all switch positions me{1,2.3,4} of the
prediction filter. The factored results are presented in Table 2.2.
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Figure 2. Lifting step of the high-pass filter with 0, 2, 4, 6
or 8 zero moments: bior(2xm).0.
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Table 2.2. Additive components of the 8 tap update filter
with linear phase (¢7=ty, ts=t,, ts=t», t;=t;) providing 2, 4, 6
or 8 zero moments to the low-pass filter L(z).
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Figure 3. Dual lifting step of the low-pass filter with 0, 2,
4, 6 or 8 zero moments: bior(2xm).(2xn). If n < m,
A0=A 1=A2=A3=1 .




Gain constants 4; depend on the number of zero moments of the
HP filter, which is shown in the following table:

HP zeros — 2 4 6 8
Ay 1 1 1 1
A, 3/2 1 1 1
A, 5/3 3/2 1 1
As 7/4 32 372 1

Table 2.3. Gain 4; depends on the actual number of zero moments
of the high-pass filter, unless n < m.

From Table 2.3 we conclude that if the number of zero moments
of the LP filter is less or equal to the number of zero moments of
the HP filter, 4, equals 1 for all i=0-3. Hence, if n < m — we have
independent lifting and dual lifting switching networks. If we
want more vanishing moments for the LP filter, we use the same
FB structure with alternate signs of additive components. In that
case LP and HP filter exchange their places.

3. Adaptive FB that maps integers to integers

To preserve convergence and minimum regularity of the
generalized limit functions, as well as to split the FB in basic HP
and LP channels, we fixed 2 vanishing moments on both filters.
Thus, switches S,,; and 7),, are always closed. Of course, the
bound between fixed and variable part of the filter bank can be
arbitrary positioned.

We introduce quantizers to achieve mapping of integer signals to
integer wavelet coefticients:

X(z) @ @D A(2)

1427

1/2

G

Figure 4. Wavelet filter bank that map integers to integers
with adaptive number of zero moments (2xm).(2xn), n<m.

O can be any operator that maps real numbers to integers, either in
uniform or non-equidistant way. Identical operator on the
synthesis side ensures perfect reconstruction. We used
O(u)=int(u+1/2).

In purpose to change the number of zero moments, we derived an
error signal from wavelet coefficients d|k] or a|k]. The adaptation
criterion sets the switches to minimize the sum of absolute
prediction errors, on interval [k—K;, k+K,| around observed .
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Depending on interval bounds, we deal with memory-less
(K1=K»=0), causal (K;>0, K,<—1) or non-causal (e.g. K=K,>0)
adaptation criterion. In general, we can reconstruct the analyzed
signal from wavelet coefficients plus information on switch
positions m[k] and n[k]. They can be coded very efficiently. But, if
the adaptation criterion is causal, e.g. if the current switch
positions are determined exclusively from previous wavelet
coefficients, the adaptation algorithm can be reproduced on the
reconstruction side. Then, m and » must not be separately
transferred to the reconstruction side.

It is useful to exclude DC component from the wavelet
coefficients: it originates either from aliasing or from DC
component of the analyzed signal. To avoid its influence on the
criterion, high-pass filtered wavelet coefficients may be used as
the error input of the adaptation algorithm (Figure 4, where F(z)
= Fr(z)=1-zY).

We analyzed a test signal x[k] composed from 4 polynomial
sections of increasing order (1,3,5,7), uniformly quantized in 16
bits (Figure 5).
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Figure 5. Analyzed 16 bit integer signal x[k], composed
from 4 polynomials of increasing order (1.3.5.7).

Figure 6 shows details of signal x|k] computed by fixed integer
wavelets with 2 and 8 vanishing moments (switches S,4, S, and
Sy all open or closed). Two zero moments are not enough for
efficient representation of the high order polynomials, while 8
zero moments introduce ripple near polynomial edges. Minimum
variance of wavelet coefficients is =1, due to quantization effects.
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Figure 6. Integer details d|k| computed by fixed wavelet
filter bank. Left: 2 zero moments. Right: 8 zero moments.

In Figure 7 details d[k] are obtained by adaptive FB. Most of the
wavelet coefficients are zeroed (£1), while there is no ripple near
discontinuities.
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Figure 7. Integer details d[k] computed by wavelet filter
bank with variable number of zero moments: 2—8.
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Figure 8. Number of closed switches m|k| for different
number of quantization levels. Top left: adaptation for
continuous signal. Top right: 20 bits. Bottom left: 16 bits.
Bottom right: 12 bits.
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Figure 9. Number of closed switches m|k| for different
adaptation intervals. Top left: memory-less criterion. Top
right: K;=K,=1. Bottom left: K;=K,=10. Bottom right:
K=K,=25.

Decomposition is almost optimal for continuous signal — the
number of zero moments chosen by the adaptation criterion

follows the properties of the analyzed signal x|k]. Filter order is
low on polynomial edges thus decreasing the ringing effects. On
the other hand, quantization introduces unpredictable components
of the analyzed signal. It “confuses™ the memory-less adaptation
algorithm, especially for coarser quantization (Figure 8). Better
results are achieved if the adaptation algorithm on interval [k—K|,
k+K,| is applied (Figure 9).
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Figure 10. Left: number of closed switches n|k| of the LP
filter (K,=K,=25). Right: approximation coefficients a|k|.

Approximation coefficients are almost undistorted (but decimated)
version of x[4].

4. SUMMARY

We give an efficient realization of the two-channel wavelet filter
bank that maps integers to integers, with adaptive number of zero
moments. A set of switches determines the desired number of zero
moments at each step of decomposition or reconstruction. With
some limitations (n<m), the same structure can be used to enable
simultaneous adaptation of both filters in the bank. We used the
least absolute sum criterion, computed from filtered wavelet
coefficients. Adaptive filter bank is applied on a synthetic signal.
Wavelet coefficients get close to what we expect to be an optimal
representation of the analyzed signal, especially if the number of
quantization levels is high. Quantized signals contain non-
predictable components that cause intensive variance of the switch
positions. Averaging of the error signal on an interval decreases
the variance. Described time variant wavelet filter bank is more
suitable for analysis of non-stationary signals then fixed banks.

It is shown that wavelet FB-s that map integers to integers have
advantages in applications such as lossless compression [2]. Filter
banks that change the number of zero moments in purpose to
adapt to the signal properties may outperform fixed FB-s.
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