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Abstract: This paper describes an open source navigation system architecture for use in
autonomous underwater vehicles. It is based on the Mission Oriented Operating System
proposed, published and programmed by (Newman (2006), Newman (2008)). It is uniquely
applicable for work-in-progress type and development-stage software and capability installation
onto an AUV system. This applicability is achieved by its completely modular nature, which is
obtained by the operating system kernel running separate processes for each advanced navigation
or control feature. Robustness is also achieved in this respect since failures and errors will cause
only the individual modules that incurs them to fail. Such critical errors, bugs and failures will
thereby be contained and their propagation halted from completely freezing even the low-level
control loops and decision-making processes needed to successfully retrieve the malfunctioning
AUV.
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systems, concurrency control.

INTRODUCTION

The Mission Oriented Operating Suite (MOOS) was orig-
inally proposed by Newman (2006) and developed for
research in behavioral control paradigms in room (closed
spaces) robotics. Conceived with that niche in mind, it is
a system that leverages advanced capabilities of the em-
bedded controller across the ease of design of complicated
and emergent behaviors, intelligent decision-making and
state-machine programming. More specifically, it presup-
poses the existence of operating system kernel routines
or dedicated middleware drivers to handle protocols like
Ethernet, Bluetooth, IEEE 802.11b/g etc.

This greatly facilitates the use of this framework in one’s
own prototyping work, which comes down to a natural high
level of abstraction when coding. A further strong suit of
the MOOS framework is intuitive encapsulation of hier-
archical and flow-diagrammatic ideas (familiar to control
system engineers) into modules that a software engineer
or a software designer is required to code. Although orig-
inally the AUV embedded controllers, especially those of
experimental craft in the early 80’s, would not have come
pre-programmed with high levels of abstraction of certain
services (Ethernet connectivity, WLAN connectivity etc.)
nowadays the situation is markedly different. Use of the
Ethernet protocol to connect arrays of sensors, or he use of
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USB ports with their ability to provide limited power has
proliferated. This is allowing the AUV system designers to
complement the use of the more classical communication
protocols like the serial connection and/or CAN with these
new and more easily programmed services.

The cross-AUV architecture proposed by the authors, and
tested out on the Hydroid Remus vehicle operated by
the Center for Autonomous Underwater Vehicle Research,
Naval Postgraduate School, Monterey, USA (Healey et al.
(2007)), is further detailed in Section 1: The Navigation
System Architecture. The highest level of the navigation
system architecture, the online trajectory replanner based
on the virtual potentials method (Healey (2006), Barisic
et al. (2007), Barisic et al. (2007)) is described in Section
2: The pVPMPlanner Module. Results of a hardware-in-
the-loop simulation and verification run of the proposed
system are provided in Section 3. The paper is concluded
in Section 4.

1. THE NAVIGATION SYSTEM ARCHITECTURE

As stated in the Introduction, MOOS is a well-balanced
framework for rapid prototyping of AUV control solutions.
On one side, it decreases the time needed to prototype
navigation systems with complex behaviors, intelligent
decision-making and optimal use of the AUV resources.
On the other hand, it remains true to ANSI C++ coding
standard. The importance of the latter is that this makes
it a desirable cross-platform solution. Also, this allows the
designer to tap into the vast codebase of already existing



piecewise solutions, coded in C++, a penultimate industry
standard. However, it comes at a cost – the reliance on pre-
existing class frameworks and vendor-provided APIs. The
MOOS classes to be inherited when coding rely heavily on
header libraries, pre-compiled dynamically linked libraries,
middleware software and drivers for an interface with ac-
tuators, sensors and low-level embedded processing (DSP
chips, FPGA etc.). This introduces complexity, lengthens
the run-time stack and piles context/namespace data on
the memory heap. Consequently, the MOOS kernel and
the central module, the MOOSDB, is only able to support
relatively low sample rates. Additionally, the nature of
the MOOS kernel (if used as-is) precludes hardware-level
enforcement of an elective sample time. The messaging
system, which in MOOS serves as the one and only syn-
chronization mechanism, is in no way related to the hard-
ware clock.

Most AUVs, however, operate with sample times of ca.
10Hz. Most processors used in embedded controllers, on
the other hand, have clock frequencies in the 100 –
1000MHz orders of magnitude. This allows for literally
billions of low-level instructions to be carried out within
one sample time of the AUV systems (i.e. several hundreds
of lines of ANSI C++ code). The ability of the embedded
system to process such a large number of commands in
a single sampling period, decreases the influence of the
aforementioned hardware non-enforceability of the sample
time to virtual non-existence.

The choice of MOOS (current version is described in New-
man (2008)) as a navigation system architecture frame-
work does pose some requirements on the AUV’s em-
bedded control system. It is critical that the embedded
control system be a programmable and fully accessible
(administrable) PC-standard computer running a unixoid
operating system kernel (preferably a Linux kernel). Alter-
natively, it must be able to accept machine code compiled
by the GNU C / C++ compiler commonly shipped and
bundled with Linux distributions. This means that some
minimum level of compatibility between the embedded sys-
tem and a unixoid -kernel-running PC-standard computer
must exist, or be emulated in some way (e.g. ability to run
POSIX threads).

MOOS functions primarily as a set of the following:

• A ready-made class hierarchy to enable simple appli-
cation development by inheriting either the CMOOSApp
class for MOOS modules, or the CMOOSInstrument

class for MOOS instruments.
• A ready-made application running the MOOSDB, a

MOOS database server that collects, collates, indexes
and distributes CMOOSMsg-class messages from one
process to the others.

• A set of coding conventions, naming conventions
and best practice examples that allow for human-
readable, intuitive and clear code that is easy to
distribute within the developers’ community.

MOOS supports a fundamentally star-shaped client-server
topology, where a set of applications and instruments com-
municate with a server in order to publish or read messages
containing either string or double-precision floating point
data.

MOOS applications are stand-alone processes callable in-
dividually and built into .exe files. When built, they
can be shipped out and reused on different systems as-is.
The system where a particular application is to be used,
naturally, needs to operate a MOOSDB server handling the
type of messages that the application expects and on the
basis of which it performs its functions.

MOOS instruments are a specific type of applications that
interface, through a variety of developer-coded methods,
functions and calls, with hardware connected to the com-
puter where this “instrument” application is running. The
CMOOSInstrument class is therefore used to encode an
interface between the MOOS star-shaped topology and
either the actuators or the sensors of the AUV.

Within the authors’ research group, a customized Hydroid
Remus vehicle was used as a research platform for the
proposed MOOS control system. The vehicle is displayed
in figure 1. It is actuated by a classical three-leaved
propeller thruster astern and a course rudder in the
back, as well as depth control vanes. Its proprioceptive
sensors include an inertial measurement unit, a Doppler
velocity logger, a short baseline hydroacoustic positioning
system, a GPS when in surface cruise and a 3-axial
magnetic compass. Its perceptive sensors is a made-to-
order BlueView 900kHz multi-beam forward-looking unit
with an embedded computer pulling data off of six separate
sonar transducers.

Fig. 1. The Hydroid Remus vehicle.

All of the proprioceptive data are collated and filtered
with a Kalman filter aboard a black-box, non-accessible
embedded computer system that encapsulates the basic
functionalities of the vehicle. This primary computer,
which cannot be tampered with, is supplemented with
a secondary PC-104 computer stack that is developer-
administrable, and is running a Kubuntu Linux operating
system, the MOOSDB and all developed applications and
instruments. The primary computer communicates with
this secondary computer through a simple set of string
messages piped through an RS-232 serial communications
port. The incoming serial communication is accepted, bro-
ken down and re-parsed as CMOOSMsg-class messages by the
iRemus instrument application. In this way, the navigation
data of the Remus are made available to higher-level func-



tionalities coded in the developed CMOOSApp applications
(modules). Alternatively, the iRemus instrument logs all
incoming messages published via the MOOSDB by modules
intending to guide the vehicle, extracts the necessary nu-
merical information (the channel feeds) and pipes it in
required format through the serial port to the primary.

The basic architecture of the proposed navigation system
is displayed in figure 2.

Fig. 2. The MOOS-based navigation system architecture.

The pAntler module is the one that is run initially and
that is a short “starter” application which assures that the
MOOSDB server and all applications start as close to contem-
poraneously as possible (rather than applications being
started by a human operator). Also, more importantly,
pAntler reads from a UTF-8 textual script which an
experimenter uses to specify the parameters and starting
option of every module that is being started. The example
of a starting script is given in table 1.

After pAntler has sequentially run all the applications,
each proceeds with its own OnStartUp and OnConnect-
ToServer methods. The first process rectangle within
each application in figure 2 is the OnStartUp which is
used in a unique way by different applications. Usually,
this method is responsible for reading scripts containing
default settings, loading pre-existing data from certain files
and ascertaining all dynamically linked libraries, ports,
threads, pipelines and other functionalities are present and
running as is necessary before each application is able
to proceed. In OnConnectToServer (the second process
rectangle within each application in figure 2), each module
uses a sequence of Register methods to register which
messages it will trigger to. The triggering is then taken
care of by CMOOSApp-encapsulated code of the OnNewMail
function (represented by the right-alligned, short process
rectangles in each application in figure 2).

From the developer’s point of view, the OnNewMail
method of each application is started asynchronously in
an encapsulated, black-box manner. It is entered into
asynchronously, depending on each particular module’s
message subscription. The instant at which the method
is entered into is determined by the “tick” of the MOOSDB

Table 1. Example of a starting script used by
pAntler.

ServerHost = localhost

ServerPort = 9000

Simulator = true

Community = remus

LatOrigin = 36.6284333

LongOrigin = -121.9119833

//------------------------------------------

// Antler configuration block

ProcessConfig = ANTLER

{

MSBetweenLaunches = 200

Run = ./MOOSDB @ NewConsole = true

Run = ./iREMUS @ NewConsole = true

Run = ./pEchoVar @ NewConsole = true

Run = ./uXMS @ NewConsole = true

Run = ./iRemote @ NewConsole = true

Run = ./pVPMPlanner @ NewConsole = true

Run = ./pFLSim @ NewConsole = true

}

//------------------------------------------

//iREMUS config block

ProcessConfig = iREMUS

{

AppTick = 10

CommsTick = 10

Port = /dev/ttyS1

BaudRate = 57600

Streaming = true

Type = AUV

Resolution = .1

}

server’s synchronization mechanism, if new messages of the
type to which an application has subscribed are present
since the last synchronization.

From then on, (notwithstanding explicit code inserted by
the developer in his own application class inheriting from
CMOOSApp) each application enters an infinite loop of calls
to the Iterate method. This is represented by a uniform
progression of process rectangles in each application track
in figure 2. The loop of Iterate -s is escapable by a
interrupt-like mechanism which a developer of every sane
application within the MOOS navigation architecture is
responsible for.

Typically, each application uses its OnNewMail to simply
make an application-local copy of pertinent data encoded
in the CMOOSMsg-class message, which can then be accessed
in the Iterate method.

2. THE PVPMPLANNER MODULE

The pVPMPlanner module is an implementation of the
trajectory-planning framework proposed in Barisic et al.
(2007) and Barisic et al. (2008). The brief layout of the
mathematics of the virtual potential (decentralized control
function-based) method of planning the trajectory of an
underwater vehicle follows:
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Where:
- E (p) is the artificial potential field arising due to the
interaction of obstacles and the current waypoint,
- Es (p) is the static part of the potential contribution of
each feature (obstacle or waypoint, defined by (2),
- Er (p) is the rotor part of the potential contribution of
each feature, calculated as a “slanted potential tableau”
of a gradient dependent on the proximity of the feature,
and the direction as laid out in figure 3 (details in Barisic
et al. (2008)),
- fobj is the function that encodes both the static and rotor
part of the potential distribution of each object,
- fs is that part of the function describing the spatial
distribution of the static part of the potential,
- fr is that part of the function describing the spatial
distribution of the rotor part of the potential.

The static part of the obstacles’ potential distribution
function is given by:

f (obj)
s = exp

(

A+/d (p, pobs)
)

− 1 (2)

Where:
- A+ is a method-independent parameter describing the
severity of the obstacle’s repulsion,
- d (p(k), pobs(k)) is the Euclidan geometric distance at
time instant k, between the AUV (p(k)), and the repre-
sentative point of the obstacle, dependent on its class (a
vertex, barycenter, of an obstacle of one of the classes: rect-
angle, circle, ellipse, triangle etc.); This distance is encoded
as a protected method overriding the abstract method of
the superclass Feature for each particular subclass.

Fig. 3. The calculations determining the direction of the
“spinning top” tableau of rotor potential around a
rectangular obstacle.

Taking all of the above into account, the controlling force,
a quantity that, with idealized double-integrator model of
the AUV’s dynamics, its thrusters would ideally need to
reproduce to move the AUV along this optimal trajectory,
is calculated as follows:

F = bound
{

max
i

[

E (p) − E
(

p(i)
ε

)]

− µ · v, Fmax

}

(3)

Where:
- bound

{

R
n, R+

0

}

denotes a function of bounding a vec-
tor’s norm, bound {a, amax} = a/ |a| · amax.

This controlling force is decomposed into the control feeds.
The feeds are forwarded through CMOOSMsg-class message
objects posted on the MOOSDB server by the pVPMPlanner

application and picked up by the iRemus application de-
scribed in the previous section. They consist of a deriva-
tive, proportional and integral feeds for both of the speed
and course commands, {(ac, vc, Isurge) , (αc, ωc, φc)}:

v(k) = bound

[

T · (F (k − 1) + F (k))

2
+ v(k − 1), vmax

]

vc = 〈vc, ê1〉 · ê1 + 〈vc, ê2〉 · ê2

vc(k) = 〈v(k), ê1〉 (4)

Where:
- v(k) is the idealized speed vector,
- (ê1, ê2) are an orthonormal basis defining the orientation
of the AUV’s coordinate system in the Earth-fixed coordi-
nate system,
- 〈·, ·〉 is the scalar product of two vectors, 〈a, b〉 = |a| ·
|b| · cos∠ (a, b),
- vc(k) is the helm speed command at time k for the AUV.

ac = |F (k)| (5)

Where:
- ac(k) is the derivative channel (acceleration) of the helm
speed control subsystem at time k.

φ(k) = atan2 (v(k)) (6)

Where:
- φ(k) is the course command at time k,
- atan2(·) is the four-quadrant arc-tangent in an Earth-
fixed coordinate system.

Isurge = |p(k) − pc(k)| (7)

Where:
- p(k) is the actual position vector of the AUV,
- pc(k) is the commanded or idealized expected position
of a double-integrator dynamic model of the AUV.

ωc(k) =
[φc(k) − φ(k − 1)]

T
(8)

Where:
- φc(k) is the course command at time k,
- φ(k − 1) is the actual course of the AUV at time k − 1,
- ωc(k) is the yaw-rate command at time k.

r(k) =
ω(k)

v(k)
(9)

Where:
- ω(k) is the actual measured yaw-rate of the AUV at time
k,
- v(k) is the actual measured speed of the AUV at time k,
- r(k) is the turning radius of the AUV at time k.

αc(k) =
r(k) · ac(k) − vc(k) · [r(k) − r(k − 1)] /T

r2(k)
(10)

Where:
- αc(k) is the derivative channel of the yaw-rate control
subsystem at time k.



In order for potential functions to be calculated, as re-
quired by equation (1), the pVPMPlanner module contains
the representation of the collection of obstacles. These
are read from the MOOSDB server, where they are asyn-
chronously posted in real time by the pFLSonar mod-
ule. The messages contain a mathematical description of
bounding boxes of perceived obstacles with four degrees
of freedom, the {x, y, z} vector of the barycenter of the
cuboid and the rotation about the Z axis of the external,
Earth-fixed reference frame, φ, according to figure 4.

Fig. 4. The description of a box containing a generalized
obstacle with four degrees of freedom in the 3D
mission space.

The boxes are “flattened” in 2D since this version of the
pVPMPlanner plans trajectories at constant depth, in order
to produce a virtual potential object with the potential
distribution function represented in figure 5.

Fig. 5. The rectangle potential distribution function of the
form frect = exp (A+/d(p, pbc)) − 1.

All of the above functionality is implemented in a class
called VPMPlanner of which the class inheriting CMOOSApp,
pVPMPlanner, is just a thin wrapper to allow the planner
to function within the MOOS paradigm. In the following
paragraphs, teletype text will be used for class names,
emphasized teletype for method names and emphasized
roman text for variable (object) names.

The collection of all perceived rectangles of this form is
encoded by an object TheWorld of the class World. This
class inherits from Feature, adding to the realization of
Feature a protected variable Registry, which is a vector
of records vector<sRecord>, with sRecord being a struc-
ture with the fields {sFeatureName, pFeaturePrototype}.
sFeatureName is an identifier string (e.g. “Circle”, “Rect-
angle”, “Triangle”), and pFeaturePrototype is a pointer to
a prototypical feature. By calling any one of the related
family of overloaded methods PutFeature , a feature of a
certain type is instantiated. This is achieved by clone -ing

the prototype pointed to by pFeaturePrototype and the
new instance pushed on top of the collection composition
defined in the superclass Feature. Every World-class ob-
ject is considered to be uninitialized before at least one
type of feature has been registered. This needs to be
performed by whichever class instantiates a member of
the World class before this user class can correctly used
the World thus instantiated.

In addition to the TheWorld object, the VPMPlanner in-
cludes an instance of a further sub-class of the World class,
Itinerary – TheItinerary. This overrides the potential
method inherited all the way down from the grandparent-
class Feature so that only the potential contribution of the
current waypoint is returned, rather than the sum over
the collection composition, which is the default realiza-
tion of Feature:potential . However, before returning
a value, the method potential uses the public method
distance to check if the current position of the AUV
is such that in stead of the current waypoint(accessible
through the protected iterator itrGP), the next waypoint
in the Itinerary should be used (by incrementing itrGP
if necessary, prior to returning *itrGP→potential ). The
change in the itrGP is invoked by distance when the
AUV enters within d meters of the current waypoint. The
list of these “triggering” distances is kept in a protected
collection of the type vector<double>, trigDs . This vector
is insert -ed into by calling Itinerary:PutFeature .

3. HARDWARE-IN-THE-LOOP SIMULATION

The system was first tested for sanity and functional
operability by a hardware-in-the-loop test. Hydroid’s off-
the-shelf interfacing software that reads data directly from
the primary, programmatically non-accessible computer of
can be used to order the Remus to simulate cruise and
operation while on dry land.

Due to the fact that the BlueView sonar head does not
function out of water, the pFLSonar module displayed in
figure 2 was replaced by a similar module pFLSim. This
altered module interpolates the craft’s position within
a script-defined virtual mission space. The module then
delivers simulated data on obstacles in real-time, based
on a textual script. Using such a setup, the mission space
displayed in figure 6 (in stead of depth, potential is the
third axis, since the problem was constrained to 2D) was
preprogrammed.

Fig. 6. The preprogrammed mission space with obstacles.



The results of simulated cruise (from the standpoint
of the MOOS part of the system and specifically the
pVPMPlanner, the situation is completely the same as if the
AUV was actually cruising in open water) are displayed in
figure 7.
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Fig. 7. The resulting trajectory.

4. CONCLUSION

A navigation system architecture relying on the Mis-
sion Oriented Operating Suite (Newman (2006), Newman
(2008)) was proposed, implemented and tested for sanity
and functional operability in hardware-in-the-loop simula-
tion mode. The results are satisfactory, with the MOOSDB

server performing well and assuring synchronization and
controllability of the Remus craft. Logging and storing
of both the proprioceptive data (navigation fixes, speeds
and accelerations in AUV-fixed coordinate system), and
the perceptive data (sonar readings of box-enclosed obsta-
cles throughout the navigated part of the mission space)
is easily achieved by the pLogger ready-made module
shipped with the MOOS infrastructure. Renavigation in
water, or in different scenarios, for purposes of analysis is
possible even without the pVPMPlanner. This is achieved
by “replaying” data obtained by the pLogger and stored
in a UTF-8 textual file – essentially parsing it back into
messages assuring the exact same time sequence. Compu-
tational load on the secondary computer installed aboard
the Remus, incurred by running the pVPMPlanner and
pFLSonar is light enough that both can perform in real
time in actual water experiments.

Further work will consist of:

• Running a water experiment,
• Proposing and implementing a scripting language for

defaults and presets for all modules involved modeled
after an XML schema,

• Implementing a network-oriented application for re-
mote interfacing, display, renavigation and post-
experimental measurement and visualization from
distant locations.

This will rely on the use of a “bridge” between
the Remus’ off-the-shelf Ethernet switch used for ac-
cessing the secondary and primary computers, and
a broader network (institution’s LAN or even Inter-
net). In preliminary scenarios, this is simply a laptop
computer connected physically to the Remus’ switch

with one Ethernet port and running a 3G cellular
model connecting to a commercial service at the same
time. This commercial service can be used together
with VPN software to enter the institution’s domain
through the Internet as a peer on a local network.
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