
AN ONLINE AUV TRAJECTORY

RE-PLANNING SOFTWARE

ARCHITECTURE BASED ON THE

MOOS
⋆

Matko Barisic ∗ Sean P. Kragelund ∗∗ Theodore D. Masek ∗∗

Zoran Vukic ∗

∗ University of Zagreb, Faculty of Electrical Engineering and
Computing, Laboratory for Underwater Systems and Technologies,
Unska 3, HR-10000 Zagreb, Croatia (e-mail: matko.barisic@fer.hr,

zoran.vukic@fer.hr).
∗∗ Naval Postgraduate School, Mechanical and Astronautical

Engineering Department, Center for Autonomous Underwater Vehicle
Research, 700 Dyer Rd., Monterey, CA 93940, USA (e-mail:

spkragel@nps.edu, tmasek@nps.edu)

Abstract: This paper discusses an open source navigation system architecture uniquely suited
to use in autonomous underwater vehicles. It is based on the Mission Oriented Operating System
developed by Newman (2006), Newman (2008). Some of its most pronounced advantages are
an orientation towards providing a tool set for rapid prototyping of new control algorithms
and support for development-stage software design in AUV systems. Its advantages are a direct
result of the MOOS’s completely modular nature, and the presented architecture has been built
to preserve and, where possible, enhance this modularity. Using the MOOS design templates,
control algorithms are encoded as applications “living” in separate processes of the operating
system kernel. This methodology provides for a level of robustness instrumental in autonomous
vehicle since failures and errors will cause only the individual modules that incur them to fail and
corresponding processes to be “killed” by the operating system. Such critical occurrences will
thereby be contained and their propagation halted from completely freezing even the low-level
control loops and decision-making processes needed to successfully retrieve the malfunctioning
AUV.

Keywords: Microcomputer-based control, computer architectures, computer controlled
systems, concurrency control.

INTRODUCTION

The Mission Oriented Operating Suite (MOOS) was origi-
nally developed by Newman (2006) within research efforts
in behavioral control of closed-space robotics. It represents
a collection of code-design templates and classes which
allow for the building of a software system consisting of
a number of communicating controller strategies, in turn
producing emergent behaviors, and allowing for intelligent
decision-making. The MOOS is assumed to be built on top
of a kernel that “abstracts away” the intricacies of sending
and receiving data packets via consumer-grade computer
communication protocols like Ethernet, Bluetooth, IEEE
802.11b/g etc.

The encapsulation provided by the MOOS design patterns
greatly facilitates rapid prototyping. It should be remem-
bered that the rapid prototyping paradigm heavily relies

⋆ This research was made possible by a financial grant for a study

tour in the USA provided by the “Unity Through Knowledge Fund”

of the Ministry of Science, Education and Sports of the Republic of

Croatia.

on the representation of “machine-near functionalities” at
lower levels of abstraction as “black boxes”, offering the
capability of easy and fast redesign by reshuffling these
functionalities by readable, sparse and near-English code
(or visual block-programming). For architectures devel-
oped on MOOS design patterns, this translates into the
natural expression of hierarchical and flow-diagrammatic
ideas (familiar to control system engineers), and easy
production of modules without prohibitive amounts of
protocol- or platform-specific code. The architecture in
stead relies on APIs to various installed sensors and ac-
tuators (or actuator control middleware) to provide the
platform-specific functionality. This assumption might not
have been fulfilled by experimental AUV craft first ap-
pearing in the early 80’s. Nowadays, the situation, even in
the off-the-shelf AUVs’ market is markedly different, with
almost all sensors being “smart” i.e. coming equipped with
dedicated strapped-down single-board computers serving
as programmable interfaces. These allow flexible, open
source access to sensor’s advanced functionalities and rudi-
mentary signal processing. Also, communication pipelines
used to transmit data from the smart sensors to the cen-

tral processor can be dynamically opened, closed, resized,
paused, played or stopped. Use of the Ethernet protocol
to connect arrays of sensors mutually, or connect star-
shaped configuration of smart sensors to the central pro-
cessing node is fast becoming an industry standard. Use
of USB ports and IEEE1394 (FireWire) is also growing. If
the architecture chosen to run high-level mission control
functions were not to abstract this layer of system design,
it would be expensive, unscalable and too complicated to
program network functions and get data flowing through
various competing protocols.

All of the above withstanding, the choice of MOOS (cur-
rent version is described in Newman (2008)) as a navi-
gation system architecture framework does prejudice the
choice of components and the embeddd hardware design
of the AUV’s control system. The embedded control sys-
tem must be realized as a fully programmable and ad-
ministrable PC-standard computer. The operating system
(although Windows-based builds of MOOS exist) should
preferably be unixoid (a Linux kernel was used by the
authors). Alternatively, if a different OS build of MOOS
is used, a minimum level of compliance of the compiler
to be used on the OS of choice with some standard GNU
C / C++ Linux compiler (gcc) features is mandatory. An
example of just such a functionality that should be assured
(or emulated) is e.g. ability to run POSIX threads.

The details of a cross-platform architecture suited to the
use in different AUVs, proposed by the authors is further
detailed in Section 1: The Architecture. Such an archi-
tecture, was employed in use in a Hydroid Remus vehicle
operated by the Center for Autonomous Underwater Vehi-
cle Research, Naval Postgraduate School, Monterey, USA
(Healey et al. (2007)), to program the online trajectory
replanner based on the virtual potentials method (Healey
(2006), Barisic et al. (2007), Barisic et al. (2007)) with
further refinement following the propositions set out in
Barisic et al. (2009). This MOOS module is described in
Section 2: The pVPMPlanner. Experimental results are pro-
vided in Section 3. The paper proceeds to the Conclusion
and the Acknowledgments, as well as a list of References.

1. THE ARCHITECTURE

Continuing on from the Introduction, MOOS is a balanced,
polyvalent framework for rapid prototyping of layered and
multi-path AUV control systems. It greatly facilitates the
rapid programming of complex software patterns that
enable intelligent and robust control by decreasing the
time needed to build the class hierarchy to access various
AUV resources, such as actuators and sensors, and pro-
vide multi-threaded, contemporaneous running environ-
ment for complex calculations. It provides all of this while
staying true to the ANSI C++ coding standard, thereby
ensuring cross-platform compilability. Also, reliance on
strict ANSI C++ standards in calling conventions, naming
standards and type support, allows for easy, “off the shelf”
exploitation of a large pre-existing codebase of problem-
focused solutions and algorithms. However, this strategy
incites a cost – the clarity, efficiency, conciseness and
parsimony of the code, leading to robust and fast run-
time behavior are very much influenced by the quality of
pre-existing class frameworks for more specific functions of

the AUV’s subsystems, as well as ease of access to vendor-
provided functionality via APIs. Use of advanced hardware
or middleware resources relies heavily either on use of
third-party software, drivers or interface, or requires a pro-
longed effort to code such “pipelines” or interface from the
ground up, in order to make efficient and robust, memory-
sparse use of actuators, sensors and low-level embedded
processing (DSP chips, FPGA etc.). However elegantly
done, this inevitably introduces complexity, lengthens the
run-time stack and piles context/namespace data on the
memory heap. In order to make space for supposed heavy-
duty processing, adaptation and random memory access,
the MOOS kernel and the central module, the MOOSDB,
allowing for the “backbone” information exchange proto-
col, only supports relatively low sample rates – up to 50Hz.
Additionally, the nature of the MOOS kernel downloadable
as-is is not adapted to hardware-level enforcement of an
elected sample time (so-called “hardware-level hard real
time”). The messaging system, which in MOOS serves
as the one and only synchronization mechanism, is, by
extension from the TCP wherefrom it draws inspiration
and on top of which it builds, is in no way pegged against
the hardware clock (the oscillator).

Most AUVs, however, belong to the class of low sample
rate control systems, operating at sampling frequencies of
ca. 10Hz. In contrast, the processors used in embedded
controllers of such systems have oscillators running at the
frequencies of the 100 – 1000MHz orders of magnitude.
This gives the embedded computer the ability to perform
billions of low-level instructions within one overarching
sample period of the primary control loop (roughly equiv-
alent to several hundreds of lines of ANSI C++ code).
The effect this has on the real-time quality of even such
an architecture as MOOS, which is not strictly hardware-
enforced, is that it can robustly and safely be assumed to
always be on time and truly real-time w.r.t. to all necessary
control functions.

Regardless, the choice of MOOS (current version is de-
scribed in Newman (2008)) as the architecture framework
does condition the engineering considerations when plan-
ning, commissioning and running the embedded control
system of the AUV. It is implicit in setting up a MOOS
environment that it runs on a programmable and fully
accessible (administrable) PC-standard computer running
a unixoid operating system kernel (preferably a Linux
kernel). At the very least, the operating system must be
able to accept and run machine code compiled by the GNU
C / C++ compiler commonly shipped and bundled with
Linux distributions, thereby providing a minimum level of
unixoid compatibility (e.g. ability to run POSIX threads).

MOOS in effect is a collection of the following, offering
the complete spectrum of implementation tools for a
dedicated, individualized control system of an AUV:

• A class hierarchy enabling simple inheritance-driven
application development by inheriting either from
the CMOOSApp class for MOOS modules, or the
CMOOSInstrument class for MOOS instruments.

• An open-source complete application running the
MOOSDB, a MOOS database server that collects, col-
lates, indexes and distributes CMOOSMsg-class mes-
sages from one process to the others.

• A portfolio of conventions on coding best practices,
including naming variables, methods, use of full vir-
tual classes, prototypes and event-driven protected
methods allowing for human-readable, intuitive and
clearly laid out code that is easy to distribute within
the developers’ community.

MOOS supports a multiple-cell topology where each cell
is star-shaped with the MOOSDB server at the hub of the
star and MOOS modules or instruments at the spokes.
Thereby, modules or instruments exchange information
exclusively via the central server, maintaining information
flow of character string or double-precision floating point
data.

Each MOOS application, which is either a module or an
insturment is a separate, stand-alone operating system
process which maintains its own dedicated heap in the
RAM memory allocated by the operating system. This
allows the application, once built into exe files, to be
“shipped out” i.e. made available for reuse, which is of
the simplest possible form – running the application as-is,
provides its functionality, with the application itself taking
over the responsibility to locate the MOOSDB server, connect
to it, subscribe to messages and post and receive messages
of certain types.

MOOS instruments, in contrast to the more generic mod-
ules, coded by inheriting from the CMOOSApp core class, are
inherited from the CMOOSInstrument class, itself a direct
inheritor of CMOOSApp, are a specific type of applications
that possess “black box” developer-provided ability to
exchange data through an RS-232 serial communication
channel. This is simply accessed in coding the AUV con-
trol system by virtue of the m Port object included in
any CMOOSInstrument or inherited class, encapsulating
behavior of a COM port. Objects of classes inheriting from
CMOOSInstrument are therefore, as a rule, used within the
MOOS architecture as “bridges” between the central, star-
shaped piece of architecture, and vendor-provided and -
specified pipelines for communicating with payload sensors
and actuators of the AUV.

The research group within which this work was performed
utilizes a customized Hydroid Remus vehicle as a research
platform for the proposed MOOS control system, shown in
figure 1. Itis a classic cruise-class torpedo-hulled AUV pro-
pelled by a three-leaved propeller thruster astern. Steering
is by a collection of four control surfaces controllable in
pairs – one pair constituting a course rudder and another
serving as depth control vanes. Its navigation sensors
pack consists of a fused sensing bank into which feed an
inertial measurement unit, a Doppler velocity logger, a
short baseline hydroacoustic positioning system, a GPS
when in surface cruise, and a 3-axial magnetic compass.
These navigation sensors are complemented by a forward-
look BlueView 900kHz multi-beam sonar with a dedicated
embedded computer producing imagery by collecting data
off of six separate transducers.

The navigation data mentioned above are all fused to-
gether using a Kalman filter running on a “black-box”
vendor-programmed embedded computer system. This
system is inaccessible to developers of custom-made AUV
control solutions, containing primary functionalities that
ensure correct and fault-free operation of the Remus. How-

Fig. 1. The Hydroid Remus vehicle.

ever, Hydroid, the vendor of Remus vehicles provides a
secondary PC-104 computer stack that has an open archi-
tecture and is fully administrable by prospective develop-
ers, including choice of operating system to install and all
ancillary software. In the instance of the authors’ Remus,
the secondary computer runs a Kubuntu Linux operating
system, on top of which the MOOSDB and all developed
applications and instruments have been compiled and run
as separate OS processes. The interconnection between
the two embedded computers, wherein the primary one
is basically an abstraction of the functions of the Remus
vehicle itself is via a compact set of string-formatted
instructions piped through an RS-232 serial communica-
tions port. This allows the “bridging”, iRemus software
module running on the secondary computer within the
MOOS framework to be implemented as an object of a
class inheriting CMOOSInstrument. The simpe task of the
iRemus is to correctly set up the RS-232 port towards
the primary computer, and to serve as a translator or
a re-parser of Hydroid (vendor) -defined string messages
provided by the vehicle’s primary computer. This is the
only data-stream coming out of an otherwise “black box”
setup of the primary computer integrated with the sensors
and the actuators. The iRemus translates the incoming
datastream into CMOOSMsg-class messages to be posted
to the MOOSDB. The iRemus also parses in the opposite
direction, fetching CMOOSMsg-es intended for it (addressed
to it) and rebuilding the commands and set-points for
the vehicle in observance of the Hydroid-defined string
message format that the primary computer is asble to
interpret. In this way, the Remus can be commanded
to navigate in a line-of-sight -following manner towards a
certain waypoint (defined in any one of the GPS coordinate
frames: decimal latitude and longitude, the local UTM
sheet, or the completely localized local tangent plane).
Alternatively, Remus can operate in servoing mode to
follow a preset heading or achieve the commanded rate
of yaw (heading rate of change). The incoming datastream
from the primary computer to the secondary, is the output
of a proprietary (Hydroid-developed) Kalman filter, con-
taining the best-estimate navigation fix. The navigation
fix consists of the best estimates (presupposing Gaussian
noise) of [x, y, z, a, ρ, φ, θ, p, q, r], where:
- x, y are global spherical coordinates following any one

of the: decimal longitude and latitude, appropriate UTM
sheet or local tangent plane conventions,
- z is calibrated depth in meters,
- a is the altitude from bottom obtained by echo-sounding,
- (ρ, φ, θ) are the attitude components (yaw, pitch and
roll), obtained by gyro-compasses in the Remus’s inertial
AHRS 1 ,
- (p, q, r) is the body-fixed reference coordinate frame
decomposition of the velocity (surge, sway and heave)
obtained by a coordinate transformation of the signals
from the DVL 2 .

All of these data are thereby made available to any other
developer-coded CMOOSApp applications connected to the
same instance of the MOOSDB server.

The latter architecture arising from this type of setup, is
displayed in figure 2.

Fig. 2. The MOOS-based navigation system architecture.

The pAntler is the MOOS-community-provided open
source application that is used as an automatic “starter” of
a customizable number of other CMOOSApp applications, as
listed in the relevant .moos script, which runs the MOOSDB

server and proceeds through the scripted list of applica-
tions, forwarding if so scripted any possible command-line
parameters to every application as it is started, in quick
succession. The example of a .moos script, used to script
the applications and their command-line parameters for
the benefit of the pAntler application, but also containing
separate sections that can be used to parameterize in more
detail every application started with the script is displayed
in Table 1.

After all the necessary applications are started, each
of them enters its OnStartUp and OnConnectToServer
methods. The former, OnStartUp , contains application-
specific initialization data that either uses preset hard-
coded values entered manually at compile-time, or makes
use of the helper object m MissionFileReader . The
m MissionFileReader encapsulates the parser for the
.moos file and, when called from within a developer-

1 attitude and heading reference system
2 Doppler velocity logger

Table 1. Example of a starting script used by
pAntler.

ServerHost = localhost

ServerPort = 9000

Simulator = true

Community = remus

LatOrigin = 36.6284333

LongOrigin = -121.9119833

//--

// Antler configuration block

ProcessConfig = ANTLER

{

MSBetweenLaunches = 200

Run = ./MOOSDB @ NewConsole = true

Run = ./iREMUS @ NewConsole = true

Run = ./pEchoVar @ NewConsole = true

Run = ./uXMS @ NewConsole = true

Run = ./iRemote @ NewConsole = true

Run = ./pVPMPlanner @ NewConsole = true

Run = ./pFLSim @ NewConsole = true

}

//--

//iREMUS config block

ProcessConfig = iREMUS

{

AppTick = 10

CommsTick = 10

Port = /dev/ttyS1

BaudRate = 57600

Streaming = true

Type = AUV

Resolution = .1

}

coded CMOOSApp application it will start parsing from
the “ProcessConfig = name of application” line. The
latter of the two methods mentioned, OnConnectToServer ,
is used by each application to set up the communication
with the MOOSDB. It will run as necessary, either at the
beginning of application’s life or after communication with
the server is reestablished following a temporary break-
down. Within it, the application subscribes to certain
CMOOSMsg-es by calling a block of Register methods. The
messages themselves are fetched within the OnNewMail
method (represented by the short process rectangles in
the right column of each application track in figure 2).
This method behaves asynchronously w.r.t. the main (left
column) course of application’s life (marked out by the left
column of each application’s process rectangles in figure
2). This is achieved by encapsulated code in the MOOSDB

server and the CMOOSApp class’s default instantiation of the
OnNewMail method. The actual times at which OnNewMail
runs through are dependent on the CommsTick (cf. table
1) to which communication between MOOSDB and all other
CMOOSApp applications called by pAntler is synchronized.
At each loop-around of the server code (determined by
the value of the AppTick parameter of the .moos file),
the server checks its hold of CMOOSMsg-es against the table
of registered applications. It short-lists those applications
that it needs to notify that new messages of the variety
they have subscribed to have been deposited in the hold.
Come the next CommsTick, it will notify these applications,
causing OnNewMail of each of them to be entered into.

After OnStartup and OnConnectToServer of an applica-
tion have finished executing, each application enters an
infinite loop of calls to the Iterate method timed to the
beat of the AppTick parameter in the .moos file. Naturally,
OnNewMail gets called simultaneously, as needed and as
driven by the communication functionality encapsulated
in MOOSDB and the method itself. This main course of each
application’s life is represented by a uniform progression
of process rectangles in the right column of each of the
application tracks in figure 2. The loop of Iterate -s is
escapable by a interrupt-like mechanism which must be
explicitly coded in to ensure sanity and finiteness of time
of execution of every application developed in the MOOS
framework.

Typically, each application’s OnNewMail is used to ensure
non-volatility of the data posted to the MOOSDB and used
by the application in the immediately following Iterate
loop. time-stamped data of interest, contained in the
CMOOSMsg-es that the application has subscribed to, is
typically copied, in OnNewMail to application-local vari-
ables (variables within the scope of the application’s main
object, of the class inheriting from CMOOSApp). These vari-
ables, as opposed to the CMOOSMsg-es maintained by the
MOOSDB, cannot from then on up until the execution of the
application’s own Iterate loop, when they are operated
on, be changed. The Iterate can call Notify in order to
publish CMOOSMsg-es containing results of “payload” data
manipulations of a certain application.

2. THE PVPMPLANNER

The pVPMPlanner application implements virtual poten-
tial method (hence – VPM) trajectory planning theoret-
ically developed in Barisic et al. (2007), Barisic et al.
(2008) and further refined in Barisic et al. (2009). The
brief layout of the mathematics, in accordance with the
aforementioned references follows:

E (p) = Es (p) + Er (p)

=

i=1
∑

N

f (i)
s (p) +

i=1
∑

N

f (i)
r (p, pAUV)

=

i=1
∑

N

[

f (i)
s (p) + f (i)

r (p, pAUV)
]

∴ fobj
.
= fs + fr (1)

Where:
- E (p) is the artificial potential field arising due to the
interaction of obstacles and the current waypoint,
- Es (p) is the stator part of the potential contribution of
each feature (obstacle or waypoint, defined by (2)),
- Er (p) is the rotor part of the potential contribution of
each feature, calculated as a “slanted potential tableau”
of a gradient dependent on the proximity of the feature,
and the direction as laid out in figure 3 (details in Barisic
et al. (2008)),
- fobj is the function that encodes both the static and rotor
part of the potential distribution of each object,
- fs is that part of the function describing the spatial
distribution of the static part of the potential,
- fr is that part of the function describing the spatial
distribution of the rotor part of the potential.

The stator, E (p) part of the obstacles’ potential distribu-
tion function is defined as:

f (obj)
s = exp

(

A+/d (p, pobs)
)

− 1 (2)

Where:
- A+ is a method-independent parameter describing the
severity of the obstacle’s repulsion,
- d (p(k), pobs(k)) is the Euclidian distance (at time k),
between the AUV (given by p(k)), and the obstacle. The
distance to the obstacle, d(·), is a Euclidian distance to the
obstacle’s representative point (geometric or barycenter or
vertex, depending on the class of obstacle). The determi-
nation of the representative point (e.g. the vertex or the
side of a polygon closest to position p) is encoded in the
function d(·).

Fig. 3. The calculations determining the direction of the
“spinning top” tableau of rotor potential around a
rectangular obstacle.

Thus defined potential distribution functions are used
to calculate the total value of the virtual potential field
permeating the space around the AUV, and its numerically
approximated gradient is used as the controlling force. This
is the quantity that, modelling the AUV as an ideal double-
integrator, will reproduce a trajectory optimal w.r.t. to
the criterion implicitly selected by the mathematical form
of the potential distribution functions. In reality, complex
thruster allocation coupled with lower-level control loops
of each thruster are designed for the thrusters to produce
the net total force on the AUV as close as possible to the
controlling force. the controlling force itself is defined as
follows:

F = bound
{

max
i

[

E (p) − E
(

p(i)
ǫ

)]

− µ · v, Fmax

}

(3)

Where:
- bound

{

R
n, R+

0

}

denotes a function of bounding a vec-
tor’s norm, bound {a, amax} = a/ |a| · inf (amax, |a|).

For purposes of this research, rather than employ specific
thruster allocation taking into account the geometry and
the rigid-body dynamics, as well as possible hydrodynamic
influences on the AUV’s dynamic, this controlling force is
decomposed into control feeds to be used by a servoing
type parallel (non-interactive) PI-D topology linear con-
troller for the following state-space variables of an AUV’s
dynamic model:

• Heading rate of change – needing the separate control
feeds for {φc, ωc, αc}, where:
- φc is the integral channel reference feed or course,
- ωc is the proportional channel reference feed or yaw
angular speed,
- αc is the derivative channel reference feed or yaw
angular acceleration.

• Forward speed – needing the separate control feeds
for {Isurge, vc, ac}, where:
- Isurge is the Euclidian distance between the actual
location of the AUV and the predicted location of
the ideal double-integrator model representing the
integral channel reference feed,
- vc is the commanded surge speed, representing the
proportional channel reference feed,
- ac is the commanded surge acceleration, represent-
ing the derivative channel reference feed.

The feeds are parsed into CMOOSMsg-es and posted on the
MOOSDB server. They are fetched from the server by the
iRemus application and parsed into messages streaming
out into the primary embedded computer as explained in
Section 1.

The feeds are defined as follows:

v(k) = bound

[

T · (F (k − 1) + F (k))

2
+ v(k − 1), vmax

]

vc = 〈vc, ê1〉 · ê1 + 〈vc, ê2〉 · ê2

vc(k) = 〈v(k), ê1〉 (4)

Where:
- v(k) is the ideal speed vector of the double-integrator
model,
- (ê1, ê2) are an orthonormal basis of the AUV’s body-
fixed coordinate system w.r.t. the Earth-fixed coordinate
system,
- 〈·, ·〉 is the scalar product of two vectors, 〈a, b〉 = |a| ·
|b| · cos∠ (a, b),
- vc(k) is the surge speed – the proportional channel
reference feed at time k for the AUV.

ac = |F (k)| (5)

Where:
- ac(k) is the derivative channel reference feed at time k.

φ(k) = atan2 (v(k)) (6)

Where:
- φ(k) is the course command at time k – the integral
channel reference feed for the course non-interactive PI-D
controller,
- atan2(·) is the four-quadrant arc-tangent in an Earth-
fixed coordinate system.

Isurge = |p(k) − pc(k)| (7)

Where:
- p(k) is the actual position vector of the AUV,
- pc(k) is the ideal position of the double-integrator model.

ωc(k) =
[φc(k) − φ(k − 1)]

T
(8)

Where:
- φc(k) is the course command at time k,
- φ(k − 1) is the actual course of the AUV at time k − 1,
- ωc(k) is the yaw angular speed command at time k.

r(k) =
ω(k)

v(k)
(9)

Where:
- ω(k) is the actual measured yaw angular speed of the
AUV at time k,
- v(k) is the actual measured surge speed of the AUV at
time k,
- r(k) is the turning radius of the AUV at time k.

αc(k) =
r(k) · ac(k) − vc(k) · [r(k) − r(k − 1)] /T

r2(k)
(10)

Where:
- αc(k) is the derivative channel feed for the course non-
interactive PI-D controller, at time k.

The obstacles whose potential distribution functions are
used in equation (1), are maintained in a container ob-
ject within the the pVPMPlanner. They are fetched from
the MOOSDB on a message-by-message basis every time
qemphOnNewMail is called, where they are posted by the
pFLSonar module (cf. figure 2). Each of the messages
contains a mathematical description of the bounding boxes
of obstacles detecetd by the use of the BlueView forward-
look sonar, encoding the box’s four degrees of freedom:

• {x, y, z} – the vector of the box’s geometric center.
• φ – the amount of the box’s rotation about the Z axis

in the X-Y plane, according to figure 4.

Fig. 4. The description of a box containing a generalized
obstacle with four degrees of freedom in the 3D
mission space.

The presented version of the pFLSonar bounds agglom-
erations of pixels by this type of 4-DOF boxes as an
intermediary step in the full development of the pFLSonar

development. This is compatible with the pVPMPlanner’s
current level of development, allowing it to plan AUV tra-
jectories in the 2D X-Y plane of navigation. Each orthog-
onal obstacle is characterized by a potential distribution
function of the form presented in figure 5.

Fig. 5. The rectangle potential distribution function of the
form frect = exp (A+/d(p, pbc)) − 1.

3. HARDWARE-IN-THE-LOOP SIMULATION

The presented architecture was first tested for sanity
and functional operability by a hardware-in-the-loop test.
Hydroid, the vendor of the Remus, provides off-the-shelf
software separate from the MOOS architecture that runs
on a dedicated laptop computer. The program interfaces
directly with the otherwise “black box” primary embed-
ded computer (cf. Section 1). Among its functions is the
simulation mode that allows the primary embedded con-
troller to simulate cruising conditions, while maintaining
the illusion – simulation on the end of the command
pipeline connecting it to the secondary computer running
the herein described architecture.

Due to the fact that the BlueView forward-look sonar
head, supplying raw data to the pFLSonar, does not
function out of water, the pFLSonar application is for
this purpose replaced in the architecture presented in
figure 2, by a similar application, pFLSim, that presents
exactly the same interface to the MOOSDB (posts and fetches
the same type of CMOOSMsg-es). This altered program
runs through a script-based file listing simulated obstacle
positions and types and accordingly posts appropriate
messages to MOOSDB.

With a hardware-in-the-loop setup detailed in the last two
paragraphs, a hardware-in-the-loop mission was simulated
for a mission space displayed in figure 6. In the figure, the
third axis is used to visualize the artificial potential, since
trajectory planning is constrained to 2D in the X-Y plane.

Fig. 6. The preprogrammed mission space with obstacles.

The ensuing cruise allong a trajectory optimal w.r.t. the
potential map in figure 6, within the HILS 3 environment
set up in the aforementioned fashion is presented in figure
7.

4. CONCLUSION

A navigation system architecture built on top of the Mis-
sion Oriented Operating Suite (Newman (2006), Newman
(2008)) was proposed, implemented and tested for san-
ity and functional operability in HILS mode. The results
are satisfactory, with the MOOSDB server performing well
and assuring synchronization and controllability of the
Remus craft. Logging and storing of both the navigation
data (Earth-fixed coordinate fixes, as well as AUV body-
fixed coordinate frame speeds and accelerations), and the

3 Hardware-in-the-loop simulation.

−10 0 10 20 30 40 50 60
0

10

20

30

40

50

60

Earth fixed x - North, local tangent plane Bay of Monterey [m]

E
a
rt

h
fi
x
ed

y
-
E

a
st

[m
] Waypoint 1: (60m,60m)

3m radius switch-off circle

Fig. 7. The resulting trajectory.

mapping data (sonar readings of box-enclosed obstacles
throughout the navigated part of the mission space) is
easily achieved by using the MOOS community-provided
pLogger open source application bundled with the MOOS.
Relying on these logs, a renavigation of such trajectory
is possible event without the pVPMPlanner (although the
feedback action is lost and replaced by pure feedforward
behavior), by using the pLogger to upload, rather than
download messages used in the HILS setup, in real-time
during the actual cruise. The computational load on the
secondary computer running the entire required MOOS
community of applications and the MOOSDB server aboard
the Remus, is light enough that both can perform in real
time in actual water experiments.

Further work will consist of:

• Experimenting underwater,
• Readjusting the m MissionFileReader to parse an

XML schema scripting language,
• Implementing a set of applications and tools following

MOOS architecture that will allow for remote inter-
facing, display, renavigation and post-experimental
measurement and visualization from locations con-
nected through the TCP.

5. ACKNOWLEDGMENTS

This research was made possible through the following
contributions:

(1) Professional and technological equipment — An FP7
Capacities project within the REGPOT-2008-1 call,
“Developing the Croatian Underwater Re-
search Potential – CURE”.

(2) Scientific and professional secondment / internship
grant for stay at the NPS, Monterey, California, USA
— “Unity Through Knowledge Fund”, MOSES 4 ,
Croatia.

(3) Technical expertise provided by the Center for Un-
derwater Systems and Technologies, Zagreb 5 .

4 The Ministry of Science, Education and Sports of the Republic of

Croatia.
5 a non-for-profit non-government civil organization of underwater

system engineers and scientists registered in Zagreb, Croatia.

REFERENCES

Barisic, M., Vukic, Z., and Miskovic, N. A Kinematic Vir-
tual Potentials Trajectory Planner For AUV-s In Devy,
M., editor, Proceedings of the 6th IFAC Symposium
on Intelligent Autonomous Vehicles, on CD, National
Center for Scientific Research, Laboratoire d’Analyse et
d’Architecture des Systemes, Tolouse, France, 2007.

Barisic, M., Vukic, Z., and Omerdic, E. Introduction of
Rotors to a Virtual Potentials UUV Trajectory In Toal,
D. & Geoff, R., editors, Proceedings of the 2nd Workshop
on Navigation, Guidance and Control of Underwater Ve-
hicles, on CD, University of Limerick, Limerick, Ireland,
2008.

Barisic, M., Vukic, Z., and Miskovic, N. The Virtual
Potential Field Method As a Tool For Formation Guid-
ance of AUV-s In Proceedings of the 11th IASTED
International Conference on Control and Applications,
on CD, IASTED, Calgary, Canada, 2009.

Healey, A. J. Artificial Potential Functions Chapter 3
in Roberts & Sutton, editors, Guidance Laws, Obstacle
Avoidance, Artificial Potential Functions, part of IEEE
Control Series 69, March 2006.

Healey, A.J. et al. Collaborative Unmanned Systems for
Maritime and Port Security Operations In Vukic Z. &
Longhi, S., editors, Proceedings of the 7th IFAC Con-
ference on Control Applications in Marine Systems, on
CD, Center for Underwater Systems and Technologies,
Zagreb, Croatia, 2007.

Newman, P. (2006) MOOS - Mission Orientated Operating
Suite Massachusetts Institute of Technology, Dept. of
Ocean Engineering, Cambridge, MA, USA, 2006.

Newman, P. (2008). Under the Hood of the
MOOS Communications API In Newman, P.,
editor, http://www.robots.ox.ac.uk/∼pnewman
/MOOSDocumentation/CommsArchitecture/latex/
/CommsArchitecture.pdf.

