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Abstract: This paper deals with the study and analysis of heuristics and tradeoffs incipient
in the choice of method-independent parameters in an algebraic trajectory planner based on
virtual potentials. The real-time trajectory planning framework for autonomous underwater
vehicles (AUVs) is described in detail in Barisic et al. (2007), Barisic et al. (2008) and based on
the referenced, as well as previous work of the authors. Of special interest among the parameters
are those governing the strength of repulsion of obstacles (Barisic et al. (2007), and that of the
strength of the rotary field (Barisic et al. (2008), Healey (2006)) that is introduced in order to
eliminate obstacle-attached local minima present in classical virtual potential based methods
(Healey (2006)).
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INTRODUCTION

Algebraic planners and algebra-based mathematical frame-
works are prolific in contemporary path-planning and
trajectory-planning solutions to AUV navigation problems
(Healey et al. (2007), Sepulchre et al. (2005), Kalantar,
S. and Zimmer, U. (2007)). This is due to the fact that
modern embedded computing systems, used to run the
suite of necessary control algorithms to steer AUVs are
very efficient at performing algebraic operations. Also,
algebraic operations are present at almost any level of
abstraction when programming control systems – all the
way down to processor assembler mnemonics.

In contrast to the methods used to evaluate inputs and
arrive at commands, the input data of algebraical methods
are generally at a high level of abstraction. This repre-
sents a natural counter-tendency to the control system
engineer’s choice of an algebraical method as the basis for
trajectory planning. However, the strengths of algebraical
methods must not be disregarded – high levels of abstrac-
tion that makes them easily “readable” by human code
designers and system engineers, cross-layer design, great
levels of leverage that existing coded capabilities repre-
sent for further modules exhibiting even more complex
and desirable behavior etc. In order to make a certain
algebraic system implementable in a physical AUV system,
the demands on high levels of pre-processing or operator
deliberation on the nature, range and values of input data
need to be addressed.
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In the broadest sense the inputs of algebraical real time
trajectory planning systems can be divided into:

(1) Method-external data: Data dependent on the cur-
rent real time situation of the AUV system: relative
position and orientation of obstacles, AUV’s own pose
and location etc.

(2) Method-independent data: This data arises in the
form of general numbers, like factors or additive
terms, or alternatively as a choice of a constrained
class of functions (upper and lower bounds vs. insen-
sitivity range, vs. a three-level relay etc.).

There is a large volume of ongoing research dedicated
to robust, non-intermittent, efficient, fast and memory-
conservative ways to deal with the abstraction or extrac-
tion of perceptive and proprioceptive sensory data, i.e.
the former. Control engineer’s familiarity, leverage that a
certain recipe’s strengths bring to the overall system de-
sign of the whole AUV, and whose weaknesses are in turn
leveraged against by other components and capabilities of
the chosen systemic design. Some of the candidates for
this “recipe” are: Kalman filtering techniques, sequential
Monte Carlo methods, Markovian systems, various voting-
based systems, Bayesian systems, neural networks, fuzzy
logic inference systems, etc.

The latter type of inputs are generally much more difficult
to ascertain with any level of consistency. Engineering
constraints of the system, including sensor speed, band-
width, accuracy, actuator dynamic range, energy balance,
absolute limits of delivered strength, and stability lead to
the formulation of necessary ranges of values for these
data. However, the procedures to consistently link the
values of these data to certain “hard” specifications on the



performance of the AUV, or to arrive at a form of inverse
reasoning from desired performance indices to parameter
values, are difficult. They turn to be entirely unavailable,
prohibitively computationally expensive, intractable, or at
the very least extremely reliant on the modeling of the
AUV and therefore precariously non-robust.

This problem is exacerbated if generality is pursued, i.e.
if the algebraic trajectory planner is being developed as
a general platform regardless of the craft’s kinematics
(configuration of actuators, deliverable thrust, holonomic
constraints etc.). This is the case with the virtual poten-
tials based trajectory planner developed by Barisic et al.
(2007), Barisic et al. (2008), which is being deployed in
systems as varied as an AutoMarine module (Stipanov
et al. (2007)) -equipped VideoRay (Miskovic et al. (2007))
as opposed to a Remus off-the-shelf tactical submersible
(Healey et al. (2007)). It is critical that an initial heuristic
analysis be undertaken. This will serve to narrow the range
of values provided by the stability analysis further, so that
the available range is non-prohibitive for a system engineer
overseeing the deployment of one of the aforementioned
craft. The motivation is to arrive at a small number of
recipes of values can be deployed to foreseeable use sce-
narios of certain broad categories of AUV craft.

In Section 1, the proposed virtual potentials based real
time trajectory planning method (Barisic et al. (2007),
Barisic et al. (2008)) is briefly revisited, examining the
method-independent parameters that regulate the influ-
ence of the stator and rotor classes of potentials on the
trajectory. In Section 2, a heuristic criterion based on
actual considerations in operating AUVs in constrained
waterspaces and waterways is proposed. In Section 3 an
analysis based on MATLAB simulation is undertaken for a
set comprised of the most critical independent parameters.
In Section 4 conclusions are reached and heuristic rec-
ommendations given based on the performed simulation.
Work aimed at further optimization of the recommended
values is suggested.

1. THE METHOD

Within the proposed virtual potential based trajectory
planner, the influence of n obstacles on the AUV trajectory

is represented by a summation Es (p) =
∑i=1

N f
(i)
s , where

each f
(i)
obs(·), i = 1 . . . N is given by:

fs (p) = exp
{

A+
s /r [pobs] (p)

}

(1)

Where:
- p is the vector of point coordinates in the missions space
whereat potential is being sampled,
- r [pobs] (R

n) is a function returning the distance between
the current AUV’s location and the obstacle, parameter-
ized by a representative point of the obstacle pobs (geomet-
ric barycenter or some other typical point of the obstacle,
e.g. a polygon vertex). These functions vary depending on
the shape of the obstacle: a circle, an ellipse, a rectangle
or a triangle.
- A+

s is a method-independent static repulsion amplifica-
tion.

In Barisic et al. (2008), a modification including rotor
potentials was proposed, along the following reasoning:

Es (p)→E (p)

∴ E (p)
.
= Es (p) + Er (p)

=

i=1
∑

N

f (i)
s (p) +

i=1
∑

N

f (i)
r (p,pAUV )

=
i=1
∑

N

[

f (i)
s (p) + f (i)

r (p,pAUV )
]

∴ fobj
.
= fs + fr (2)

The redefinition of fobj (·) from (2), based on Barisic et al.
(2008) leads to:

fobj (p) = fs (p) + fr

[

A+
r ,pobs

]

(p,pAUV ) (3)

Where:
- fr [A+

r ,pobs] (R
n, Rn) is a rotor potential function param-

eterized by A+
r and pobs,

- A+
r is a method-independent rotor amplification,

- pAUV is the coordinate vector of the AUV’s current
location.

Note that in accordance with Barisic et al. (2008):

fr (pAUV ) ≡ 0

⇒
fobj (pAUV ) ≡ fs (pAUV )

The potential field gradient E (p) =
∑i=1

N f
(i)
obs is numeri-

cally approximated on the basis of a finite set of ordered
pairs of the evaluations of E (p) at pAUV and at each of
the points in P, a set of radially spaced equidistant sample
points around pAUV at sample distance ε and angular

increments 2π/nγ : P =
{

p
(i)
ε

}

(Barisic et al. (2007)). This

leads to the an expression for the controlling force. The
intention of the AUV’s control system being fed by the tra-
jectory planner is thereupon that the subsequent control
allocation and the dynamic quality of actuator control re-
produce this force as well as possible. The controlling force
is bounded (in norm) by a method-independent maximum
force Fmax:

F = bound
{

max
i

[

E (p) − E
(

p(i)
ε

)]

− µ · v, Fmax

}

(4)

Where:
- bound

{

R
n, R+

0

}

is a function of bounding a vector’s
norm, bound {a, amax} = a/ |a| · amax.

Likewise, the helm speed command, vc is bounded by a
method-independent maximum speed vmax:

vc = |vc|
φc = atan2 (vc)

vc = bound {T/2 · (F (k) − F (k − 1)) + vc(k − 1), vmax}
(5)

The technical maxima of Fmax and vmax are of course
although independent from the method used to plan the
trajectory, dictated by the AUV’s actuators and their
configuration.

From the above analysis of the equations used in trajectory
planning, it can be determined that the greatest influence



on trajectory shape, dictated by equations (1, 3)is in the
choice of method-independent parameters of the type of
repulsion and rotor amplifications, namely:

(1) The static repulsion amplification A+
s ,

(2) The rotor amplification A+
r .

2. THE HEURISTIC CRITERION

In order to adjudicate between heuristic choices for the
values of A+

s and A+
r , the following qualitative analysis is

performed:

(1) The closest distance from any obstacle during cruise,
dobs

dobs = min
j=1...m

d
(j)
obs

[

x
(j)
obs

]

(p(k)∀k)

Where:
- j is the ordinal number of the obstacle,
- m is the total number of obstacles encountered by
the AUV during the simulation,

- d
(j)
obs

[

x
(j)
obs

]

(R2) is a function returning the distance

of a vector x ∈ R
2 to the j-th obstacle (parameterized

by a coordinate vector of a representative point of the
obstacle – e.g. a barycenter or a geometric center, or

a vertex of a polygon, x
(j)
obs), which depends on the

class i.e. type of the j-th obstacle.
This measure is included in the third quadratic cri-

terion term, Id, in the criterion function I (A+
s , A+

r ),
in the following manner:

Id = wd ·
(

dobs − d
(nom)
obs

)2

(6)

Where:
- wd is a weight such that the expression:

(

dobs − d
(nom)
obs

)2 id
= 49

wd = 49/d
(nom) 2
obs (7)

- d
(nom)
obs is identically equal to 2m, which is a rational

average distance at which an AUV should circumnav-
igate all obstacles.

(2) Relative duration of time while cruising with maxi-
mum speed, Tv

Tv = (card {k : v(k) = vmax} · T ) /Texp

Where:
- card {·} is the cardinality operator, i.e. the number
of elements of a set.
- Texp is the total duration of the experiment.

This, being an expression dependent on (A+
s , A+

r )
is used as one of the weighted quadratic terms that
constitute the criterion function I (A+

s , A+
r ), which is

(numerically) minimized in order to heuristically fine-
tune the (A+

s , A+
r ).

The term dependent on Tv, Iv has the following
weighted quadratic form:

Iv = wv · (Tv − 0.05)
2

(8)

Where:
- wv is a weight such that the expression:

(Tv − 0.05)
2 id

= 49

wv = 49/0.052 (9)

- 0.05 is the nominal value of a rational expectation
that in a congested environment, with gratuitous
manoeuvres necessary to circumnavigate obstacles,
only 5% of time will be spent cruising at maximum
allowable velocity.

(3) Relative duration of time while manoeuvering with
maximum thrust, TF

TF = (card {k : F (k) = Fmax} · T ) /Texp

This measure is used as another one of the weighted
quadratic terms, this one designated by IF that
constitute the criterion function I (A+

s , A+
r ):

IF = wF · (TF − 0.01)
2

(10)

Where:
- wF is a weight such that the expression:

(Tv − 0.01)
2 id

= 49

wv = 49/0.012 (11)

- 0.01 is a nominal value, taking into account a ratio-
nal assumption that thruster wear-and-tear should be
avoided, as well as the energy budget being as much
conserved as possible, thereby using only the 1% of
time as optimal for effecting full-thrust manoeuvres.

(4) The time of cruise, Tc This is a parameter that
is measured during the simulation. The termination
conditions are that the commanded speed is less
than 0.1 m/s for more than 5T . It too is used in a
quadratic criterion term, IT , in the criterion function
I (A+

s , A+
r ):

IT = wT ·
(

Tc − 1.15
dgp(0)

vmax

)2

(12)

Where:
- wT is a weight such that the expression:

(Tc − 1.15 · dgp(0)/vmax)
2 id

= 49

wT = 49
v2

max

1.152d2
gp(0)

(13)

- 1.15 is a nominal figure included under the assump-
tion that in a congested environment of a simulation,
it is optimal if the cruise to the goal point takes 15%
more than the amount of time it would take an AUV
homing in on the goal point with the maximum allow-
able speed, vmax, in a completely empty environment,
- dgp(0) is the beginning distance of an AUV from the
goal point, at k = 0.

From equations (6 – 13) a criterion, based on the perfor-
mance characteristics to be expected of AUVs operating in
realistic closed-water, harbor or installation waterspaces is
arrived at as:

I = Id + Iv + IF + IT

= wd

(

dobs − d
(nom)
obs

)2

+ wv (Tv − 0.05)
2

+wF (TF − 0.01)
2

+ wT

(

Tc − 1.15
dgp(0)

vmax

)2

(14)

3. THE ANALYSIS OF THE SIMULATION

Two sets of simulations were performed in order to numer-
ically evaluate the criterion function I (Tv, TF , dobs, Tc) in



equation (14) so that a simple search for a minimum of the
tabulated values will center on the pseudo-optimal area
of the (A+

s , A+
r ) space. This will allow for the heuristic

fine-tuning of the potential method trajectory planner
proposed in Barisic et al. (2007), Barisic et al. (2008),
summarized above in Section 1.

The first set of simulations was performed for purposes
of qualitative inspection and visualization of the influence
of A+

s and A+
r , respectively on the geometrical shape of

the trajectory – the path taken through the simulated
waterspace. Both method-independent parameters were
through a logarithmical equidistant series (0.04−−20.00).
The nominal parameters are listed in table 1. The series is
listed in table 2.

Table 1. Constant values of parameters

A
+
s

A
+
r

Fmax vmax

2.1389 2.1389 4.0 2.0

Table 2. Varying values of parameters A+
s and

A+
r respectively

Simulation 1 Simulation 2

A
+
s

(i) A
+
r

(i)

0.40000 0.40000

0.52895 0.52895

0.69947 0.69947

0.92496 0.92496

1.2232 1.2232

1.6175 1.6175

2.1389 2.1389

2.8284 2.8284

3.7402 3.7402

4.946 4.946

6.5405 6.5405

8.649 8.649

11.437 11.437

15.124 15.124

20.000 20.000

The results of the first simulation, where A+
r was kept

constant at 2.1389 while A+
s was changed in accordance

with table 2, are displayed in figure 1.
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Fig. 1. The plot of paths for varying values of A+
s

The results for the second simulation, where A+
s was kept

constant at 2.1389 while A+
r was changed in accordance

with table 2, are displayed in figure 2.
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Fig. 2. The plot of paths for varying values of A+
r

In both cases, it can be observed that the range of values
is rational and sensible, since no collisions occur, nor does
the planned trajectory diverge without bound.

In the second set of simulation, an exhaustive simula-
tion series was performed for all ordered pairs of values
(A+

s , A+
r ) from table 2. The second set of simulations was

used to narrow down the area by simple inspection of a
thus constructed manifold of I(A+

s , A+
r ) criterion. Some

interesting results of the second set of simulations are
displayed in figures 3 – 6. The resulting suboptimal but
narrowed down ordered pair of values of (A+

s , A+
r ) is given

in table 3.

Table 3. Results of the inspection of I(A+
s , A+

r )

A
+
s

A
+
r

1.62 11.44
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s

( 0.400 – 20.000)

2-dimensional criterion function I (A+
s , A+

r )

A+
r

( 0.400 – 20.000)

Fig. 3. The plot of the criterion I(A+
s , A+

r )

As can be observed from figure 3, the shape of the criterion
manifold is complex and features multiple local extremals.



The criterion value axis of the plot shows that the values
of I are in between the orders of magnitude 102 − −103

which is to be expected of a linear combination of terms
that take on values of 0.5 ·102 in a relatively small interval
of values of processed variables – {Tv, TF , dobs, Tc}. The
position of the minimum point I, which testifies to the
fact that A+

r is more important to minimizing I than A+
s is

unsurprising due to the fact that the simulated waterspace
(in figure 1 or 2) features an obstacle that is right on
the initial separatrix of the AUV and the goal-point.
The correct circumnavigation of such an obstacle, which
would, without rotor potentials cause the appearance of a
local minimum and the faulty termination of the planned
trajectory in front of the obstacle, is highly dependent on
the values of A+

r .
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Fig. 4. The plot of the term dobs(A
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Figure 4 displays the manifold of the dobs(A
+
s , A+

r ). A large
section of the manifold lies at relatively low values of the
minimum distance, because the simulation waterspace in-
cludes a narrow strait between two obstacles which, for all
but the most conservative settings of (A+

s , A+
r ), represents

an optimum path towards the goal point. Those conser-
vative settings are, in turn, signified by the two disjoint
elevated regions in the plot. However, while navigating
this strait, coming in closer than 2m to at least one of
the obstacles is impossible.

Figure 5 displays the manifold of the Tv(A+
s , A+

r ). There
is a prominent part of the manifold that includes values
of ≈ 2%. This section represents all trajectories resolving
into the strait in between the two obstacles. In the strait,
two opposed influences are at play:

• the interaction of repulsive static potentials of both
obstacles. This would ordinarily create a “ridge” that
would represent a saddle-like local finite maximum.

• the interaction of counter-rotating rotors of both
obstacles. This creates a “slipstream” or “current”
in the strait allowing for the saddle-like local finite
maximum to be overcome albeit by careful and slow
navigation.

The region around the peak-value represents those trajec-
tories resolving in a very conservative wide circumnaviga-
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Fig. 5. The plot of the term Tv(A+
s , A+

r )

tion of the entire surrounding area of the two obstacles.
Once outside this area, the trajectory approaches the goal
point at maximum speed for a significant amount of time
(covering ground lost to conservative circumnavigation of
the obstacles).
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Fig. 6. The plot of the term Tc(A
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s , A+

r )

The region of interest of the manifold of the Tc(A
+
s , A+

r )
displays values of ≈ 60s. Taking into account that dgp(0) =

40
√

2, and vmax = 2m/s from table 1, it turns out
that the nominal term 1.15 · dgp(0)/v − max = 35.53s.
The typical Tc-s are ≈ 2.3 times longer than the ideal
straight-line navigation through unobstructed waterspace
with maximum allowable forward speed. However, this is
to be expected due to the congestion of the waterspace.

In contrast, note that the elevated regions of the Tc(A
+
s , A+

r )
manifold – signifying even longer navigation to the goal
point, coincide with the regions of the manifold of
Tv(A+

s , A+
r ) in figure 5 that represent greater proportion

of the trajectory taken at the maximum speed. At first
glance, this might be counter-intuitive. However, one must
be aware of the fact that the conservative settings of



(A+
s , A+

r ) will result in the trajectory “shying away” from
the strait in between the two obstacles along the direct
path to the goal point. This steering clear of the strait,
although allowing for a final approach along a clear section
of the waterspace, wherein maximum speed can safely be
developed, will induce an irrecoverable net loss of covered
ground. Subsequent navigation at speed high to the north
or away to the east of the region of obstacles (in figure 1)
will fail to make up for the lost time.

The trajectory planned for the identified values (A+
s , A+

r )
in table 3 is presented in figure 7.
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Fig. 7. The plot of the trajectory for identified values of
parameters (A+

s , A+
r )

4. CONCLUSION

A heuristic simulative search through the parameter-space
A = {A+

s , A+
r } = R × R was carried out. A sensible

criterion was chosen based on the actual performance char-
acteristics that an AUV in a real waterspace would need
to conform to. The trajectory planned by the heuristically
identified parameter set is sensible, safe, and rational from
the aspect of the energy budget of the autonomous vehicle.

Further work will include the development of a VRML-
based simulation suite that will include the dynamical
model of several AUVs, most notably the OceanServer Iver
2, the Hydroid Remus 100 and the in-house developed
autonomous variant of the VideoRay Pro III XE GTO
ROV. The criterion will be modified to “smooth out” the
trajectory in the part where it exits straits or other types
of congested areas.
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