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Abstract - As the amount of useful data is evolving, we need to 

create adequate tools which could be used in data analysis and 

interpretation. We are dealing with the knowledge mining 

problem concerning World Ocean Atlas 2005 (WOA) which is 

a data product of the National Oceanographic Data Center 

(U.S.). In our approach we propose methods such us 

qualitative modeling and conceptual clustering. The aim is to 

create an expert system module for the analysis of world 

ocean thermocline. Expert background knowledge guides the 

modeling process to the desired thermocline qualitative model 

which incorporates interesting chunks of knowledge. Learned 

qualitative thermocline models can be further used in analysis 

of other data from WOA 2005 related to other oceans and 

seas. 

 

 

I. INTRODUCTION 
 

As the data gained by measurements is evolving, we 
need to develop tools which could be used for data analysis 
and interpretation. The aim is to analyze world ocean 
thermocline at different geographic locations. Thermocline 
analysis requires model building of varying thermocline 
types.  Learning of thermocline models is based on data 
from the World Ocean Atlas 2005 (WOA) which is a data 
product of the National Oceanographic Data Center (U.S.) 
[2,11].   

Many water ecosystems are endangered by human 
actions, in spite of their importance for all living systems. 
Qualitative models of water ecosystem and related physical 
phenomena  may be useful for understanding such systems, 
for predicting values of variables and for combining such 
understanding with restoration and proactive management 
[8].  

In our approach we propose modeling methods such as 
qualitative modeling and conceptual clustering [1, 3, 5, 6, 
7].  

First we present thermocline definition and the 
motivation for thermocline modeling. The third and fourth 
paragraphs give data description and describe data pre-
processing procedure. The fifth paragraph introduces the 

ideas regarding conceptual clustering procedure and 
learning of varying thermocline types models. At the end 
we give an overview of the conceptual clustering and the 
analysis of the obtained results. We conclude giving the 
plan for future work. 

 

 

II. DEFINITION OF THERMOCLINE  
 

Surface sea layer is an essential element of heat and 
freshwater transfer between the atmosphere and the ocean. 
This is the mixed  layer which absorbs heat during spring 
and summer by storing it until the following autumn and 
winter, and thus moderating the earth's seasonal 
temperature extremes (Fig.1, Fig 2 [9]).  

The deep mixed layer from the previous winter is 
covered by a shallow layer of warm water. Mixing is 
achieved by the action of wind waves, which cannot reach 
much deeper than a few tens of meters [9]. Below the layer 
of active mixing is a zone of rapid transition, where 
temperature decreases rapidly with depth. This transition 
layer is called the seasonal thermocline.  

 

 
Fig. 1. An illustration of a thermocline [9]. 

 



 

 
 

Fig. 2.  Surface heat flux data show that the winter was strong in 

the year 2000 in the Adriatic region [4] 

 

The depth range from below the seasonal thermocline to 
about 1000 m is known as the permanent or oceanic 
thermocline [9]. It is the transition zone from the warm 
waters of the surface layer to the cold waters of great 
oceanic depth. The temperature at the upper limit of the 
permanent thermocline depends on latitude, reaching from 
well above 20°C in the tropics to just above 15°C in 
temperate regions; at the lower limit temperatures are 
rather uniform, around 4 - 6°C depending on the particular 
ocean [9].  

North Atlantic Deep Water is the product of a process 
that involves deep convection in the Arctic Ocean, the 
Greenland Sea and the Labrador Sea.  

Deep ocean is a large part of the ocean characterized by 
restricted water exchange with the surface ocean. This 
results in different hydrodynamics and sets it apart from the 
surface ocean. While the circulation in surface ocean is 
dominated by wind-driven currents, the circulation in deep 
ocean is determined by thermohaline processes. Water 
renewal below 1000 m is achieved by currents which are 
driven by density differences produced by temperature 
(thermal) and salinity (haline) effects. The associated 
circulation is therefore referred to as the thermohaline 
circulation [9]. 

 

 

III. DATA DESCRIPTION 

 

The knowledge mining problem we deal with concerns 
the World Ocean Atlas 2005 (WOA 2005) which is a data 
product of the National Oceanographic Data Center (U.S.) 
[2].  WOA 2005 is available on web pages [11] where we 
can use the select tool and choose parameter and the region 
of interest. We build the thermocline model for North 
Atlantic region and temperature is the parameter which 
determines a thermocline [Fig.3]. 

Temperature values are measured at different depths so 
we have a sequence of measured temperature values at 
every geographic location. Ocean depths at which 
measurements are taken are included in set D and are 
expressed in meters: 

 

D = {0, 10, 20,30, 50, 75, 100, 125, 150, 200, 250, 

300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 

1300, 1400, 1500, 1750, 2000, 2500, 3000, 3500, 4000, 

4500, 5000, 5500}                 (1) 

 

 
 

Fig. 3. North Atlantic region [11]. 

 

 

The length of temperature sequence depends on total 
depth at the given location. A temperature sequence at a 
geographic location lati, longj is represented with an n-tuple 
of the following form:   

 

((t1, d1), (t2, d2), ..., (tn-1, dn-1), (tn, dn)), where  

d1,..., dn ∈  D     

                 (2) 

 

where i=-70,..., -3 deg. latitude,   j=-72,..., -5 deg. 
longitude, only for geographic locations representing North 
Atlantic.  

So thermocline is a depth at which the rate of 
temperature decrease with the increase of depth is the 
largest. Implementing the transformation of temperature 
sequences we obtain sequences of vertical temperature 
gradients ∇ t = ∂T/∂z which incorporate thermocline 
property (∂z is increase of depth): 

 

((∇  t2, d2), (∇ t3, d3), ..., (∇  tn-1, dn-1), (∇ tn, dn)), 
where  d2,..., dn ∈  D 

where ∇ ti =( ti - ti-1)/( di - di-1), i = 2,..., n     (3) 

 

 

IV. DATA PREPROCESSING 
 

Besides evident knowledge concerning physical world, 
qualitative model also represents associated abstractions 
used by an expert in creating models [3]. Qualitative 
representation of temperature gradient is symbolic and uses 
discrete value spaces. Discretization must be relevant for 
object being modeled, namely discrete values are imposed 
only if they are essential in modeling of a distinct domain 
aspect regarding the foreground task.  

We base thermocline modeling and analysis on 
quantization of the temperature gradient. The use of 
approximate temperature gradient values instead of exact 
numeric values is the first step anticipating the procedure 
of thermocline classes formation.  Approximate values 
have to be conceptually relevant for creating thermocline 
models. In the first step data preprocessing algorithm 
computes temperature gradient minimum and maximum 
value searching through all temperature gradient sequences 
regarding the North Atlantic basin data. 

Thermocline model building is based on qualitative 
temperature gradient as the modeling attribute. The 



qualitative transformation of temperature gradient 
sequences is performed in two steps. 

 

A. Transformation of temperature sequences 

 

On the base of temperature sequences at different 
geographic locations (NODC data, Eq.2, 4), pre-processing 
procedure results with temperature gradient sequences (Eq. 
5). 

 
Deg.Latitude: -3.5  Deg.Longitude: -34.5   

Temperature sequence: 

27.312  27.313  27.284  27.25  26.961  25.633  

22.442  18.172  15.359  12.968  11.735  10.731  

8.703  7.013  5.787  5.026  4.545  4.29  4.265  

4.341  4.427  4.441  4.38  4.246  3.856  3.499  

3.003  2.704  2.53  1.722          (4) 

 
Deg.Latitude: -3.5  Deg.Longitude: -34.5  

Temperature gradient sequence:  

9.99451e-005 -0.00289993 -0.00340004  

-0.01445 -0.05312 -0.12764  

-0.1708 -0.11252 -0.04782 -0.02466

 -0.02008 -0.02028 -0.0169  

-0.01226 -0.00761 -0.00481  

-0.00255 -0.000250001 0.000760002

 0.00086 0.000139999 -0.000609999  

-0.00134 -0.00156 -0.001428  

-0.000992 -0.000598 -0.000348  

-0.001616  

   (5) 

 

B. Quantization of temperature gradient value 

 

Temperature gradient value is quantisied in six intervals. 
The set of discrete values is defined as V = {s, w, n, f, i, r}.   

Interval ranges are defined as follows ([-0.28, 0.28] →  
V):  

1. interval [0.18, 0.28), denoted as 's'; 

2. interval [0.09, 0.18), denoted as 'w',    

3. interval [0, 0.09), denoted as 'n', 

4. interval [-0.023, 0), denoted as 'f',  

5. interval [-0.046, -0.023), denoted as 'i', 

6. interval [-0.08, -0.046), denoted as 'r'.                 (6) 

  

For illustration we give a transformation example. On 
the base of temperature gradient sequence at the given 
location (Eq.5), qualitative temperature gradient sequence 
is: 

fnnnnwwwnnnnnnnnnnfffnnnnnnnn                         (7) 

 

C. Transformation of qualitative temperature gradient 

sequences  

 

We are interested only in thermocline type dominating at 
a vertical location. In order to emphasize the thermocline 
type, the temperature gradient sequences are transformed. 
The algorithm pseudocode description follows. 

 
for i=1:3842 { 

 for j=1:32 { 

  if z[i,j]==s { 

   p1=i p2=j p3=i p4=j 

 

   while (z[p1,p2-1]==w) { 

   p2=p2-1 

   z[p1,p2]=s 

   } 

 

   while (z[p3,p4+1]==w) { 

   p4=p4+1 

   z[p3,p4]=s 

   } 

 } 

 

else 

 

 if z[i,j]==r { 

  p1=i p2=j p3=i p4=j 

 

  while (z[p1,p2-1]==i) { 

  p2=p2-1 

  z[p1,p2]=r 

  } 

 

  while (z[p3,p4+1]==i) { 

   p4=p4+1 

   z[p3,p4]=r 

  } 

 } 

} 

} 
 

For  the  North  Atlantic  basin  we  have  3842 
qualitative    temperature     gradient    sequences consisting 
of symbols  'n',  'w', 'i', 'r', 's'.  Symbols 's' and 'r'  represent  
dominant  sequence  symbols determining  thermocline  
type.   Transformation examples are: 
 

wsw --> sss 

swwwwws--> ssssss 

wwwws --> ssss 
 

and 
 

iirrii  -->  rrrrrr 

irrrrr  -->  rrrrrr 

iiiiiiir --> rrrrrrrr 
 

 

For input qualitative temperature gradient sequences 

 
nnnnnnnnnnnwsswnnnnn 

iiiiirnnnnnnnnnnnnnn 

nnnnnnnnnnnnnnnnnwww 
 

the resulting sequences are:  
 

nnnnnnnnnnnssssnnnnn 

rrrrrrnnnnnnnnnnnnnn 

nnnnnnnnnnnnnnnnnwww 
 

 

V.THERMOCLINE CONCEPTUAL CLUSTERING 
AND LEARNING OF THERMOCLINE QUALITATIVE 

MODELS 
 

So on the base of expert background knowledge and data 
from WOA 2005 for the North Atlantic region, we want to 
learn models of varying thermocline types. Selected North 
Atlantic region is large enough to include all thermocline 
types encompassing regions from the North Sea to tropic 
regions [Fig. 3].  

Data pre-processing includes data transformation and 
quantization based on expert background knowledge 



described in earlier paragraphs. In this way we get 
qualitative temperature gradient sequences representing the 
base for qualitative thermocline models learning.  

The next modeling step is clustering of qualitative 
thermocline patterns [Fig. 4]. Since qualitative patterns 
incorporate expert knowledge, the results are clusters 
representing concepts – characteristic thermocline types 
descriptions. Depending on clusters quality and expert 
expectations, qualitative model parameters as the base for 
transformation and quantization, are tuned until clusters are 
of acceptable quality (Fig 4). Qualitative model tuning can 
be performed by changing qualitative model parameters 
and implementing different classifiers. Our intention is to 
use hierarchical clustering based on Levenshtein distance 
as similarity measure [1, 6, 10]. 

The resulting clusters representing varying thermocline 
types, are the base for thermocline qualitative models 
learning [Fig. 5]. In the case of insufficient number of 
patterns representing some rare thermocline instance, 
additional data from WOA 2005 can be processed in order 
to solve the sparse data problem. 

 

 
 

Fig. 4. Thermocline conceptual clustering. 

 

 
 

Fig. 5. Learning of varying thermocline types models. 

 

 

 
 

Fig. 6. Thermocline analysis. 

 

 

Learned qualitative thermocline models can be further 
used in the data analysis of unseen data from WOA 2005 
regarding other oceans and seas [6]. Possible 
implementation of qualitative models could be making of 
geographic maps. 
 

 

VI. ALGORITHM DESCRIPTION AND 
EXPERIMENTAL RESULTS 

 

Conceptual clustering of qualitative temperature gradient 
sequences is implemented as hierarchical clustering [1].  

The input for the hierarchical clustering method is the set 
of 3842 sequences. The result of the hierarchical clustering 
is a tree representing all possible resulting clusters - a 
dendogram (Fig. 8). 

Hierarchical clustering method has three steps [1,7]: 

1. Step: Compute triangular matrix of distances between 
input sequences (patterns).  

It includes computing of similarities between pairs of 
sequences using Levenshtein distance DL(x,y) [10]. Since 
these sequences of symbols are of different length, the 
dynamic programming method is used in order to 
determine the similarity. 

2. Step: If the distance between clusters Si and Sj  (in the 
first iteration every cluster contains only one pattern) is the 
smallest (the greatest similarity), we merge them in one 
cluster. We achieve cluster Si+Sj. Distances between a 
new cluster and the remaining clusters D(Si+Sj, Sk) are 
computed as: 



 

D(Si+Sj, Sk) = 1/2 D(Si, Sk) + 1/2 D(Sj, Sk) + 1/2 
|D(Si, Sk) - D(Sj, Sk)|    
      (8) 

 

Distance D(Si+Sj, Sk) is equal to the distance between 
the most distant patterns from the clusters Si+Sj and Sk. 

3. Step: If new distance matrix has more than one 
column we repeat step 2; otherwise, we end the process. 
The result is a dendogram of patterns. An example of a 
dendogram is shown in Fig. 8. 

A part of cluster number 3 is given for illustration in 
Fig.7. 

We chose the dendogram cut which gives 50 clusters 
among which we can find comprehensive clusters. Only the 
clusters containing more than 50 sequences are significant. 
Table I shows cluster prototypes representing cluster 
center.    

 

 

VII. ANALYSIS OF THE RESULTS 
 

The result of hierarchical clustering is dendogram of 

clusters containing thermocline patterns. Dendogram cut is 

made at the tree level with 50 clusters. Only 14 of those 

clusters contain a significant number of patterns which has 

to be greater than the total number of clusters. Table 1 

shows 14 cluster prototypes representing characteristic 
cluster thermocline patterns where n represents cluster 

number. 
 

nnwwwnnnnnnnnnnnnnfnnnnnnnnn 

nnwwwnnnnnnnnnnnnnfnnnnnnnnn 

nnwwwnnnnnnnnnnnnnfnnnnnnnn 

nnwwwnnnnnnnnnnnnnfnnnnnnnn 

nnwwwnnnnnnnnnnnnffnnnnnnnn 

nnwwwnnnnnnnnnnnnffnnnnnnnnn 

nnwwwnnnnnnnnnnnnnfnnnnnnnn 

nnwwnnnnnnnnnnnnnffnnnnnnnn 

nnwwnnnnnnnnnnnnnffnnnnnnnnn 

nnwwnnnnnnnnnnnnnffnnnnnnnnn 

nnnwwnnnnnnnnnnnnnfnnnnnnnnn 

 
Fig. 7. A part of sequences from the third cluster.  

 

 

 
Fig. 8. An example: The dendogram of thermocline patterns for 

30 clusters. 

 

 

 

TABLE I 

CLUSTER PROTOTYPES 

n Cluster prototype 

3 nnwwwnnnnnnnnnnnnffnnnnnnnnn 

4 nnwwwnnnnnnnnnnnnnnnnnnnnnnnnnf 

5 nnnnnnnnnnnnnnnnnnnnnfnfnnn 

14 nnnnnnnnnnfn 

21 nnnsssnnnnnnnnnnnnfnnnnnnnnn 

22 nsssnnnnnnnnnnnnnnnnnnnnnnnnnn 

23 nnnnnwwnnnnnnnnnnffnnnnnnnn 

25 nnnnnnnnnnnnnnnnnnnnnnnnnnnnf 

27 nnnnnnfffnnnnnnnnnnnnn 

39 nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 

40 fffffffnnnfn 

45 nnnnnnnnnnnnnnnnnnnnnnnnnn 

49 nwwn 

50 nnnnnnnnnnnnnnnnnnnnnnnfnffffff 

 

The following groups were selected for further analysis, 
based on the significance of their thermocline conditions. 
Group 3, which exhibits a weak thermocline at the surface. 
Groups 5 and 14, which exhibit no thermocline but have a 
small temperature inversion (increase in temperature with 
depth) close to the bottom. Groups 21 and 22 best describe 
strong thermoclines at or close to the surface, and as such 
should be indicative of low latitude locations. Finally, 
group 39 is the most comprehensive group that exhibits no 
thermocline and will serve as a reference. 

 
 

VIII. CONCLUSION 
 

Expert analysis of clustering results shows that 
qualitative model needs to be tuned in order to satisfy some 
of the expert expectations. Significant clusters obtained are 
not enough precise representations of all interesting 
thermocline types. Future work will focus on that problem 
in effort to get more complete conceptual cluster 
descriptions. 

The paper introduces our approach in an effort to model 
thermocline as a physical phenomenon. The resulting 
clusters obtained by the conceptual clustering are the base 
for the thermocline model building. In our future work we 
intend to tune initial parameters and implement different 
classifiers which determine the formation and the quality of 
clusters representing thermocline types. The next step is the 
implementation of machine learning methods [1,7] in order 
to learn different thermocline models for representative 
clusters. Learned thermocline models could then be used in 
thermocline analysis for other data from WOA 2005. 
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