
Automatic Building of a Dictionary of Technical Terms and Collocations

 Based on AVL Tree

Davor Blažeković, Maja Matetić and Marija Brkić

Department of Informatics
University of Rijeka

Omladinska 14, 51000 Rijeka, Croatia
Phone: (+385) 91 503 1327 E-mail: davor.blazekovic@ri.t-com.hr, majam@inf.uniri.hr, mbrkic@inf.uniri.hr

Abstract - The aim of this work is automatic building of a

dictionary of technical collocations. The input to the building

procedure is a number of Croatian technical texts from a

restricted domain. The dictionary is implemented as an AVL

tree, a binary tree which ensures performance of operations

such as insertion and retrieval in logarithmic time. Tree nodes

contain words and their part of speech (POS) tags. POS tags

are partly obtained using the Croatian Morphological

Lexicon. POS information enables us to use syntactic filter in

order to reduce noise in collocation retrieval.

I. INTRODUCTION

The subject of this paper is the process of building
technical terms and collocations dictionary. Technical
terms dictionary building for different constrained domains
is a complex procedure that requires expert engagement
and close collaboration with linguists.

An impressive amount of work was devoted over the
past few decades to collocation extraction. The state of the
art shows that there is interest in statistical [1, 2],
unsupervised machine learning [3, 4], and syntactic
approaches [5] to the problem. In our approach we use the
syntactic preprocessing of texts in order to better identify
candidate expressions.

We present the application we developed as a support in
the task of automatic technical terms dictionary building
for a restricted domain. Using a sample technical text from
a restricted domain and text based POS tagged AVL
dictionary, the induction of syntactic collocation patterns is
made. We are interested in the extraction of collocations by
specifying one of the words, and with respect to the POS
tags of the surrounding words. One approach to this
problem is described in [5].

Lexicon is the heart of any natural language processing
system. Accurate words with grammatical and semantic
attributes are essential or highly desirable for any
application, whether it is machine translation, information
extraction, various forms of tagging, or text mining.
However, good quality lexicons are difficult to construct
and require enormous amount of time and manpower [6].

Our dictionary is based on an AVL tree, a balanced
binary tree structure named after its authors, G. M.
Adelson-Velskii and E.M. Landis [7]. The heights of the
subtrees in an AVL search tree must not differ by more
than one. AVL trees are, therefore, known as height-
balanced binary search trees. Imposing that limitation
makes the search efficiency logarithmic, O (log2n), in

comparison to the linear lists, which have linear search
efficiency O(n).

First we describe AVL trees and operations which are to
be performed in order to balance them. An important step
in collocations dictionary building is POS tagging which is
introduced in the third paragraph. We follow with the
description of the application we developed for automatic
collocations dictionary building. At the end we give an
example illustrating the application use.

II. DICTIONARY IMPLEMENTATION

The dictionary is implemented as a balanced binary tree
structure – the AVL tree. AVL tree data structure is created
by mathematicians Adelson-Velskii and Landis [7]. An
AVL tree is a binary search tree in which the heights of the
left and right subtree (TL and TR) differ by no more than
one. Because AVL trees are balanced by changing their
height, they are also known as height-balanced binary
search trees. Fig. 1 shows an example of an AVL tree.

| HL – HR | <= 1 (1)

Node insertion and deletion operations can have O(N)

worst-case efficiency, where N is the number of tree nodes.
To execute more efficient operations, we have to minimize
the tree height after each operation. A balanced AVL tree
with N elements has height proportional to log N. The goal
is to keep tree property after each operation.

Fig. 1: AVL tree example [7].

Whenever we insert a node into a tree or delete a node
from a tree, the resulting tree may be unbalanced. In that
case we must rebalance the tree. Balancing AVL trees is
done by rotating nodes either to the left or to the right.

All unbalanced trees fall into one of these four cases
(Fig. 2):

1) Left of left, when a subtree of a tree that is left high
has also become left high

2) Right of right, when a subtree of a tree that is right
high has also become right high

3) Right of left, when a subtree of a tree that is left
high has become right high

4) Left of right, when a subtree of a tree that is right
high has become left high.

Fig. 3 contains a simple left rotation [7]. Although the

subtree 18 is balanced, the root is not. We therefore rotate
the root to the left, making it the left subtree of the new
root, 18. The case in Fig. 3(b) is more complex. It shows a
right high root with two right high subtrees. This creates a
right-of-right out-of-balance condition. To correct the
balance, we rotate the root to the left, making the right
subtree, 20, the new root. In this process, 20's left subtree is
connected as the old root's right subtree, preserving the
order of the search tree.

A part of the program implementation of simple left
rotation in C++ is given:

static Cvor* SingleRotateWithLeft(Cvor* K2)

 {

 Cvor* K1;

 K1 = K2->L;

 K2->L = K1->R;

 K1->R = K2;

Fig 2: Out of balance AVL trees [7].

Fig 3: Right of right – single rotation left [7].

K2->Height = Max(Height(K2->L), Height(K2->R

)) + 1;

 K1->Height = Max(Height(K1->L),

K2->Height) + 1;

 return K1;

 }

III. POS TAGGING

POS tagger is a necessary module in any natural

language understanding subsystem. It is a program that
annotates each word in the input by specifying its
grammatical properties, such as part of speech, number,
person, etc. Part of speech information about each word in
a sentence helps to determine its syntactic structure. Since
the existence of a tagged corpus is crucial for training a
POS tagger and creating more advanced language
processing tools, we tagged our dictionary with the help of
the Croatian Morphological Lexicon described in [8].

Tree nodes contain words and their part of speech (POS)
tags. POS information enables us to use syntactic filter in
order to reduce noise in collocation retrieval.

Problem arises as a consequence of Croatian language
complexity and specificity regarding language inflexions
and free word order [9, 10, 11, 12, 13]. There are only few
applications and methods developed for machine
processing of Croatian language texts. The input to the
Croatian Morphological Lexicon is a limited number of
words and the output is a list of these words with their POS
tags. The tagging efficiency is rather unsatisfactory because
only 20-30 percent of input words are successfully tagged,
and the input is constrained to nineteen words per one
tagging session. Assuming that Morphological Lexicon is
error free, the accuracy of the automatically derived POS
tags is 100%. The untagged words are then manually
processed.

We deal with only major categories defined in the
MULTEXT-East morphosyntactic specifications and
exclude their attribute-value pairs to reduce the number of
tags [14]. The major POS categories comprise nouns (N),

verbs (V), adjectives (A), pronouns (P), adverbs (R),
adpositions (S), conjunctions (C), numerals (N), particles
(Q), interjections (I), abbreviations (Y), and residuals (X).

IV. AUTOMATIC GENERATION OF DICTIONARY

Lexicon is the heart of any natural language processing

system. Accurate words with grammatical and semantic
attributes are essential or highly desirable for any
application, whether it is machine translation, information
extraction, various forms of tagging, or text mining.
However, good quality lexicons are difficult to construct
and require enormous amount of time and manpower. The
authors in [6] have addressed this problem by showing how
the WordNet can be used to construct a document specific
dictionary.

Such a problem is relevant, for example, in machine
translation context. If the document specific dictionary is
available apriori, the generation of a target language
document from a source language document essentially
reduces to syntax planning and morphology processing for
the pair of languages involved.

V. APPLICATION DESCRIPTION

The tool being developed for text processing
incorporates a fusion of linguistic knowledge and corpora
methods. The Web offers a huge repository of documents
written in a multitude of languages and dialects, of
different categories, and constantly changing over time. It
is, therefore, well suited for collocation related tasks [6].

Collocation acquisition from corpora is usually based on
statistical significance test on the words that occur close to
each other. Syntactic parsing methods allow linguistically-
informed methods of extraction nowadays. POS tagging as
a text preprocessing method supports the identification of
collocation candidates.

User interface with application controls can be seen in
Fig. 4. Explanation of the functionality of main application
controls follows below.

Fig 4: Application interface.

Izvrši (Execute) – generates a dictionary of
alphabetically sorted words on the base of a technical text,
using AVL tree. Sorting five hundred text pages takes
about ten seconds.

Početna oznaka (Initial tag) – initializes dictionary
words to null tags. An example showing a part of a tagged
dictionary is given below:

kavi -0

koja -0

koji -0

kojima -0

kompaktan -0

korisnik -0

korisničko -0

koristiti -0

kvalitetno -0

lako -0

Null tags mark where manually inserted tags or tags

from the Croatian Morphological Lexicon are to be placed.
Generated dictionary is the input for the Croatian
Morphological Lexicon. Output is partly POS tagged
dictionary.

Učitaj oznake (Load tags) – built tagged dictionary can
be used for tagging new texts. Missing tags can be inserted
in the dictionary if they are found in another specified
dictionary. Here is an example showing a part of the
described procedure results:

Kod -0 Kod -N

Loša -0 Loša -A

Prednosti -0 Prednosti -N

Takav -0 Takav -P

Također -C Također -C

To -0 To -P

Vrlo -0 Vrlo -A

akvizicijska -0 akvizicijska -A

ali -0 ali -C

automatizirane -0 automatizirane -A

bi -0 bi -V

biti -V biti -V

broj -N broj -N

dobije -0 dobije -V

dobiti -0 dobiti -V

dobiveni -A dobiveni -A

dodatno -0 dodatno -A

Pokreni (Start) – button which activates technical terms

and collocations search. Collocation search is constrained
with a word which should be one of the collocates.

A. An example: Building a Dictionary of Technical Terms

Based on AVL Tree

By using a sample technical text from our corpus and the
corpus-based POS tagged AVL dictionary, the induction of
syntactic collocation patterns is made. We are interested in
the extraction of collocations by specifying one of the
words, and with respect to the POS tags of the surrounding
words.

This is a part of the AVL dictionary word list with its
POS tags:

Inverzno -A
Kod -N
Loša -A
PC -N

Prednosti -N
SetTimer -N
Takav -P
Također -C
To -P
Vrlo -A
Windowsi -N
akvizicijska -A
ali -C
automatizirane -A
bi -V
biti -V
broj -N
debugati -V
dobije -V
dobiti -V
dobiveni –A
dodatno -A
dotičnim -A
dovoljno -A

The syntactic patterns for English proposed by different
authors are shown in the following list [6]:

1. Lexical collocations in BBI dictionary:
V-N, N-A, N-V, N-P-N, A-Adv, V-Adv;
2. Hausmann’s collocation definition:
N-A, N-V, V-N, V-Adv, A-Adv, N-[P]-N;
3. Xtract collocation extraction system:
N-A, N-V, V-N, V-P, V-Adv, V-V, N-P, N-D;
4. WordSketch concordance system:
N-A, N-N, N-P-N, N-V, V-N, V-P, V-A, N-Conj-N, A-P;
5. FipsCo system:
N-A, N-N, N-P-N, N-V, V-N, V-P, V-P-N.

We are interested in the extraction of collocations by
specifying one of the words which forms one part of a
technical term. That would allow us to compile a dictionary
of technical terms for any domain, giving an overview of
regular and irregular usage of such terms. As an
illustration, the result of the collocation extraction is given
below. One of the collocates is the word 'sustav' (system)
and the chosen syntactic patterns are A-N and P-N. The
user interface is shown in Fig. 5.

Collocations containing word 'sustav' in the sample text
are:

nezavisan –A sustav –N

Takav –P sustav –N

regulacijski –A sustav –N

VI. CONCLUSION

Our application for automated collocations dictionary
generation is based on the dictionary of words and their
tags. The quality of the collocation extraction depends on
the size of the tagged dictionary. The absence of a

Fig. 5. The interface of the collocation extraction system.

complete morphological lexicon, which should be a basic
resource for text tagging, is a significant obstacle in
Croatian language texts processing. Language resources
development requires mutual adjustment and compliance
with the international standards.

REFERENCES

[1] P. Pecina, "A Machine Learning Approach to Multiword
Expression Extraction", In Proceedings of the LREC 2008
Workshop Towards a Shared Task for Multiword Expressions
(MWE 2008), Marrakech, Morocco, May 2008.

[2] H. Wang, "Extraction of Word Collocations in Singapore
Mandarin Chinese", in Proceedings of the International
Conference on Asian Language Processing 2008, Thailand,
November 12-14, 2008.

[3] A-C. N. Ngomo, "Knowledge-free discovery of domain-
specific multiword units", in Proceedings of the 2008 ACM
symposium on Applied computing, pages 1561-1565,
Fortaleza, Ceara, Brazil, 2008.

[4] A-C. N. Ngomo, SIGNUM: A Graph Algorithm for
Terminology Extraction, Computational Linguistics and

Intelligent Text Processing, Lecture Notes in Computer
Science, pages 85-95, 2008.

[5] V. Seretan, L. Nerima, and E. Wehrli, “Using the Web as a
corpus for the syntactic-based collocation identification”, in
Proceedings of International Conference on Language
Resources and Evaluation (LREC 2004), pages 1871–1874,
Lisbon, Portugal, 2004.

[6] N.Verma and P. Bhattacharyya, Automatic Lexicon
Generation through WordNet, The Second Global Wordnet
Conference, Brno, Czech Republic, 2004

[7] R. F. Gilberg, B. A. Forouzan: Data Structures: A
Pseudocode Approach With C, Course Technology Press,
1998.

[8] M. Tadić, “Croatian lemmatization server,” in Proc. of the 5th
Formal approaches to South Slavic and Balkan languages
Conference, Sofija, 2006, pp. 140-146.

[9] T. Žubrinić, "Mogućnosti strojnoga označavanja i
lematiziranja korpusa tekstova hrvatskoga jezika",
magistarski rad, Filozofski fakultet Sveučilišta u Zagrebu,
1995, http://www.fi.muni.cz/gwc2004/proc/81.pdf

[10] M. Tadić, "Building the Croatian-English Parallel Corpus",
LREC2000 zbornik, Atena, 31. svibnja-2. lipnja 2000,
ELRA, Pariz-Atena 2000, Vol. I, str. 523-530.

[11] M. Tadić, "Računalna obradba hrvatskih korpusa: povijest,
stanje i perspektive", Suvremena lingvistika 43-44, str. 387-
394, 1997.

[12] M. Tadić, "Raspon, opseg i sastav korpusa suvremenoga
hrvatskoga jezika", Filologija 30-31, str. 337-347, 1998.

[13] M. Brkić, M. Matetić: "Preparation for POS tagging of
Croatian weather forecast domain", Proceedings of the 31st
International Convention MIPRO 2008, Vol. III, CTS and
CIS, Opatija, 2008, pp. 228-232

 [14] Multext-East Resources, version 3. Available:
http://nl.ijs.si/ME/V3/.

