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ABSTRACT

In this paper, an efficient realization of two-channel wavelet
filter bank with adaptive number of zero moments is proposed.
Described time variant wavelet filter bank is more suitable for
analysis of non-stationary signals then fixed banks. Filters with
more zero moments result in better representation of smooth
parts of the analyzed signal, while less zero moments is better
for transients and singularities. Proposed realization is based on
the lifting scheme, derived from a method of fixed wavelet
filter bank design, using Lagrange interpolation of samples in
time domain. Adaptation criterion is calculated from wavelet
coefficients, which is under some restrictions reproducible on
the reconstruction side. Wavelet filter banks with adaptive
number of zero moments outperforms fixed banks in a number
of applications.
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1. INTRODUCTION

Analytical properties of wavelet filter banks are closely related
to convergence and regularity of the limit wavelet functions
and scales. More zero moments correspond to more regularity,
which gives better description of smooth and correlated parts
of the analyzed signal [1][2]. But, it results in longer filters that
cause ripple effects on sharp edges. On the other hand, shorter
filters are more suitable for compact representation of
transients and singularities, as well as parts of the analyzed
signal with narrower correlation of samples.

The number of vanishing moments of a fixed filter bank is
usually chosen as a compromise between filter complexity and
concentration of the wavelet coefficients. Our goal is to change
the number of zero moments on both filters in the bank at each
step of decomposition. The two-channel PR filter bank should
form wavelet tree or wavelet packet tree, so the convergence
and some degree of regularity must remain. The adaptation
criterion should be computed from wavelet coefficients,
wishfully resulting in more compact representation of the
analyzed signal. We expect benefits of using adaptive number
of zero moments in many applications [6].

In section 2 we describe the construction of the proposed
adaptive filter bank. Sweldens 96 [3] proposed a construction
of biorthogonal wavelet filter banks based on the lifting
scheme, using interpolation of samples in the time domain. A
short review is given in paragraph 2.1. Even samples are
estimated from odds using Lagrange interpolation functions of
chosen order. In the proposed scheme, we consider odd order
Lagrange polynomials corresponding to the even length FIR
filters.

In paragraph 2.2 we give the proposed factorization of the
adjustable lifting step. In paragraph 2 adjustable dual step is

introduced. In section 3 we discuss the adaptation criterion. To
ensure the convergence and minimum regularity, filters are
split in a fixed and a variable part.

2. FILTER BANK STRUCTURE
2.1 Lifting scheme

The lifting scheme is related to the polyphase representation of
filter banks, with polyphase matrix factored in a cascade of
triangular sub-matrices. Each sub-matrix corresponds to a
lifting or a dual lifting step. Its all-ones diagonal form
guaranties existence of the inverse sub-matrix, even if lifting or
dual lifting operators are not constant or linear. An inverse sub-
matrix is obtained by a simple transposition followed by the
change in sign. It enables easy construction of perfect
reconstruction time-variant and non-linear filter banks.
Daubechies and Sweldens 98 [4] show that any two-band FIR
filter bank can be factored in a set of lifting steps, using
Euclidean algorithm.
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Figure 1. Two-channel PR filter bank factored in
lifting and dual lifting steps.

The polyphase matrix of the filter bank from Figure 1 is
factored in 2 triangular sub-matrices:
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In this paper, a class of two-channel biorthogonal filter banks
constructed by Lagrange interpolation method is used.
Sweldens 96 [3] described a lifting scheme construction of
Deslauriers - Dubuc filter banks [ 5] by interpolation of samples
in the time domain. The illustration of linear (I1I) and cubic (IV)
case is given below:
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Figure 2. Lagrange interpolation of samples

We use S and T filters of the Lagrange interpolation type with
even number of zero moments.

2.2 Adjustable lifting step

We start from the filter bank structure given in Figure 1 and
equations (2.1) and (2.3). Two zero moments of the high-pass
filter are equivalent to the requirements:
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These conditions decrease the freedom of choice of the
prediction filter coefficients {s;}, and lead to equations:
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We express the central coefficients sy and sy_; from the outer
ones:
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Now, we split the prediction filter into two additive
components: fixed and “free” part: Sy=So+Spee. Where
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The next pair of zero moments additionally reduces freedom in
coefficients of the prediction filter:

H'(z)., =0, H"(z)|._ =0.

In general, expressions for central coefficients are getting more
and more complex with each new pair of zeros. For the
simplicity, we limit ourselves to the linear phase prediction
filters with 8-taps (N=4). The results are presented in Table
2.1. Prediction filter is always a sum of additive components:
e.g. Sy=S¢ for 2 zero moments, Sy=S+S; for 4, or
Svin=Se+S+3,+S; for 8 zero moments.

Finally, the proposed realization of the lifting step is shown in
Figure 3.

Successive closing of switches S5, Sy, Sy and S, gives 2, 4,
6 or 8 zero moments of the high-pass filter, respectively. It
corresponds to the prediction of odd samples from neighboring
even samples, using linear, cubic, 5™ or 7" order polynomial

interpolation.
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Table 2.1. Additive components of the 8 tap linear
phase prediction filter (s;=sg, S¢=S1, S5=S2, S$4=53)
providing 2, 4, 6 or 8 zero moments to the high-pass
filter H(z).

Additive components can be factored and realized in a cascade:
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Figure 3. Llftlng step of the hlgh-pass filter with 0, 2,
4, 6 or 8 zero moments: bior(2xm).0. More zero
moments corresponds to higher order Lagrange
polynomial interpolation.

2.3 Adjustable dual lifting step

Let the high-pass filter have at least 2 vanishing moments.
From Figure 1, equations (2.2) and (2.4) we have following
expressions for the first 2 zero moments of the low-pass filter:

L(Z)|z=—1 =0, L'(Z)|z=—1 =0
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Now, we express the central coefficients of the update filter
from its outer coefficients. Then we repeat the procedure for 4,



6 and 8 zero moments of the low-pass filter, times all switch
positions me{1,2,3,4} of the prediction filter. The factored
results are presented in Table 2.2. Gain constants 4; depend on
switch positions of the prediction filter.
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Table 2.2. Additive components of the 8 tap update
filter with linear phase (t;=ty, ts=t|, ts=t, l;=t3)
providing 2, 4, 6 or § zero moments to the low-pass
filter L(z).

Gain constants A, are shown in the following table:
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Table 2.3. Gain 4; depends on the actual number of zero
moments of the high-pass filter, unless n < m.

An interesting conclusion comes from Table 2.3. If the number
of zero moments of the LP filter is less or equal to the number
of zero moments of the HP filter, 4; equals 1 for all i=0-3.
Hence, if the number of closed switches in the update filter
does not exceed the number of closed switches in the
prediction filter, we have “independent” lifting and dual lifting
switching networks.
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Figure 4. Dual lifting step of the low-pass filter with 0,
2, 4, 6 or 8 zero moments: bior(2xm).(2xn). If n < m,
AO=A 1=A2=A3=] .
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3. Adaptation criterion and results

To preserve convergence and minimum regularity of the limit
functions, we fixed 2 vanishing moments on both filters.
Hence, switches S,,; and T,,; are always closed, and our filter
bank is split in basic HP and LP channels. In order to change
the number of zero moments of the HP filter, we used the
criterion of the minimum absolute error. At each step of
decomposition we choose such a number of closed switches m

that gives the minimum absolute error |e[4]|. The error signal is
computed from wavelet coefficients. The same procedure is
applied for the LP filter, with additional condition # < m.

Due to decimation, aliasing frequency of the analyzed signal
x[k] maps to the DC component of the wavelet coefficients
d[k]. Signal DC is preserved in a[k] coefficients. To avoid its
influence on the criterion, we use high-pass filtered wavelet
coefficients as the error input of the adaptation algorithm
(Figure 5).

From Figure 6 we see that the decomposition is almost
optimal: the number of zero moments chosen by the adaptation
criterion follows the properties of the analyzed signal x[£]. The
filter order is low on polynomial edges thus decreasing the
ringing effects. Discarding of some wavelet coefficients causes
low and localized distortion of the restored signal.
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Figure S. Wavelet filter bank with adaptive number of zero

moments bior(2xm).(2xn), n < m.
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Figure 6. Top left: analyzed signal x[k], composed
from 4 polynomial sections of increasing order
(1,3,5,7). Top right: wavelet coefficients d| k| computed
by time-variant filter bank. Bottom left: number of
closed switches m|k]. Bottom right: magnified detail
dlk].

For the reference, Figure 7 shows details of signal x[k]
computed by traditional fixed wavelets with 2 and 8 vanishing
moments. Two zero moments are not enough for efficient
representation of the high order polynomials. Large number of
wavelet coefficients is different from zero. On the other hand,
eight zero moments introduce ripple near polynomial edges. If
we discard some non-zero sample, it results in distortion of the
signal in a wide surrounding.
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Figure 7. Left: wavelet coefficients d[k] obtained from
fixed filter bank bior2.2. Right: d[k] from fixed filter
bank bior8.8. Bottom: magnified details d[k]. Analyzed
signal is x[k] from Figure 6.

A three level wavelet decomposition is shown in Figure 8.
Approximation coefficients contain almost undistorted
polynomials, while details carry out the singularities.
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Figure 8. Three level decimated adaptive wavelet
decomposition of signal x[k] from Figure 6.

The contribution of each additional pair of zero moments can
be quantified through the signal amplitude on switches. It is
decreasing rapidly for most signals of interest. Hence, the
structure in Figure 5 can be used to make decisions on the
maximum reasonable number of vanishing moments for a
given input process.

If we add some white noise to x|k|, the unpredictable noise
components can excel the correlated parts of x[k]. The
consequence is an intensive variance of the switches’ positions.
Additional filtering of the error signal can reduce the variance.
We used averaging on 21 samples (minimum sum of absolute
errors on interval: £,__10“"'° le[i]|.). The results are presented in
Figure 9.

In general, we can reconstruct the analyzed signal from wavelet
coefficients plus information on switch positions m|k] and n|k].
They can be coded very efficiently. But, if the adaptation
criterion is causal, e.g. if the current switch positions are
determined exclusively from previous wavelet coefficients, the

adaptation algorithm can be reproduced on the reconstruction
side. In that case, perfect reconstruction does not require m and
n to be separately transferred to the reconstruction side.
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Figure 9. Positions of switch S§,,. Closed switch
corresponds to value 1. Left: no additional noise in
x|k]. Center: noise present. Right: noise present, error
signal averaged on the interval of 20 samples.

4. SUMMARY

We give an efficient realization of the two-channel wavelet
filter bank with adaptive number of zero moments. Prediction
and update filters are implemented as a mixed cascade/parallel
parallel set of filter sections, where each successive section
brings the contribution of the higher order polynomial
interpolation. A set of switches determines the desired number
of zero moments at each step of decomposition or
reconstruction. It is shown that, under some conditions, the
same network can be used to enable simultaneous adaptation of
zero moments of both filters in the bank. We used the least
absolute error criterion, computed from filtered wavelet
coefficients. Adaptive filter bank is applied on a synthetic
signal. Wavelet coefficients get close to what we expect to be
an optimal representation of the analyzed signal. Real world
signals usually contain non-correlated components, inherent to
the signal or caused by additive noise. They cause intensive
variance of the switch positions. Averaging of the error signal
decreases the variance. Described time variant wavelet filter
bank is more suitable for analysis of non-stationary signals
then fixed banks. It outperforms fixed wavelets in many
applications.
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