
Security of Web Level User Identity Management

Jakov Krolo, Marin Šilić, and Siniša Srbljić
Faculty of Electrical Engineering and Computing, University of Zagreb

Unska 3, 10000 Zagreb, Croatia
Phone: +385 1 6129 897

E-mail: jakov.krolo@fer.hr, marin.silic@fer.hr, sinisa.srbljic@fer.hr

Abstract - The changing trends in the usage of contemporary
Web technologies and Web design have led to the Web 2.0
concept. Web 2.0 has introduced variety of new possibilities
for both Internet service providers and users. The rapid
evolution of services like e-banking, e-commerce, social-
networking sites, blogs, and video-sharing sites have arisen.
The nature of these services requires for users to be digitally
identified. The identification process is conducted on the Web
services level and each service has its own user identity
control system, which makes usage of services more difficult
for users and raises development costs for service providers.
In Web 2.0 era, instead of having the identity on the Web
services level, identification process should be conducted on
the Web level. This concept is known as Identity 2.0 and it
represents a federated identity model in which users are in
full control of their online identities. In this paper we discuss
security risks of federated identity model. Furthermore, we
review OpenID, the most popular protocol that implements
federated identity model. Finally, we describe how OpenID
responds to the security issues of federated identity model. As
a potential solution to those problems, we discuss related
protocols and interoperability between them.

Keywords: Web security, Identity 2.0, federated identity
model, OpenID

I. INTRODUCTION

The recent Web design improvements and the way Web
technology is utilized, and also the idea of using the
Internet as a platform for application development, have
led to the new Web 2.0 concept. The biggest turnover was
the adoption of the AJAX that left the concept of static
Web sites where users can view information to the new
concept of building an interactive Web application in the
Web browser. With the Web 2.0 concept, numerous new
Web services with extended functionality have become
available.

Contemporary Web services provide users not just the
ability to browse the Web and access information, but also
the ability to contribute and push their own content to the
Internet. Web services like e-banking, e-commerce, social-
networking sites, blogs, and video-sharing sites provide
functionality that might have serious impact on reality and
user activity can be reflected in real life. The nature of
most Web services of that kind requires strict security
settings management and the ability to reliably identify
each user of a certain service.

Today, the existing Web services security management
systems use centralized models or user identity
management. Centralized identity management implies that
each Web service embeds its own security management

system for user identification, authentication and
authorization. In a centralized model, security settings,
access control and identity management are conducted on
the Web service level. A centralized user identity
management system requires users to register for service
usage. During the registration process, users need to be
assured that they will get their own unique user identity. A
user identity management system usually assigns each user
identification data consisting of a username and password.
The main disadvantage is that the user needs to register
and choose his identification data and, worst of all, the
user needs to remember this data and provide it every time
he wants to access the service. This approach to service
access control and user identity management makes
service usage more difficult for users. Another
disadvantage of this approach to access control and
identity management is that it significantly raises Web
service development costs from the service provider
perspective. In this way, every Web service that is
deployed on the Internet needs to have its own access
control management, registration management,
authentication management, user identity data management
and authorization management. An average Internet user
has habits to choose the same username and password for
different services, which leads to another approach to user
identity.

Alternatively, instead of user identity management on
the service level, significant improvement could be
achieved when user identity management could be
conducted on the Web level. This idea corresponds to the
Web 2.0 concept and it is known as Identity 2.0. Identity
2.0 is a federated identity model that requires the
assistance of a third party between users and services. The
third party is responsible for user identification on the Web
level. In this way, users would be identified on the Web
level only once and then could access a variety of different
services using the same identity.

The paper is structured as follows. Section II presents
the federated identity model and security and privacy risks
present in this model. In section III, we review the OpenID
protocol, the most popular implementation of the federated
identity model for user identity management. We show
how OpenID manages security and privacy risks of the
federated identity model. Section IV describes related
protocols based on the federated identity model and their
interoperability with OpenID. The paper finishes with
conclusions in Section V.

Figure 1. SSO SP-initiated pattern

II. FEDERATED IDENTITY MODEL

The Federated identity model provides users the ability
to distribute their digital identity across multiple security
organizations and domains. The basic idea of federated
identity management is to conduct user's identification on
the whole Web level. This approach is called Single Sign
On (SSO) [1] and it enables users to sign on only once and
use the same identity to access multiple different Web
services. In this way, using services and browsing the Web
becomes easier and requires less effort. Another advantage
is the reduction of development costs since the service
provider offloads authentication to a third party.

There are four basic logical components in the federated
identity model: user, user agent, service provider, and
identity provider. The user is a person who acquires digital
identity in order to interact with services in the Web
environment. The user agent is a software application that
runs on a PC or mobile device and is used bay the user for
online interaction and Web browsing (usually a Web
browser). The service provider (SP) is a Web application
that exposes the user interface to the Web service
functionality. The service provider offloads the
authentication process to a third party and is also called the
relying party in the federated identity model. The identity
provider (IdP) is a Web application that conducts the
identification and authentication process on the user's
behalf on the Web level.

In the SSO approach, user identity data is transferred
between the service providers and the identity provider.
There are two basic variants of SSO from the data flow
perspective. The first variant is called SP-initiated SSO [2]
and the data flow in this pattern is presented in Figure 1. In
the first step, the user tries to reach the service provider SP
(1). The service provider receives a user request, generates
an authentication request and sends it to the user agent (2).
The user agent forwards the request to the identity
provider IdP (3). IdP parses the authentication request,
generates an encoded response and returns the response to
the user agent (4). The user agent forwards the response to
the service provider SP (5). The service provider parses
the response and redirects the user agent to the originally
requested service (6).

The other SSO variant is called IdP-initiated SSO [3]
and its data flow is presented in Figure 2. In this pattern
the identity provider is configured with specialized links
that point to desired services. Initially, the user visits the
identity provider IdP (1). IdP asks the user for
identification data (2). The user provides his identification
data to IdP and local security context about the user is
created (3). Using the links on the identity provider site,
the user requests the desired service provider SP (4).

Figure 2. SSO IdP-initiated pattern

IdP creates authentication tokens from the local security
context (5) and the user agent sends these authentication
tokens to the service provider (6). The service provider
checks if the user is authorized to access the service
and redirects the user agent to the originally requested
resource (7).

The SP-initiated variant of SSO is a form of user-centric
identity management where everyone can implement their
own identity provider. The main challenge in SP-initiated
SSO arises in implementing an identity provider discovery
from the service provider perspective. The most common
answer to this challenge is to map identity providers with
usernames patterns that users provide before the user agent
is redirected to the identity provider. Security-wise, this
pattern is more vulnerable to phishing attacks, since a
malicious or compromised service provider could redirect
the user to a fake identity provider that looks like the real
one, and the user’s identity could be compromised.

In the IdP-initiated pattern, the user visits an identity
provider himself, and all the links that point to resources
are embedded in the identity provider. The IdP pattern is
more secure when against phishing attacks. However, the
SP-initiated pattern is more scalable since the IdP-initiated
pattern presumes that links that point to all the resources
are available on the identity provider. In this way, every
new service provider should register on each popular
identity provider. This leads to identity management where
few popular identity providers manage the majority of
user's Web identities. If someone implements its own
identity provider, then links that point to resources and
services should also be embedded.

In the federated identity model, the user identification
data source and identity management system are separated
from its usage. The user can log in only once and access
multiple resources on the Web without providing his
personal data and identity to all of them. Service providers
can focus on quality of service and core service
functionality improvements. Identity providers can focus
on identification and authentication methods improvement.
Although all three parties involved in the federated identity
model benefit from their participation, the model also
introduces severe security and privacy issues. In the
federated identity model, user identity is exchanged
between the identity provider and the service providers.
All parties should secure their communication channels
against eavesdropping, man-in-the-middle attacks and
other similar threats. In the HTTP protocol, the line is
considered secure when SSL/TLS with mutual
authentication is used. Another security issue is the
authentication method that includes username-password
pairs which is very vulnerable to phishing attacks. Since
the identity is distributed across security domains, the risk
of stolen identity is higher. Most of the protocols

implementing SSO have a lifetime limit for security
tokens. Finally, the role of identity providers in the
federated identity model is to manage user identity on the
Web level, which introduces privacy threat where a
malicious identity provider could track user activity.

III. OpenID

The federated identity model is used as a basis for new
identity standards that are being developed during the last
few years. The most noticeable success was made by the
OpenID standard. OpenID is an open decentralized
standard for user identification, based on the federated
identity model. According to statistics from January 2009
[4], more than 30 000 websites allow OpenID login as a
means to access their services. The biggest Internet
companies support or have announced plans to support
OpenID. According to statistics from October 2008 [5],
more than 500 million users are able to use OpenID
authentication. Later on, Google [6], Microsoft [7] and
PayPal [8] announced that they will start providing
OpenID identities during 2009, significantly raising the
number of OpenID users. We are approaching the point
where a website can assume that the user has an OpenID
identity.

A. What is OpenID

An OpenID identifier is usually in the form of a URL.

For example, a user can sign on using the following
OpenID identifier: "http://alice.example.com". Because
URLs are unique, so are the digital identities represented
by each URL. There is no connection between digital and
physical identities, which means that a physical person can
have more than one digital identity (just like he can have
more than one e-mail account). It also means that one
digital identity identifies exactly one Internet user. Besides
URLs, OpenID identifiers can be represented by i-names,
which are one form of the XRI standard. XRI is an open
standard for sharing resources and data across domains and
applications. It uses a new layer of abstract addressing
over the existing IP numbering and DNS naming layers.
XRI is intended to be as easy as possible for people to
remember and use. For example, a user can sign on using
the following OpenID identifier "=Alice", which is more
likely to be used by an average Internet user than a URL.

Besides using URLs and XRI, it is OpenID's
decentralized nature and cost advantage that made it so
popular and accepted. OpenID is fully decentralized
because users can host their own identity on any server
they choose or have it hosted by one of many OpenID
providers. OpenID providers can choose from a variety of
software implementations from a variety of vendors and
Open Source projects. OpenID does not crumble if any
OpenID provider turns evil or goes out of business. What
is important is that anyone can use their own technical
innovations within the OpenID framework. This means
that if someone decides he does not like the Diffie-
Hellman cryptographic key exchange at the root of
OpenID authentication, he can develop his own way of
authenticating (e.g. using biometrics), and deploy it within
the OpenID framework.

Figure 3. OpenID protocol

Besides the decentralization on many levels, OpenID's
advantage is that OpenID's cost structure is fundamentally
lower than having access-control systems for every
website on the Internet.

B. Protocol overview

OpenID enables the user to keep control over his own
identity by separating service providers and identity
providers. The user registers his identity or account at a
single identity provider, also called an OpenID provider
(OP). With OpenID identity, the user has instant access to
a vast number of service providers, also called the relying
party (RP). The OpenID authentication protocol is defined
in [9]. The following steps, as shown in Figure 3, are
somewhat simplified.
 Initially, the user visits the relying party RP and
provides his OpenID identifier (1). Based on the OpenID
identifier, RP performs discovery of the OpenID
authentication service URL (2). RP and the OpenID
provider OP establish an association. This step is optional,
but recommended in order to establish a shared secret
using Diffie-Hellman key exchange. OP uses an
association to sign subsequent messages, and RP uses it to
verify those messages. If this step is omitted, relying party
would need to send subsequent direct requests to verify the
signature after each authentication response from OP (3).
RP forms an OpenID authentication request and redirects
the user agent to OP (4). OP establishes whether the user is
authorized to perform OpenID authentication and if he
even wishes to authenticate (in case a fraud attempt is
going on). The way the user authenticates to their OP and
any policies surrounding such authentication is not part of
the standard and is left to OP to decide on its own how it
wants to implement it (5). OP redirects the user agent back
to RP with authentication response, whether the
authentication is approved or failed (6). RP verifies the
information received from OP including checking the
return URL, verifying the discovered information,
checking the nonce, and verifying the signature by using
either the shared key established during the association or
by sending a direct request to OP (7).

C. Security aspects

We discuss the most common attacks possible on the
OpenID protocol. We talk about Denial-of-Service (DoS)
attack, replay attack, man-in-the-middle attack, phishing,
Cross-Site Request Forgery (CSRF) and privacy issues.

In the DoS attack, attacker tries to make a computer
resource unavailable to its intended users. The relying
party can suffer from a DoS attack if it allows a user to put
any URL he wants as an identifier. A user could use an
URL to some large movie (e.g.
http://www.example.com/gigabytemovie.flv) and during
the discovery process, the relying party would download
the content that resides on that URL. To prevent this kind
of attack, the relying party should limit the amount of data
and time that can be consumed per request. An OpenID
provider can also suffer from a DoS attack. This can
happen if the relying party starts sending a large amount of
requests for association, authentication or signature
verification. To prevent this, an OpenID provider can use
simple IP based rate-limiting. Also, OpenID can ban
requests based on the values "openid.realm" and
"openid.return_to" in protocol messages exchanged with
the relying party.

Replay attack is an attack where an eavesdropper gets
the information without authorization and then retransmits
it to trick the receiver into unauthorized operations such as
false authentication. According to OpenID specifications,
the nonce, which stands for number used once, used in the
authentication process does not have to be signed and
verified. These kinds of authentication details are left for
implementers to decide. If the nonce is not part of the
signed request information and later verified, an
eavesdropper could intercept a successful authentication
assertion (sent from the OpenID provider to the relying
party) and re-use it. To prevent the replay attack, the nonce
should be part of the signed information in the request
message sent from the relying party to the OpenID
provider (the nonce value should be in "openid.sig" and
"openid.signed" fields of the protocol messages) [10].
Also, when receiving the authentication assertion, the
relying party should check if the nonce is correct. Another
solution could be using the transport layer encryption
(TLS) to prevent eavesdropping.

In the man-in-the-middle attack, the attacker makes
independent connections with the victims and relays
messages between them, making them believe that they are
talking directly to each other over a private connection
when in fact the entire conversation is controlled by the
attacker. To prevent the man-in–the-middle attack, the
protocol provides associations which prevent tampering of
signed fields. Associations provide a shared secret between
the relying party and the OpenID provider. Altering signed
fields without knowing the shared secret requires breaking
the MAC, but there is no known attack on the MAC used
in OpenID. However, associations do not stop man-in-the-
middle attacks in authentication steps 2 and 3 from Figure
3, i.e. during discovery and association sessions. OpenID
depends on the URL, which means it depends on DNS,
which is known to have security weaknesses. In case DNS
is compromised, the attacker can impersonate the OpenID
provider and issue its own associations. If an attacker can
tamper with the discovery process, he does not even need
to impersonate the OpenID provider, and can specify any
OpenID provider. Additionally, if an attacker can

compromise the integrity of the information returned
during the discovery process, by altering the XRDS
document, the need for a man-in-the-middle is removed. In
that case, an attack can be prevented by digitally signing
the XRDS file [11]. To prevent man-in-the-middle attacks,
SSL with certificates signed by a trusted authority should
be used for all parts of the interaction. This way the results
of the DNS look-up can be verified against the certificate.
Once the validity of the certificate has been established,
tampering is not possible.

Phishing is a process of attempting to acquire sensitive
information such as passwords by masquerading as a
trustworthy entity. When a user enters his OpenID
identifier on the relying party's authentication form, a
malicious relying party can redirect him to a fake OpenID
provider's website which looks pretty much the same as the
authentic OpenID provider. Most users would not notice
that they are being tricked and, by entering their password,
would easily give away their credentials. This is the most
classic form of phishing. Most users do not know or/and
do not care about security, they just want to use the
service. To prevent phishing, the most important thing is to
get rid of the step where users type in the password.
Probably the best solution would be using OpenID with
Information Cards as a way of authenticating. Because
Information Cards generate site-specific sign-in
information and the attacker’s site is different than the
authentic site, even when the user is tricked into
submitting an Information Card to the evil site, the attacker
does not have the ability to log into the real site. No shared
secret was present to steal and no session was established
to hijack. The type of authentication is not defined with the
OpenID protocol. Whether OpenID providers will
implement password-based authentication or Information
Card based authentication is up to the OpenID provider.
One other solution to phishing is using multi-factor
authentication. Multi-factor authentication uses at least two
kinds of authenticity verification, e.g. passwords plus
phone/SMS verification. Using something you know (e.g.
password) with something you own (e.g. phone) is a great
phishing-resistant authentication method.

CSRF is an attack which forces an end user to execute
unwanted actions (of the attacker's choosing) on a web
application in which he is currently authenticated. The
problem with OpenID is that by logging in, along with the
username, the user provides the relying party the
information that he is currently logged in to the OpenID
provider OP. Malicious relying parties could use this
information to submit forms to the OP utilizing the user's
cookie, without the user knowing about it. This can be
done using JavaScript to submit a hidden form in an i-
frame, or similar. To protect against CSRF, OpenID
provider must make sure that the form was served for the
user and not for an attacker. The best solution is to put a
hidden element into the authentication form containing a
token based on a secret and data in the user's session
object. This means that only a form served for a particular
user will generate a submission valid for that user. Many
reputable OpenID providers already use this method to
secure form submissions and protect against CSRF.

The last security issue related to OpenID is a privacy
issue. The OpenID provider can spy on its users by
recording their Internet activity. The OpenID provider is
authenticating the user for every relying party the user
wishes to log into. Thus the OpenID provider can trace

what relying parties the user is using. For better privacy,
some kind of trust model should be introduced.

The OpenID standard does not define what
authentication methods should be used. This way, it allows
OpenID providers a market where each of them offers
their own level of authentication strength. In December
2008, Provider Authentication Policy Extension (PAPE)
[12] was introduced as an extension to the OpenID
Authentication protocol. This extension provides a
mechanism by which a relying party can request that
particular authentication policies be applied by the OpenID
provider in the authentication process. The PAPE
extension also provides a mechanism by which an OpenID
provider may inform a relying party which authentication
policies were used. Thus a relying party can request that
the user authenticate, for example, using a phishing-
resistant or multi-factor authentication method.

IV. RELATED PROTOCOLS AND
INTEROPERABILITY

The two most popular related standards based on the

federated identity model are SAML (Security Assertion
Markup Language) and InfoCard [1]. SAML is an XML
standard for exchanging authentication and authorization
data between security domains.

SAML is architected for security and privacy, and
serves needs where strong requirements for trust and high-
value transaction are needed. The protocol is composed
out of assertions - XML packets containing user identity,
authentication status and attributes. SAML removes
security and privacy risks but its main disadvantage is
difficult identity provider discovery in the general case.
However, SAML is often used in a large trusted
community. In this case, administrators configure service
providers in that environment to contain the information
about the identity provider. Another example of identity
provider discovery with the SAML protocol is when a user
can select his identity provider from the list of identity
providers accepted by that particular service provider.
OpenID and SAML both enable SSO and provide the
ability of direct interactions between the identity provider
and service providers, although not in the same way. The
difference between OpenID and SAML is that OpenID is a
lighter, service provider friendly and user-centric protocol
more concerned with scalability than security [13]. On the
other hand, SAML is a complex and heavy protocol,
identity provider friendly and enterprise-centric, focused
on security and privacy.

InfoCard [14] is a standard used by Windows
CardSpace, the Microsoft .NET tool designed to provide
users consistent digital identity. Windows CardSpace
consists of collections of user data called identity cards.
Each card represents different identity. User visits the
service provider and chooses appropriate identity card
when he is asked by the user agent. There are two types of
cards, self-asserted cards and identity provider managed
cards. Self-asserted cards are created by the user himself
and stored directly on the user’s device. Managed cards are
issued by identity providers, who govern with user identity
data. With managed cards, data is retrieved each time user
selects these identity cards. The process of identity
provider discovery is easily resolved for both types of
cards. For self-asserted cards a user’s device (e.g. his local

computer) could be the identity provider. For managed
cards, the identity provider stores its address on the
identity card. InfoCard prevents an identity provider from
knowing which service providers are served, which solves
privacy issues related to identity provider spying. Also,
InfoCard, like OpenID, uses user-centric identity
management because the user has to choose the identity
card and approve each authentication request. There is no
direct communication between service providers and
identity provider, as well as classical password input
forms, which makes InfoCard phishing-resistant.
Disadvantages of InfoCard are that it is not an open
standard and it relies only on WS-* standards. However,
interoperability of InfoCard and OpenID is possible.
Integrating InfoCard into OpenID as a way of strong
authentication would solve some important security issues
that are not strictly addressed by the OpenID standard
itself.

V. CONCLUSION

In this paper we described the concept of federated
identity as a response to new security challenges and
demands introduced with the Web evolution in recent
years. We reviewed the most popular standard based on
the federated identity model, OpenID. We gave an analysis
of the most important security questions related to the
federated identity model and how OpenID deals with them.

The OpenID standard does not define how to implement
the authentication process. This leaves space for risky
identity provider implementations of weak authentication,
which are vulnerable to many attacks described in this
paper. Exploiting such vulnerabilities has serious
implications in OpenID, such as identity stealing. Thus, we
feel that OpenID should be stricter about the level of
security required to implement and not leave it fully to
implementers. As a great solution to secure OpenID
implementation, we think that the InfoCard standard
should be integrated with OpenID. This way, OpenID
implementations get the best from both standards, namely
strong security, privacy, usability, scalability and
openness.

REFERENCES

 [1] E. Maler and D. Reed, “Options and Issues in Federated
Identity Management”, IEEE Security & Privacy, vol. 6,
no. 2, p. 16-23, 2008.

 [2] SAML XML.org,
 http://saml.xml.org/wiki/sp-initiated-single-sign-on-

postartifact-bindings
 [3] SAML XML.org,
 http://saml.xml.org/wiki/idp-initiated-single-sign-on-post-

binding
 [4] JanRain Blog,
 http://blog.janrain.com/2009/01/relying-party-stats-as-of-

jan-1st-2008.html
 [5] JanRain Blog,
 http://blog.janrain.com/2008/11/openid-user-experience-

data.html
 [6] Google Code Blog,

 http://google-code-updates.blogspot.com/2008/10/google-
moves-towards-single-sign-on.html

[7] Windows Live Blog,
 http:// winliveid.spaces.live.com/Blog/cns!
 AEE1BB0D86E23AAC!1745.entry
[8] OpenID Blog,
 http://openid.net/2009/01/28/paypal-joins-openid-

foundation-board-as-we-enter-2009/
[9] OpenID Authentication 2.0 specification,
 http://openid.net/specs/openid-authentication-2_0.html
[10] Hyun-Kyung Oh, Seung-Hun Jin: „The Security Limitations

of SSO in OpenID“, 10th International Conference on
Advanced Communication Technology, vol. 3, p. 1608-
1611, 2008.

[11] Eastlake 3rd, D., Reagle Jr., J., and D. Solo, “XML-
Signature Syntax and Processing”, World Wide Web
Consortium, 2002.

[12] OpenID Provider Authentication Policy Extension 1.0,
 http://openid.net/specs/openid-provider-authentication-

policy-extension-1_0.html
[13] J. Hodges, “Technical Comparison: OpenID and SAML -

Draft 06”, 2008,
 http://identitymeme.org/doc/draft-hodges-saml-openid-

compare.html
[14] MSDN Magazine
 http://msdn.microsoft.com/en-us/magazine/cc163615.aspx

