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ABSTRACT

A class of optimum IIR discrete time systems based on the
impulse response symmetry criterion is presented. Optimization
of rational transfer function parameters of the second to the tenth
order, with (i) zeros at the origin and (ii) zeros located on the real
axis, is carried out. The optimum systems have the smallest
symmetry error for a given system order. In the frequency
domain they approximate a constant group delay and have a
quasi gaussian amplitude response. The filter design procedure is
outlined. The impulse invariance method based on continuous
time systems with symmetric impulse response [1] is also
considered.

1. INTRODUCTION

In the discrete time systems the finite impulse response (FIR) is
possible, what enables realization of causal systems with a
symmetric impulse response and an ideal linear phase. The
realization of FIR filters typically requires quite a large number
of memory locations and multiplications. In practical
applications, however, an ideal linear phase system is not always
necessary. This means that IIR systems with approximately
symmetric impulse response or approximate linear phase will
have application in particular, because they are computationally
more efficient than FIR filters.

The finite order systems based on design requirement in the time
are, generally, different from those based on the frequency
domain criterion. Therefore we have recently used the symmetric
impulse response as the design criterion for continuous systems
[1]. In this paper we will optimize IIR filter transfer functions to
obtain maximum impulse response symmetry for a given system
order.

2. IMPULSE RESPONSE SYMMETRY

The discrete form of impulse response symmetry error is given
by

Eg = i[h(n)—h(ZS—l—n)]z , (1)
n=S

where h(n) is filter impulse response. Symmetry line is placed
between samples S-1 and S. Arranging (1), we obtain

0 S—1
Eg= Yh2(n)-2 Y h(S+nh(S-1-n)=Eg—2E, .  (2)

n=0 n=0

Summation E, represents the energy of the impulse response to
which symmetry error is normalized. Thus, the error of the
impulse response symmetry will be given by
E
E=1-2-2 .
£ 3)

The criterion E will be expressed by transfer function poles and
zeros and used as a goal function in the optimization process. For
the N-th order system the transfer function is given by
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where d; and ¢ are transfer function poles and zeros. If the poles
are simple and M<N, the impulse response can be expressed as

M
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where the pole residues are A, , r=1,2,...,n.

Now, E, and E, can be expressed as function of poles, zeros and
residues:

N N A.A
Eg=) 3 itk (6)
i-1 k=11~ didk
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As the goal function variables, the real and imaginary part of
poles and zeros were used. Finally, the optimum poles and zeros
were found as

c?:“gl E[Ck’di] (8)
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Figure 1. Symmetry error of optimized systems with (i)
all zeros at the origin and (ii) N-1 real zeros.
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Figure 2. Pole locations of the optimum system with all
zeros at the origin, S=10.

For searching minimum a Quasi-Newton method with BFGS
formula for Hessian matrix update was used [2]. In each
iteration, a bisection type line search was performed followed by
quadratic interpolation. In situations when Hessian matrix had
irregular inverse, a gradient method was forced by setting
Hessian matrix to identity.

The optimization procedure was performed for the second to the
tenth order transfer functions, with S=3 to S=30.

3. OPTIMUM FILTERS WITH ALL ZEROS AT
THE ORIGIN

First we optimized transfer function with all zeros (M=N) at the
origin of the z-plane, which is equivalent to the all pole transfer
function in the continuous systems. The results of optimization
are numerical values of the transfer function poles. The obtained
symmetry error is generally smaller for higher system order as
shown in Figure 1., by the diagram (i).

Pole positions, as an example, for order N=2, 5 and 10 and S=10,
are given in Figure 2. It is interesting to note that poles are very
nearly equidistant in the frequency.
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Figure 3. Impulse responses of the optimum systems
with all zeros at the origin, S=10.
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Figure 4. Amplitude response of the optimum system
with all zeros at the origin, S=10.

The impulse responses of the optimum systems are given in
Figure 3. They are quasi gaussian responses with better symmetry
and smaller ringing for larger system order, N. Delay of the
response is S-1/2, while the length is practically L=2S-1.

The amplitude response in dB is given versus frequency in linear
scale in the Figure 4. It is possible to see parabolic character of
the attenuation throughout the band up to 4®;4g. This means that
dominant part of the frequency response approximate gaussian
response.

The group delay curves approximate a constant with a ripple, as
shown in Figure 5. The ripple, however, for a given N is not
equal, but it is increasing with the frequency. Apparently, a larger
group delay error is tolerable in the frequency region where
amplitude attenuation is high.

Generally, properties of the obtained systems are similar to the
continuous time systems with symmetric impulse response
presented in [1], for the all pole transfer functions. Here we have
transfer functions with multiple zeros located at the origin of the
z plane. Such position of zeros does not influence the system
response.
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Figure 5. Group delay response of the optimum system
with all zeros at the origin, S=10.
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Figure 6. Amplitude responses of discrete time systems
with all zeros at the origin.

4. FILTER DESIGN

The filter design starts by selection of the necessary system order
N, which might be based on (a) tolerable symmetry error, or (b)
attenuation at the stop band frequency .

(a) System order, N, can be selected from the tolerable symmetry
error (3) using diagram (i) in Figure 1. Symmetry line, S, can be
selected from the required impulse response length L=2S-1. We
may consider such IIR filter equivalent to a gaussian FIR filter
with the same length L.

(b) Design in the frequency domain seems to be complex because
there are a large number of possibilities to design the filter with
prescribed sqp. Fortunately, the set of amplitude response
curves is practically identical for various S when given versus
normalized frequency ®/m;4p, as shown in Figure 6.

Now, the necessary system order, N, can be found from Figure 6.
and the required attenuation at the stop band frequency, or
®s / m3q8. The required S can be found from diagrams in
Figure 7., using selected N and required ;4.
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Figure 7. Cutoff frequencies ®s3qg, of the optimum
systems with all zeros at the origin.

When parameters N and S are known, only one run of the
optimization process (8) is necessary to obtain the numerical
values of poles.

5. TIR FILTERS OBTAINED FROM CONTINUOUS
FILTERS

The recursive digital filters can be designed from continuous
prototype using the impulse invariance method [3]. The IIR
filters with symmetric impulse response can also be designed
from continuous prototype calculated and tabulated in [1]. The
pole position of the IIR filters are easily obtained by
transformation

dj=ePil ©9)

By this, where p; are prototype poles and T is the sampling time,
the optimization is not necessary. Because the sampling time can
be selected continuously, one may have any distribution of
samples within a symmetric envelope and any delay or cutoff
m3qg. The impulse invariance method offers, therefore, more
flexibility in the filter design than optimum system based on the
criterion (3), where S is an integer.

The application of impulse invariance method on the all pole
transfer function of the continuous system gives, an IIR transfer
function with zeros spread along the real axis. This causes the
higher attenuation in the stop band and at the Nyquist frequency.
To illustrate this, the frequency scales of the optimum discrete
and continuous prototype filter are adjusted to meet at 3 dB
cutoff, Figure 8.

The presence of zeros outside of the origin makes the filter
realization more complex than in the case with zeros at the
origin. The structure complexity can be somewhat reduced if
some zeros are close to the origin because they can be assumed
to be at the origin. Also, the zeros far away from the origin can
be considered that they at infinity.
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Figure 8. Amplitude response of the optimum filter (i),
continuous prototype, and the filter obtained
by impulse invariance method, N=5.
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Figure 9. Pole locations of the optimum system with
N-1 real zeros.

A good influence of zeros in the impulse invariance method has
suggested the optimization of IIR transfer functions with all zeros
on the real axis.

6. OPTIMUM IIR FILTERS WITH ZEROS ON
THE REAL AXIS

The optimization procedure was also carried out with N-1 zeros
on the real axis and one zero at the origin. The optimum
locations of zeros are very interesting. All N-1 zeros are very
nearly equal and they may be considered as a multiple zero. The
zero-pole locations for system orders N=2, 5 an 8, and S=10 are
given in Figure 9., where one zero is at the origin, and the second
zero is on the real axis with multiplicity N-1, as it is shown in
Figure 10.

The filter amplitude and group delay responses are somewhat
better than for filter obtained by impulse invariance method, as
for example is shown in Figure 10. Generally, impulse invariance
method gives Nyquist attenuation half way between
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Figure 10. Amplitude response of the optimum filter (ii),
continuous prototype, and the filter obtained
by impulse invariance method, N=5.

both optimum systems (i) with all zeros at the origin and (ii) with
zeros on the real axis, as it is shown in Figure 8. and Figure 10.

The design of the optimum IIR filter with zeros on the real axis is
similar to the design outlined in the section 3 using the
diagram (ii) in Figure 1.

7. CONCLUSION

A method for optimum IIR filters design with symmetric impulse
response was developed. The transfer function with (i) all zeros
at the origin and (ii) N-1 zeros at the real axis were considered.
Both optimal filters are interesting because the first enables
symmetric response with simple structures. The second is with
better properties, but require more complex structure. The used
error criterion produces the best symmetry of samples about the
symmetry line, for a given system order.

The impulse invariance method, based on optimum continuous
systems in [ 1], can also be used for IIR filters design.
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