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ABSTRACT
The lowpass systems with minimum higher order moments of the
impulse response are presented. The optimization of the transfer
function parameters is carried out for functions ranging from the
second to the tenth order, with zeros at infinity. Besides the
system order, no other requirements are set to restrict the
frequency domain behavior of the system. Time and frequency
domain properties of the obtained systems for various moments
are given and compared.

1 INTRODUCTION

In many applications the systems with small time spread of the
impulse response as well as small ringing are required. There are
methods for design of such filters in the frequency and time
domain, and they can be found in [1]. Most of them approximate
the shape of the prescribed impulse response, while others
optimize a particular property of the system time response that
may be described by an integral criterion. If the criterion can be
expressed from the system parameters through simple relations, it
can be used not only for characterization but for optimization
procedure as well. Here we propose the use of the integral
criterion to find a class of filters with minimum time spread of
the impulse response h(t).

The first and the second order moments can be used as the
integral criteria having the mentioned property. In particular,
when impulse response is nonnegative, h(t)≥0, its two moments,
centroid and standard deviation are
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They can be attractive definitions of the delay, td, and the rise
time, τ, for analytical purposes [2], [3].

However, if h(t) is not nonnegative, the resulting central moment
can become small, not only because of the small time spread, but
because the positive, h(t)>0, and the negative contribution,
h(t)<0, of the impulse response may cancel each other. It seams
that the choice of the absolute value |h(t)| in (1) is better, but
unfortunately, it is not easy to work with. The central moment of
|h(t)|2, which gives the power spread along the time axis, is more
tractable. Therefore, we will use even central moments of this
function to minimize the response spread.

2 MOMENTS AND TRANSFER FUNCTIONS

The n-th order moments of the squared impulse response around
centroid tm are given by

( )∫
∞

−=
0

2n
mn dt)t(httm  . (2)

We define a measure of impulse response spread by the central
moment (2), normalized to impulse response energy, which is, in
fact, the zeroth moment
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For the optimization procedure in the complex domain, the
criterion En should be expressed by the transfer function poles, pi,
and zeros, zi. The impulse response of the N-th order filter with
simple poles is given by
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where the pole residues are Kr, r=1,2,...,N. Now, the n-th moment
can be expressed as function of poles, zeros and residues as
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3 OPTIMIZATION PROCEDURE

The positions of poles and zeros of causal filters with the most
compact impulse response can be found by solving the problem
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Although expressions (3) to (6) can be applied to any stable
linear system with simple poles and zeros, in this paper only all-
pole transfer functions are considered. Furthermore, in our
optimization procedure the frequency ωp and quality factor Qp of
poles were used, instead of the poles, pj. This variable set enables
the pole position on the whole complex plane. Using ωp and Qp,
an all-pole transfer function can be written in the form
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for N even, or
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if N is odd.

In a stable system, ωp and Qp are positive. Square values of goal
function variables were employed rather than constrained
optimization procedure. Finally, optimum system poles were
found as
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For searching minimum Quasi-Newton method with BFGS
formula for Hessian matrix update [4] was used to obtain the

minimum. In each iteration, a bisection type line search was
performed followed by quadratic interpolation. In situations
when Hessian matrix had irregular inverse, a steepest descent
method was forced by setting Hessian matrix to identity.

To obtained causal filters with the most compact impulse
response, the optimization is carried out for moments n=2, 4, 6
and 8, and system orders from N=2 to N=10. The parameter tm is
chosen to be 1 that will not change the generality of the solution.

4 OPTIMIZATION RESULTS

Numerical values of the pole parameters ωp and Qp, are given in
Table I. and Table II.

For the all-pole transfer functions with tm=1, the examples of
pole positions are shown in Figure 1. It is interesting to note that
the poles are located very closely to ellipses whose joint center is
at the complex plane origin, similar as in the case of the systems
with symmetric impulse response [5].

4.1 The system with minimum fourth moment

To illustrate the behavior of the filter class, the complete data are
given for the system with minimum fourth order moment.
Impulse response is shown in Figure 2. It is a bell-shaped

Table I. Transfer function parameters for tm=1.

n=2 n=4

N ωp Qp ω3dB ωp Qp ω3dB

2 1.7678 0.7071 1.7678 1.9943 0.6159 1.7054
2.8795 1.0847 2.9794 0.8416

3
1.5717

2.2154
1.9808

2.0805

4.0839 1.5467 4.0890 1.1164
4

2.1632 0.6307
2.5971

2.5084 0.5751
2.4353

5.3175 2.0923 5.2551 1.4293
3.1916 0.9050 3.3986 0.74365
1.9159

2.9763
2.4255

2.7786

6.5588 2.7327 6.4488 1.7798
4.3744 1.2451 4.4642 0.95856
2.4272 0.6024

3.4322
2.8730 0.5589

3.1249

7.7991 3.4823 7.6561 2.1703
5.6164 1.6360 5.6151 1.2040
3.4078 0.8311 3.7057 0.6993

7

2.1575

3.6434

2.7522

3.4232

9.0342 4.3577 8.8693 2.6044
6.8829 2.0785 6.8104 1.4759
4.5760 1.1190 4.7421 0.8835

8

2.6228 0.5875

4.1107

3.1515 0.5500

3.7497

10.2624 5.3772 10.0841 3.0862
8.1587 2.5777 8.0299 1.7738
5.8217 1.4467 5.8823 1.0953
3.5712 0.7898 3.9451 0.6735

9

2.3422

4.3113

3.0084

4.0276

11.4829 6.5605 11.2979 3.6203
9.4359 3.1405 9.2628 2.0990
7.1023 1.8113 7.0786 1.3288
4.7281 1.0475 4.9601 0.8387

10

2.7773 0.5781

4.6906

3.3755 0.5444

4.3237

Table II. Transfer function parameters for tm=1.

n=6 n=8

N ωp Qp ω3dB ωp Qp ω3dB

2 2.2565 0.5726 1.7543 2.5348 0.5493 1.8616
3.1486 0.7232 3.3598 0.6569

3
2.3619

2.0478
2.7217 0.5000

2.0730

4.1760 0.9104 4.3189 0.7944
4

2.8601 0.5488
2.3559

3.2066 0.5343
2.3322

5.2770 1.1226 5.3609 0.9512
3.6565 0.6632 3.9388 0.61745
2.8860

2.6622
3.3091 0.5000

2.6028

6.4203 1.3563 6.4553 1.1233
4.6284 0.8136 4.8372 0.72966
3.3064 0.5385

2.9662
3.7190 0.5274

2.8757

7.5888 1.6112 7.5838 1.3095
5.6998 0.9872 5.8411 0.8607
4.0423 0.6341 4.3908 0.5971

7

3.2849

3.2553

3.7689 0.5000

3.1438

8.7730 1.8892 8.7357 1.5093
6.8299 1.1790 6.9131 1.0060
4.9759 0.7640 5.2468 0.6943

8

3.6552 0.5328

3.5427

4.1288 0.5234

3.4081

9.9715 2.1933 9.9013 1.7227
7.9992 1.3889 8.0291 1.1627
6.0279 0.9172 6.2238 0.8096
4.3458 0.6173 4.7588 0.5846

9

3.5956

3.8162

4.1449 0.5000

3.6655

11.1682 2.5100 11.0776 1.9508
9.1923 1.6103 9.1751 1.3305
7.1529 1.0852 7.2788 0.9381
5.2549 0.7342 5.5835 0.6716

10

3.9347 0.5292

4.0842

4.4706 0.5207

3.9175



response, with small time spread and undershoot. In Figure 3.
step responses are given for filters normalized to tm=1. The
overshoots are bellow 0.83 % for N≥3.

The amplitude and the group delay responses are shown in
Figure 4. and Figure 5., respectively, in the form suitable for
comparison with the classical filter approximations, given for
example in [6]. The amplitude response is quasi gaussian. The
group delay curves illustrate near constant approximations with
small ripple. The bandwidth of quasi-constant group delay is
extending well beyond cutoff frequency ω3dB.

4.2 Comparison of systems with minimum 2nd, 4th,
6th and 8th moment

The optimization results for all moment orders are similar in
character to the systems of fourth moment described above. The
impulse response shows smaller time spread and undershoot for
higher moments, n, as can be seen in Figure 6. The step response
overshoot is also smaller for higher moments, as shown in
Figure 7., therefore the step response is almost monotonic. In
Figure 8. the rise time (10% - 90%) is given for filters
normalized to ω3dB=1. The rise time is spread between 2.15 s and
2.33 s. Generally, it is shorter for systems with higher n.

The amplitude attenuation in the stop band is higher for lower
moments, and is generally higher than the response of Bessel,
Gaussian or equiripple phase filters. The group delay is
approximately constant. It has ripple for n=2 and 4 and no ripple
for n=6 and 8.

5 CONCLUSION

By minimization of the higher order moments of the squared
impulse response, a new class of finite order systems is obtained.
The optimal pole positions are given in this paper together with
properties of the systems, so, the filter design can be carried out.
The obtained class of systems approximates quasi gaussian
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Figure 1. Pole positions of optimum systems with n=4
and n=8, normalized to tm=1.
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Figure 2. Impulse response of optimum systems with
minimum fourth order moment, tm=1.
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Figure 3. Step response of optimum systems with
minimum fourth order moment, tm=1.
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Figure 4. Amplitude response of the optimum systems
with minimum fourth order moment, ω3dB=1.



amplitude with constant group delay within passband. The
impulse response is very compact in time. It has small and short
ringing, giving nearly monotonic step response. The properties of
the obtained systems can be favorable compared to similar
systems with linear phase optimized in the frequency domain.
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Figure 8. Step response rise time of optimum systems
with n=2, 4, 6, and 8, normalized ω3dB=1.
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Figure 5. Group delay of the optimum systems with
minimum fourth order moment, ω3dB=1.
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Figure 7. Step response overshoot of optimum systems
with n=2, 4, 6, and 8.
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Figure 6. Impulse response undershoot of optimum
systems with n=2, 4, 6, and 8.


