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ABSTRACT

Variable bit-rate Wavelet sub-band coding of the Line
Spectrum Frequencies (LSF) is presented in this paper.
The evolution of the speech power spectrum envelope
(PSE) described by the LSF vector sequence is
decomposed into several parts, e.g.: very rapid transitions,
medium speed transitions and slowly evolving part. All
these parts are coded independently, according to the
transformed data dependent Weighted Euclidean Distance
(WED) measure between the original and the quantized
LSF vector. Forward adaptive quantization is realized by
employing the dynamic weighting path into the
non-uniform filter bank realization of the Discrete
Wavelet Transform (DWT). Vectors of the sub-band
signals are classified using the nearest neighbor rule,
based on the square root weighted sub-band signal
magnitudes. Independent vector quantizers are designed
for each of the classes and for each of the sub-band
signals. Thus the required bit-rate for the speech PSE
coding is adapted according to the changing dynamics of
the speech signal.

Keywords: speech processing, spectral quantization,
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1. INTRODUCTION

An LSF transform coding technique based on Discrete
Wavelet Transform was introduced in [1]. The basic idea
of transform coding is to remove the so called inter-frame
correlation between LSF vectors using the DWT.
Components of the successive P-dimensional LSF vectors
are treated as a P time-varying waveforms and are
decomposed into a set of sub-band signals by means of
the DWT. The DWT is identical for each of the P
components. The sub-band signals have different rates
and are critically sampled. The highest level
approximation signal, «@; and the highest level detail
signal, dj, have the lowest rate (f,/ZJ), while the first level
detail signal, dj, has the highest rate, equal to the half of
the frame rate (f/2). By proper choice of the mother
Wavelet, the variances of the sub-band signals are
inversely proportional to the sub-band signal rates; i.e. d|

has the lowest variance, while dj and aj have the largest
variance. Such variance distribution is the basis for
bit-rate reduction. Only a few bits are allocated for coding
of the quantized value of d, while more bits are reserved
for sub-band signals with larger variances. The scalar
quantization of sub-band signals was proposed in [1] and
was performed independently for each sub-band and each
of the components. However it will be shown that
additional bit savings can be obtained by combining
several components of the same sub-band signal into a
sub-band  vectors and then performing Vector
Quantization on this sub-band vectors.

The bit allocation can be static as in [1], but since LSF
vectors exhibit time-varying statistics due to the changing
dynamics of the speech signal, even better results can be
obtained by adaptive quantization. For example, by
performing two level Wavelet decomposition of the LSF
vector sequence, the evolution of speech power spectrum
envelope (PSE) is decomposed into three parts: very rapid
spectral transitions, medium speed transitions and slow
spectral evolution. For speech segments with slowly
evolving PSE like sustained vowels, detail sub-band
signals d, and d, are close to zero and only the
approximation signal a, needs to be coded and transmitted
(only one output vector for 4 input LSF vectors). On the
other hand, for speech segments containing rapid spectral
transitions like plosive sounds, more emphasis should be
given to detail signals. The concept of such variable
bit-rate LSF Wavelet sub-band coding will be presented
in this paper.

2. PROBLEM OF CODING DELAY

A short summary of the former results will be given
first. An LSF transform coder based on the DWT with
biorthogonal Wavelets and optimal scalar quantization of
the sub-band signals was presented in [1]. It was shown
that the reduction of the average bit-rate required for LSF
coding, compared to the case with no inter-frame
decorrelation and with the same average spectral
distortion, depends on the choice of the mother Wavelet
and on the decomposition level J. As can be expected,
higher decomposition levels result in lower average
bit-rate, but also in exponentially larger delay.



The problem with any kind of inter-frame sub-band
coding system is the introduced delay. For some
applications the coding delay is not a problem (e.g. voice
storage/retrieval, voice-mail etc.), so the level J can be
chosen to minimize the average bit-rate. On the other
hand, for real-time voice coder implementations, the total
delay must be kept below certain limits. For low bit-rate
voice coders this limit is usually set to 300ms. Total
analysis/synthesis delay of an non-uniform filter bank
realization of the J-level DWT is equal to (2-1)L.
Number L is the total delay of a single level
decomposition followed by reconstruction and depends on
the chosen Wavelet type. The real-time delay requirement
automatically restricts the choices of J and Wavelet type
only to certain convenient combinations. However it was
shown in [1] that a considerable bit-rate reduction can be
obtained even with a simple biorthogonal Wavelet
'bior2.2" with L=3, while introducing the total delay of
only 9 frames for two-level decomposition.

3. VARIABLE BIT-RATE LSF CODING

Using the same theoretical background outlined in [1],
a variable bit-rate Wavelet LSF coding technique was
developed. Instead of static weighting and fixed bit
allocation as described in [1], the sub-band signals are
quantized and coded according to the dynamic weighting
functions. With such dynamic weighting it is possible to
adapt the coding system to the changing statistics of the
input speech signal, by varying bit allocation of the
sub-band signals. This technique result in the reduction of
the average bit-rate required for transparent coding and in
the reduction of the percentage of the outlier frames.
Since all LSF components are processed using identical
decomposition filter-banks, all components corresponding
to the same sub-band signal can be reunited to form a
P-dimensional sub-band vector. This vector is then
quantized using the Classified Vector Quantization
(CVQ) with separately optimized low-complexity
codebooks of different sizes for each of the classes and
for each of the sub-band vectors. The same procedure is
performed independently for all J+1 sub-band vectors.

3.1. Distortion measure in the LSF domain

Quantization of the LSF vector components introduces
distortion in the decoded PSE. This distortion is usually
measured by averaging the log spectral distortion, SD,,
between the unquantized and the quantized power spectra

S, (a)) and S’n (a)), corresponding to the unquantized and
the quantized LSF vectors x,, and X, as in (1a).
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Averaging is performed for all N input frames, where
n is the frame index:
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If the average spectral distortion SD is kept below 1dB
and if the percentage of the outlier frames with SD,
greater than 2dB is below 2%, then the perceived
distortion is almost negligible. Although this distortion
measure is quite appropriate for comparative assessment
of different quantization schemes, a much simpler
distortion measure is usually used for coder design and
implementation. It is a Weighted squared Euclidean
Distance (WED) between the original and the quantized
LSF vector and it is defined as in (2):

dr% = (Xn _ﬁn)TWn (Xn _ﬁn) @)

Weighting matrix W,, is a diagonal PxP matrix that
depends on the LSF vector x,, with diagonal elements
Wiy>Way,---»Wp,. Distortion definition given in (2)
includes several well known data dependent WED
measures such as: LPC spectral weights [2], inverse
harmonic mean weights [3], local spectral approximation
weights [4] and Gardner LSF spectral sensitivity measure
[5]. Since the actual quantization is performed in the
Wavelet domain, by quantizing (J+1) sub-band vectors,
the distortion measure d,> must be converted to the
Wavelet domain as well what will be explained next.

To simplify the procedure of WED distortion
transformation, the DWT is defined as a linear block
transform, transforming the finite sequence of input LSF
vectors into the matrix of DWT coefficients. Matrix X is a
LSF matrix with N columns and P rows holding time
sequence of N LSF vectors x,, (n=1 to N). Matrix B is the
rectangular DWT transform matrix with N columns and
N' rows, while B is the left side inverse of B with N
rows and N columns (N">N, due to the finite block
length). Matrix Y is the output matrix of DWT
coefficients with P rows and N' columns. Matrices B and
B are huge but sparse. DWT of the matrix X, as well as
the inverse DWT of the quantized Wavelet

coefficients Y can be written as in (3):
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Rows of the input matrix X: Xr;, Xr,, .. Xrp,
corresponding to LSF components 1 to P, are DWT
transformed into rows of matrix Y: Yr, Yr,, .. Yrp. The
average LSF WED distortion in the LSF domain can be
found by summing up the frame distortions d,’ given in
(2) for all frames, n=1,2..N. The same average distortion
can also be found by summing up the component
distortions e for all components, i=1,2..P, by simply
rearranging the order of summation:
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Row vectors )A(ri are found from the quantized

coefficients \A(rl» by performing the inverse DWT (i denotes

the LSF component). Matrix V; is N by N diagonal matrix
with diagonal elements v;,vi,..,viy, that are actually
identical to the weights at the position (i,/) taken from
matrices W ,W,,...Wy (Vii = W1, Vo = Wi, .oy Viv = Wip).
By expressing Xr; and 5(}3 in terms of Yr; and \A(r,v
according to the equation (3), the distortion measure e is
transformed into WED distortion measure between the
unquantized and the quantized DWT coefficients of the i
LSF component:
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New weighting matrices U;, U,, ..., Up are non-
diagonal N' by N matrices. Employing such a
non-diagonal weighting matrix into the quantization
scheme is to complex so some simplifications were
necessary. In the case of independent quantization of
different Wavelet coefficients (i.e. sub-band vectors) with
zero bias quantizers, such that quantization errors of
different coefficients are not correlated, the sum of all
cross-product terms will be much smaller then the sum of
diagonal elements. Therefore, an approximation of the ¢
can be used by simple nullification of all non-diagonal
elements of U;. Such approximation holds as long as the
correlation between quantization errors of any two
sub-band vectors is much lower than the variance of the
quantization error itself. [t was shown experimentally that
this assumption is valid for the LSF process studied in this

paper.

3.2. Weighting functions for the DWT filter
bank

Since the actual real-time realization of the DWT LSF
coding is based on the continuous sub-band
decomposition using non-uniform filter bank rather then
on the block transformation presented above, matrix form
diagonal weights Uj, had to be associated with the
corresponding sub-band signal weighting functions. An
example of a 2-level DWT with dynamic sub-band signal
weighting based on the transformed WED distortion
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measure is shown in Figure 1 for component i of the LSF
vector sequence. Upper-left part of the system is the
analysis bank decomposing the input line spectrum
frequency signal xr,(n) into three sub-band signals a,, d;
and d;;. The time index is intentionally omitted for these
signals, since their rates are different. Sub-band signals
are critically sampled as shown in Figure 1, such that the
total number of samples of all of these three signals is
equal to the total number of the input signal samples for
any given time interval. Samples of these signals are in
fact the Wavelet coefficients in the row vector Yr,, while

their quantized values a;,, c}iz and 6}1'1 are the elements

of \A(rl-. After quantization, the sub-band signals are

reconstructed in the synthesis bank shown on the right
side of Figure 1. There is nothing new about these two
parts, since they represent the well-known filter bank
realization of DWT that can be found in the literature on
Wavelets. However, the dynamic weighting-path shown
in the bottom of Figure 1 is something that is proposed by
this paper, obtained by analyzing the structure of the
transformed weighting matrix U, Weighting function
signals w,;, wgp and wy; have identical rates as their
corresponding sub-band signals and their samples are
equal to the diagonal elements of the transformed
weighting matrix U, As it was shown in [1], these
weighting functions can be derived from the input weights
v{n), by simple linear filtering. The input weights v(#»)
are diagonal elements of the matrix V,. Each sub-band
signal has its corresponding weighting filter: H,.(z),
H,»(z) and H,,(z). The impulse responses of these FIR
filters can be found from the impulse responses of the
corresponding synthesis filters F,(z), Fn(z), and F,(z) by
squaring each sample of the impulse response. The
impulse responses of the synthesis filters F(z), Fp(z),
and F;(z) are actually the basis functions of the inverse
DWT and can be read out from the columns of the
reconstruction matrix B, or directly from Fy(z) and F\(z),
by combining interpolation and convolution.

Since the filter order of the analysis filters doesn’t
necessary have to be equal to the filter order of the
corresponding  weighting filters, some additional
synchronization is required. This is performed by
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Figure 1. Block diagram of the filter bank realization of 2-level DWT with dynamic weighting and quantization



inserting delay elements k., kup, and k., in the
weighting path before decimation, delay elements &, &,
and k; in the signal path before quantization and finally
mqp, Mp, and my in the signal path after quantization.
These delay values depend on the chosen mother Wavelet
and must be determined for all decomposition levels that
are to be used. Delay in the signal path before
quantization is necessary for combinations that result in
non-causal  weighting filters, while delay after
quantization is used to balance delay in the low and the
high branch. The delay in the weighting path does not
increase the total analysis/synthesis delay of the system.
On the other hand, the delay in the signal path does,
especially the one in the branch of the highest-level
approximation signal a; and detail signal d;. For example,
for the 2-level DWT with the biorthogonal Wavelet
'bior2.2', one step delay is necessary in the o, branch
increasing the total delay from 9 to 13 samples.

Figure 1 depicts the system structure for only one LSF
component, since the remaining P-1 are processed by the
identical filter banks. Thus, the sub-band signals of all P
filter banks form a P dimensional vectors A,, D, and Dy,
with their corresponding weighting vectors W ,, Wp, and
Wy, as given in (6). Again, the time index is omitted
since the sub-band vector rates are different.

Ay = [012>022>---»0P2]T Wy = [wa12>wa22>--->waP2]T
D, =[dig.dapeecndpa] T Wiy = [Wa12:Wa200e e wgpa] T (6)
Dy =[dy.dyyecdpy] T Wpp = w1 Wt owap ] T

3.3. Adaptive vector quantization

Sub-band signal vectors A,, D, and D; are quantized
independently and adaptively according to the
transformed WED distortion measure defined by
weighting vectors Wy, Wp, and Wp.. Since the
quantization procedure is identical for all J+1 sub-band
vectors, it will be illustrated only for D; and
corresponding weighting vector Wp,. The total LSF WED
distortion induced by quantization of Dy is in first
approximation proportional to its weighted variance. To
keep this distortion constant, the number of bits allocated
for coding of the vector D, must be varied. One approach
to such adaptive quantization is the Classified Vector
Quantization (CVQ) [6], where the input vector is first
classified into one of several classes and than vector
quantized using the codebook for that particular class.
These codebooks are of different sizes, so by choosing
one of them the resolution (and bit rate) is adapted
according to some statistical properties of the input
vector. This is a forward adaptive scheme with the class
index representing the forward side information. It was
found that suitable vector classification is the one based
on the square root weighted magnitude vector DW;,

DW, = [dwl,dw yeres dwp]T (7a)

where dwi =\ Wdil [l]di] | (7b)

DW, vectors are classified according to the nearest
neighbor rule based on the Euclidean distance measure,
using the same procedure as in vector quantization (VQ)
[6]. Classification templates are found from the actual
data using the Linde-Buzo-Gray (LBG) clustering
algorithm [6]. With such classification the sub-band
vector space is effectively divided into several sub-spaces,
with vectors of similar 'complexity’ occupying each of the
classes. After classification, input vector D; is vector
quantized using the WED distortion measure, using the
weights defined by Wp,. Optimal VQ codebooks are
designed independently for each of the classes, from the
actual data using the LBG clustering algorithm with WED
distortion measure [6]. Since the codebook sizes are
different, each class requires different number of bits. For
properly chosen classifier, the class with the highest
probability requires the least number of bits. For classes
requiring very accurate quantization, the sub-optimal split
VQ was performed to reduce the complexity and the
codebook size. The same quantization procedure was
performed for remaining sub-band vectors (A,,D,), but
with independent classifiers and independent codebooks
for each of the classes.

4. EXPERIMENTAL RESULTS

The proposed variable bit-rate LSF Wavelet coder was
evaluated on a database with the parameters given in
Table 1. All results are presented for the biorthogonal
Wavelet 'bior2.2' with two level decomposition, since it
offers very good trade-off between the compression ratio
and the introduced delay. The VQ resolution was chosen
such that the average spectral distortion is equal to 1dB.

Table 1. Experimental conditions

Speakers : 2 male / 2 female
Sentences: from newspapers
# of frames: 120000
Preemphasis 0.9375

Sampl. Frequency: 8000 Hz

Frame rate: 100Hz

Window: 25ms / Hamming
LPC 10 ord. / Autocorr.

LSF vectors from the input database were transformed
into the Wavelet domain. This way, separate training
databases were obtained for all three sub-band vectors A,,
D, and Dy. The Inverse Harmonic Mean weights [3] were
used during the study and these were also transformed to
the Wavelet domain, using the procedure outlined in this
paper. Classified VQ codebooks were designed next for
each of the sub-band vectors and the number of classes
was varied to determine the one offering highest bit-rate
compression,

The average bit-rate for transparent quantization of
each of the sub-band vectors depends on the rate of that
particular vector and on the number of classes. More



precisely it depends on the probability of each class
multiplied by the VQ resolution of that particular class,
plus the additional bit-rate for coding of the chosen class
index. For some classes the vector quantization was
performed on the whole sub-band vector, while for the
‘complex’ classes split-VQ was used to reduce the
complexity. The average required number of bits denoted
with bgy, bp and by, for adaptive vector quantization of
the sub-band vectors D, D, and A, (including the class
index) is given in Table 2 as a function of number of
classes. Class index is Huffman coded for cases with
more then 2 classes, while the VQ codebook index is
product coded (in the case of split-VQ). Minimum and
maximum code lengths are also given for cases with more
then one class. Since the rate of the vector D, is one half
of the frame rate, while the rates of D, and A, are one
fourth, the total average bit rate can be found by scaling

b1, b and b, with 0.5, 0.25 and 0.25 respectively.

Table 2. Bit-rates for adaptive vector quantization

D, VQ D, VQ A, VQ

#cl| by |minmax|| by, |minjmax|| b,, |min|max
T 12 (1212 22 |22(22| 38 |38 38
2 (19.80| 7 | 18 |20.38] 19| 27 ||37.22] 36 | 40
4 19.55] 3 |2119.06| 15|31 | - | - | -
8 19.38| 1 (23 [18.8913 (33| - | - | -
16[9.60 2 (25| - | - | - -l - -

Best results are obtained using CVQ with 8 classes for
D, and D, and 2 classes for A,, summing up to the total
average bit rate of 18.72 bits/frame. For non-adaptive
case (#cl=1) the required bit rate is 20.66 bits/frame.
Benefit of the adaptive quantization is the most
pronounced for D; sub-band vector. For the case with
eight classes, the whole vector D, is coded using a single
bit in 37% of cases, while the longest code of 23 bits is
needed in only 3.7% of cases. To reduce the complexity,
16 split VQ codebooks are used for eight classes of Dy
having all together only 3958 scalar entries (one class has
full vector VQ, six classes have 2 vector split VQ, while
the most complex one is coded using 3 vector split VQ).
Since the vector A, requires very high resolution, it was
quantized with 5 vector split VQ resulting in rather
sub-optimal quantization. This vector is the main
contributor to the total average bit rate, so further
reductions are possible with more sophisticated
quantization schemes. For full adaptive coding the total
coding/decoding delay is 13 frames, but if ¢, is coded
with a fixed rate (one class) and only d; and a, are coded
adaptively, the delay would still be only 9 frames. It must
also be noted that much better results can be obtained if
the simple autocorrelation LPC method is replaced by

more sophisticated LPC analysis techniques that result in
much higher correlation of the successive LSF vectors.

5. CONCLUSION

A very effective method for reduction of the average
bit-rate required for coding of the speech power spectrum
envelope is presented in this paper. It is based on the
inter-frame decorrelation of LSF vectors using the
Discrete Wavelet Transform. By transforming the
weighted Euclidean distance measure between LSF
vectors into the same kind of distortion measure in the
Wavelet domain, adaptive quantization of the sub-band
signals can be done. The sub-band signal vectors are
dynamically classified into several classes and each class
is quantized using a specially designed vector quantizer.
The average bit-rate with adaptive vector quantization can
be reduced by approximately two bits per frame compared
to the non-adaptive case.
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