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Abstract: A modification of a classical Vector Linear Prediction (VLP) technique is proposed
in this paper, enabling significant reduction in complexity. The proposed sparse VLP tech-
nique (sVLP) is based on predictors with reduced number of nonzero elements. For a given
input vector process, a design procedure for obtaining optimal sparse predictor structures
and matrix elements is described. The effectiveness of the sVLP is evaluated on interframe
predictive coding of Line Spectrum Frequencies (LSF) and compared to the classical VLP
based on Switched-Adaptive Interframe Prediction scheme. The loss of the prediction gain
due to sparse structures is calculated using various design parameters. Simulation results
prove that a 6-fold reduction in complexity of prediction can be achieved causing only insig-
nificant loss of the prediction gain and coder performance.
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1 INTRODUCTION #
There are numerous examples of vector proc-
esses in geophysics, electrical engineering, bio-
medical engineering and many other areas. For a
particular class of vector processes, each com-
ponent of the current vector can be estimated
based on linear combination of all components of
certain number of preceding vectors. This tech-
nique, known as Vector Linear Prediction (VLP),
is frequently used for signal coding by quantiza-
tion of the prediction residual, i.e. the difference
between the original and the predicted vector, in-
stead of the original vector. The gain that can be
achieved by this technique depends on the de-
gree of correlation between consecutive vectors.
The correlation is modeled by the predictor repre-
sented by one or more matrices, depending on
the prediction order. The optimal predictors mini-
mizing the energy of prediction residual within the
analysis frame (block of input vectors) can be
found by solving so called normal equations as in
[1].

Although VLP can maximally exploit inter-
frame as well as intraframe correlation by pre-
dicting each component of the current vector
from all components of previous vectors, it is a
reasonable assumption that for a certain class of
processes not all components of preceding vec-
tors contribute equally to the prediction. Elements
of the optimal predictor matrices for such proc-
esses have different magnitudes. Some are
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greater and therefore contribute more to predic-
tion, while the others are much smaller and less
significant. If the smaller elements are made
equal to zero, this should not have a great impact
on the prediction gain, but can at the same time
reduce the amount of computation.

VLP is commonly used for predictive vector
quantization of LSF parameters of the speech
signal. Vector predictors for this process exhibit
the sparse property discussed above, as also
mentioned in [2]. Some authors even employ di-
agonal (scalar) predictors [3] and [4], but none of
these papers offer detailed discussion of the is-
sues concerning sparse predictor structure or
comparison to the full predictor case.

In our previous work [5], the use of sparse
multidiagonal predictor matrices was proposed as
a compromise between the diagonal and the full
predictor case. The number of diagonals was
chosen as a design parameter, determining the
total number of nonzero elements (complexity).
Comparative analysis was performed for all
structures (from diagonal to the full case). The
design procedure for obtaining matrix nonzero
elements that are optimal for the given multidi-
agonal structure was also proposed.

This paper proposes more general sparse
predictor structures that are not predefined as in
multidiagonal case but rather depend on the ac-
tual correlation of the input vector process. In an-
other words, sparse predictor matrix will have
nonzero elements on locations that contribute
mostly to the prediction gain, while all the others
will be set to zero. The number of nonzero ele-
ments is chosen as a design parameter. Several



techniques for obtaining optimal sparse predictor
structures are investigated.

2 OPTIMAL SPARSE PREDICTORS
The procedure for sparse predictor matrix design
will be illustrated on the example of the first-order
VLP, having only one predictor matrix A1={ai,j},
but can be easily extended to any prediction or-
der. The prediction error vector # e(n) is defined
using the following expression:

,  )1()()( 1 −−= nnn xAxe (1)

where x(n-1) and x(n) are consecutive samples
of the k-dimensional input vector process. The
procedure starts with the conventional VLP pre-
dictor design [1] resulting with a full k × k predic-
tor matrix having all nonzero elements. It is ob-
tained by minimizing the energy E of the predic-
tion residual e(n).
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where ei(n) denotes the prediction error se-
quence of the ith component. Since E can be ex-
pressed as a sum of the components’ residual
energies, Ei, it is minimal when all of the Ei are
also minimal. This leads to an optimal predictor
determined by covariance matrices C11={ci,j} and
C10={bi,j} as follows:
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Covariance matrices are calculated from the input
process comprised of P+1 vectors x(0) to x(P ).

The basic idea presented in this paper is the
reduction of the VLP complexity by setting most
of the predictor matrix elements to zero. These
elements should be chosen in a way that the in-
crease of the energy of the prediction residual ∆E
is minimal. It is easily shown that setting any ai,j to
zero results with the increase of:
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where xj(n-1) corresponds to the jth component of
x(n-1). The ith row of the optimal predictor A1 was
obtained provided that vectors [ei(1), ei(2),..,
ei(P)]T and [xj(0), xj(1),.., xj(P-1)]T are orthogonal
for all input observables, j=1,...,k. Therefore, the
first term in (5) vanishes for all combinations of
i, j ∈ {1,...,k} and ∆E becomes:
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where σj
2 is the variance of the jth component, for

a zero-mean input process.
Nonzero elements of the new sparse predictor
=1A { jia , } will be located on positions where

the products σj
2ai,j

2 are above the chosen thresh-
old Λ, while the remaining elements are set to
zero. The simplest procedure for obtaining the
values of nonzero elements is to retain their val-
ues from the original full VLP matrix i.e.
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However, sparse predictor designed this way
does not minimize the energy of the prediction
residual for this structure. In another words, there
is another predictor with same positions but dif-
ferent values of nonzero elements that results
with minimal E. Therefore, the nonzero elements
must be recalculated to compensate for the loss
induced by zeroing. This procedure is explained
next.

Number and positions of nonzero elements in
each row of the sparse predictor can be different,
so the rows of the predictor have to be treated
separately. Let J (i) denote the set of indices that
correspond to positions (columns) of nonzero
elements in the ith row of matrix 1A
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while the reduced row vectors 
T)(ia contain only

these nonzero elements
T)(ia = { [ jia , ] | j ∈ J (i) }  ,  i = 1, 2, ..., k. (9)

Analogously, let )1()( −nix represent the reduced
input vector obtained by extracting the rows de-
fined by indices in J (i) from the input vector

x(n-1). Vectors )1()( −nix  and 
T)(ia are used for

prediction of xi(n), resulting with a new prediction
error sequence given by:
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Optimal nonzero elements in the ith row of the
sparse predictor are found by minimizing the en-
ergy Ei′ of the residual ei’(n). This leads to an in-
dependent set of linear equations for each row i
of the sparse predictor:
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can be found from the input process x(n) as in:
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Dimensions of )(
11

iC , )(
10

ic  and )(ia  depend on
i and are determined by the number of elements
in J (i)  (from 0 to k). Actually, there is no need to
re-compute )(

11
iC  and )(

10
ic  in (12) and (13),

since their elements )(
,
i
mlc  and )(i

lb  are already

contained in matrices C11={ci,j} and C10={bi,j},
and can simply be extracted from them:

ki
bb

cc

ilJ
i

l

mJlJ
i
ml

i

ii
,,2,1  

          

 , )(
)(

)( , )(
)(

,

)(

)()(
=







=

=
(14)

where J (i)(l) denotes the lth element of J (i). After

solving (11), the elements of 
T)(ia  are placed

back on their original positions in the ith row of
sparse matrix 1A  according to the indices in J (i).
By calculating nonzero elements of the sparse
predictor matrix as described, these elements
attain the optimal value for the obtained sparse
structure.

The whole process can be repeated by com-
paring the elements of this sparse predictor to the
threshold again. The threshold can be the same
as in the first iteration since some of the new
elements may now fall below the threshold, but
can also be higher if a structure with less nonzero
elements is required. Whenever the structure is
changed, the design of the optimal sparse pre-
dictor should be repeated to compensate for the
removed elements.

2.1 Criteria for sparse structure
determination

In each design iteration, a certain number of pre-
dictor elements are made equal to zero, i.e. the
ones with σj

2ai,j
2 <Λ. Several criteria for threshold

determination were investigated and compared in
this paper:
a) Λ is chosen such that a fixed number q of pre-
dictor elements with the smallest σj

2ai,j
2 are set to

zero in each iteration.
b) The total weighted energy EA1 of the predictor
is calculated using the following expression
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and all elements with σj
2ai,j

2 < Λ,  are set to zero,
with threshold Λ=p⋅EA1 determined as the per-
centage p of EA1.
c) A maximum possible number of predictor ele-
ments with the smallest σj

2ai,j
2 are set to zero in

each iteration but with restriction that the total
weighted energy of the remaining components is
at most p percent below EA1 before removal.

3 APPLICATION OF THE SPARSE
VLP IN SPEECH CODING

The proposed sparse VLP (sVLP) method was
applied to interframe predictive coding of LPC pa-
rameters of the speech signal. The Line Spec-
trum Frequencies (LSF) representation of the
LPC speech model was chosen as the input
vector process, since consecutive LSF vectors
are highly correlated. Prediction orders higher
than the first result with insignificant prediction
gain improvement [2], so the first order was cho-
sen.

The correlation properties of LSF vectors are
non-stationary and can change very rapidly from
vector to vector. Therefore, vector predictor must
be adapted to this change by using a vector-
based switched-adaptive approach [2]. This tech-
nique is known as Switched-Adaptive Interframe
Vector Prediction (SIVP) and is based on predic-
tion using one predictor from the pre-designed
set. Selection of the predictor is independent for
each LSF vector.

Interframe coding of LSF vectors based on
SIVP scheme results in lower overall complexity
as well as lower bit-rate, compared to memory-
less speech spectrum quantization. The lowest
bit-rate is achieved if SIVP scheme is combined
with vector quantization (VQ) of the prediction re-
sidual [6]. To reduce the complexity and storage
requirements of the VQ, it is favorable to use as
many switched matrices in SIVP as possible. On
the other hand, to achieve the highest possible
prediction gain, the selection of the switched pre-
dictor should be performed by exhaustive search
through all of the N predictors. However, using a
large number of matrices automatically means
greater computational load, so application of
sVLP technique for such a scheme seems as a
reasonable choice.

The procedure for design of the SIVP predic-
tor set with sparse predictor matrices is explained
next. It starts by designing the set of full predic-
tors by an iterative procedure in which each pre-
dictor is optimized to achieve maximal prediction
gain for the class of input vectors that are pre-
dicted with that particular predictor [6], [7]. Inte-
gration of the proposed sparse VLP technique
into the SIVP scheme imposes some modifica-
tions of the original design procedure.



The goal of the procedure is to determine a
set of N sparse predictors with total number of
nonzero elements equal to S, and with optimized
structure and matrix elements for each of the
switched predictors. This can be obtained by two
nested loops where the inner loop represents the
modification of the standard full predictor iterative
design procedure. The difference is in the way
the predictors are calculated from the covariance
matrices as explained in the second section.
Each of the switched predictors is optimized to
achieve the maximal prediction gain for a given
structure. The structure of all switched predictors
is changed in the outer loop according to one of
the proposed criteria. The structures obtained in
one iteration of the outer loop are fixed for the
whole iterative SIVP design performed in the in-
ner loop. The procedure terminates upon reach-
ing the desired number of nonzero elements S.

Since the overall complexity of the sVLP pre-
diction with exhaustive search is proportional to S,
the complexity reduction factor γ = S / Nk2 was
chosen as a design parameter, where Nk2 is the
total number of elements of switched predictors
for the classical (full) VLP.

4 SIMULATION RESULTS
The speech database used for design contains
20 minutes of speech, spoken by 2 male and 2
female speakers. It was analyzed using robust
LPC analysis [8] with pre-emphases and band-
width expansion of 10 Hz. The total number of
60000 LSF vectors of dimension k=10 were ob-
tained from speech segments of 25 ms with 8kHz
sampling rate, and with the LPC frame rate of 50
frames/s.

SIVP design was performed for several num-
ber of switched predictors: N = 2, 4, 8, 16 and 32.
To evaluate the performance of the sVLP com-
pared to the classical VLP, two groups of simula-
tions were carried out. Firstly, the analysis was
performed for the case without the quantizer in
the loop (open-loop prediction). The loss in pre-
diction gain L due to sparse structure was calcu-
lated as the difference between the open loop
prediction gain of the full predictor GpF, and of the
sparse predictor, GpS, i.e. L = GpF − GpS. For both
cases the open loop prediction gain (in dB) was
calculated using the conventional expression:

( ) ,   )  )(  E()  )(  E(log10 22
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where E( ) denotes statistical expectation. The
sparse predictors were designed with complexity
reduction factors γ ranging from 100% (baseline
full VLP) to 10% (10-fold reduction in complexity).

The results of these simulations are illustrated
in Fig. 1 for N=32. It can be observed that all pro-
posed criteria, a), b) and c) result with similar,

relatively small loss, with c) being the best of
them. However, criterion a) is simpler for actual
implementation since it results with the same
number of nonzero elements in each of the
switched matrices. Furthermore, it is obvious that
the results obtained by all criteria proposed in this
paper are much better then those obtained with
multidiagonal predictors [5] also shown in Fig. 1.
This is due to fact that the structures of the
switched predictors were not fixed as for the mul-
tidiagonal case, but were optimized in the design
procedure and thus adjusted to the correlation
properties of the input process.
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Figure 1. Loss in prediction gain vs. complex-
ity reduction factor γγγγ for several sparse pre-
dictor design criteria, with N=32

The influence of the number of switched pre-
dictors on the performance of sparse VLP is
demonstrated in Fig. 2. together with the corre-
sponding results of the baseline predictor.
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Figure 2. Open loop prediction gain vs. num-
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The prediction gain of sVLP for γ=20% (5-fold
reduction) obtained with two sparse design crite-
ria, a) and c), was calculated for different number
of switched predictors. As can be seen, the loss
of the prediction gain due to sparse structure in-
creases with N, varying from 0.1 to 0.4 dB. How-
ever, this loss can be easily justified by the sig-
nificant reduction of complexity and storage re-
quirements.

In the second part of the assessment, both
baseline and sparse predictors were integrated
into the actual SIVP LSF coder with VQ. Coders
were evaluated using 10 utterances, each 1 min-
ute long, spoken by 10 different speakers, and
prepared in the same way as the training base.
The employed sparse switched predictors had an
average of 16.4 nonzero elements (approx. 6-fold
reduction) and were designed with criterion c).
Quantization was performed using full search split
VQ with two subvectors having 4 and 6 compo-
nents, respectively. The average spectral distor-
tion for different VQ resolutions is shown in Fig.
3., where the total number of bits required for
coding of one LSF vector (frame) is shown on the
x axis. In all cases 5 bits are used to specify the
switched predictor (N=32). The difference in SD
between the two group of coders is relatively
small and varies from 0.029dB @ 19bit / fr. to
only 0.020 dB @ 23bit / fr. This suboptimality is
equivalent to approx. 0.3 bit at all VQ resolutions.
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Figure 3. Average spectral distortion of the
baseline and sVLP (γγγγ=16%) coder vs. bit / fr.

5 CONCLUSION
The results presented in this paper suggest that
for certain vector processes (such as LSF in
speech coding) sparse VLP can be effectively
employed. Predictors with structures optimized to
a given vector process offer prediction gain that is
only slightly lower than the one with full predic-
tors. Favorable results obtained with the open
loop evaluation of the sparse VLP were further
confirmed by closed loop evaluation in the actual

coder. It was shown that a 6-fold complexity re-
duction can be achieved by sacrificing only 0.3
bits per frame. The proposed method is espe-
cially suitable for coders with large number of
switched predictors.
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