
 
Abstract -- A new, computationally efficient technique for
calculation of the Line Spectrum Frequencies (LSF) that can be
applied to any order of the LPC analysis is proposed in this
paper. It is based on the Quotient-Difference (Q-D) root-finding
algorithm that enables simultaneous solution for all the LSFs. It
is an iterative procedure that offers the tradeoff between
accuracy and complexity, what is especially important for the
real-time applications. To improve the convergence, a nonlinear
mapping of the LSFs is also proposed. For low accuracy
applications, the method is even more effective then the fast
converging Newton-Rapshon method, but is at the same time
exceptionally simple, has a very regular structure and requires
only basic mathematical operations.

Index Terms -- Line Spectrum Frequencies, Calculation, Root-
finding, Quotient-Difference Algorithm

I. INTRODUCTION

Line Spectrum Frequencies (LSF) are a very popular
parameter set for representation of the LPC speech model
[1] and most of the speech coders used today are based on
them. LSFs are usually determined from the direct form
coefficients (a-coefficients) of the LPC filter and their
calculation must be performed in real time with a typical
rate of 30 to 100 times per second. Computation of the
LSFs is only one part of the whole coder, but a great deal of
the CPU time is usually spent on this task alone. Therefore,
the techniques that reduce the complexity of this procedure
are very interesting. The required accuracy of the LSF
calculation depends on the application. For design and for
the evaluation of the coder higher accuracy is required, but
for the actual coder implementation lower accuracy is
sufficient. Therefore the algorithms that offer the tradeoff
between the accuracy and complexity are the best choice.

So far, there have been no closed form equations for
transforming the a-coefficients into the LSF representation,
but several numerical procedures were proposed in
literature [2],[3]. This problem is equivalent to finding the
zero-crossings of the sum of cosines with integer related
frequencies [2]. Using the Chebyshev polynomials, the
problem can be reduced to finding the simple real roots of
an ordinary polynomial in the interval [–1, 1], [4]. Several
techniques are known for solving the algebraic equation and
a lot of them have already been employed and tested for the
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LSF calculation (e.g. evaluation on a fine grid with
bisection, [4], ordinary [6],[7], modified [6] and accelerated
[7] Newton-Raphson method, etc).

All these techniques can be classified into one of two
basic groups. The first group is based on the evaluation of a
certain function on a fine grid with N points and resolving
the intervals that contain the solutions, e.g. [2],[3],[4]. If no
further bisection is used, then the complexity of these
methods is essentially proportional to pN, where p denotes
the order of the LPC analysis. The accuracy depends on N
as well, but to resolve all the roots the minimal value of N is
bounded (i.e. N>100 for fs=8kHz and p=10). The advantage
of these techniques is the ability to compromise complexity
and accuracy and possibility of implementation using the
integer arithmetic. An improved method that enables fast
identification of the intervals that contain the solution is
proposed in [5], but only for the 10th order LPC polynomial.

On the other hand, if the floating point arithmetic is
available, what is quite common for the modern DSPs, then
the techniques of the second group offer further possibilities
for complexity reduction, e.g. [6],[7]. Due to very fast
convergence of the Newton-Raphson algorithm, high
accuracy can be achieved with 4 to 6 iterations for each
root. Numerical complexity of these methods is
proportional to 3/4p2⋅it, where it denotes the number of
iterations. However, no tradeoff between complexity and
accuracy is possible, since the convergence is guaranteed
only if all the roots are found with full precision.

A new technique proposed in this paper combines the
advantages of both groups and employs the Quotient-
Difference (Q-D) algorithm [8] for determination of the real
positive roots of a polynomial. The accuracy can be
adjusted by varying the number of iterations it,  while the
complexity is proportional to (2p-2)it. Due to a very regular
structure of the Q-D iteration, implementation is very
simple and suitable for parallel or hardware realization.

II.  QUOTIENT-DIFFERENCE ROOT-FINDING ALGORITHM

Practically all conventional root finding algorithms
determine the roots of a polynomial in one-by-one fashion.
The Quotient-Difference scheme is an exception to this
rule, since all the roots are determined simultaneously using
a very simple recursive algorithm [8] explained next.

Real polynomial B(x) of degree n can be defined by real
coefficients b0 to bn or by its roots x1 to xn as in:
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If all n roots are simple with distinct nonzero absolute
values then they can be found using the quotient-difference
algorithm. This is automatically satisfied for polynomials
with real roots obeying the following inequality,

0121 >>>>> − xxxx nn � (2)

en-1
(i)

xn-1
(i)

xn-1
(i+1)

xn
(i)

xn
(i+1)

e2
(i) e1

(i)

x2
(i)

x2
(i+1)

x1
(i)

x1
(i+1)

1/x

en-1
(i+1)

* 1/x

e2
(i+1)

* 1/x

e1
(i+1)

*

en-2
(i)

1/x

en-2
(i+1)

*

...............

...............

...........

.........

Figure 1. One iteration of quotient-difference scheme

Necessary operations required for one iteration of this
procedure are graphically depicted in Fig. 1. Each iteration
gives a new estimate of the root positions, based on the
results of the previous iteration, and based on auxiliary
variables e1 to en-1 as in (3), (iteration is denoted with i).
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This is the 'difference' step of the algorithm, followed
by the 'quotient' step that is used for update of the auxiliary
variables:
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The initial values of xk and ek are calculated from
coefficients b0 to bn:
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If the condition (2) is satisfied, then the estimates xk
(i)

converge to actual roots, while the auxiliary variables ek
(i)

converge to zero, ie:
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III.  LSF CALCULATION USING THE Q-D SCHEME

The procedure for LSF determination starts with the
inverse filter A(z), that is equal to the denominator of the pth

order LPC model H(z)=σ/A(z). This filter is defined by its
coefficients a1 to ap, and can be expressed as a sum of two
filters R(z) and Q(z) of order p+1, as in:
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where the coefficients of Q(z) and R(z) are symmetrical and
anti-symmetrical respectively. These auxiliary polynomials
are found using the following expressions:
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If the order p is even, then one root in each of the
auxiliary polynomials is known in advance and can be
removed:
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Polynomials R'(z) and Q'(z) of the order p both have
symmetrical coefficients with roots located exactly on the
unit circle, i.e. :
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LSFs to be determined are equal to the angles of these
roots, ϑ1 to ϑp, and for a stable LPC filter H(z) satisfy the
following inequality:

πϑϑϑϑ <<<<<< − pp 1210 � (12)

Before proceeding, one additional transformation of
polynomials R'(z) and Q'(z) is necessary. The reason for this
transformation is not clear at this point, but it will be
explained in section IV. Since the same transformation is
performed on both polynomials and since their structure is
identical, the procedure will be explained for R'(z) only.

Symmetrical polynomial R'(z) can be defined by real
coefficients r'1 to r'p/2 as in:
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These coefficients are computed from a1 to ap using the
following expression:
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where r'0=q'0=1.
If a rational function of Z of the form N(Z)/D(Z) is

substituted for z-1 in the expression (13), than a new transfer
function R''(Z) is obtained in the new variable Z.
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where:
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This is the well known nonlinear mapping of the
frequency axis used in IIR filter design for changing the
cutoff frequency of a prototype low-pass filter [9].

If we define a symmetric pth order polynomial Wk(Z) as:
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then it is easy to show that R''(Z)  can be expressed as:
p

n ZD/ZRZR )()()( ′′=′′ (18)

where the nominator (Z)Rn′′  is given by:
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It is obvious that R''(Z)  becomes a transfer function of
an IIR filter with p poles at Z=α, but only the zeros defined
by (Z)Rn′′  are important, since they represent an image of

the original roots of R'(z). The nominator (Z)Rn′′  is also

symmetrical since it is composed of a sum of symmetrical
polynomials W0(Z) to Wp/2(Z) , so can be written as:
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The coefficients 2/10 ,, prrr ′′′′′′ � can be determined directly

from 2/1, prr ′′� using the following matrix equation:

[ 2/10 ,, prrr ′′′′′′ � ] = [ 2/)(,,,,1 2/12/1 pp rrr ′′′ −� ]⋅W (21)

where W is the (p/2+1)×(p/2+1) matrix composed of the
coefficients of Wk(Z), as given in the following equation:
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Since matrix W depends only on the compression factor
α, it can easily be pre-computed and then used for
transformation with a simple matrix multiplication (21).
The substitution given in (15)(16) maps the unit circle of
the z-plane onto the unit circle of the Z-plane, so the roots
of (Z)Rn′′  are also located on the unit circle, but on different

angular positions θ2, θ4, ..., θp. Therefore, (Z)Rn′′  can be

written as:
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The new frequencies θ2k are related to the original LSFs,
ϑ2k, by a simple nonlinear mapping:
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In the following step of the procedure, the pth order
polynomial (Z)Rn′′  with complex conjugate root pairs on the

unit circle is transformed to a polynomial CR(y) of the order
p/2 with real roots y1,y2,... yp/2 in the interval [-1,1]. This is
the well known procedure [4] that is based on the
evaluation of (Z)Rn′′  on the unit circle (Z=e jω ),
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and substitution y=cos(ω), that results with CR(y):
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Computation of cR0 to cRp/2 from 2/10 ,, prrr ′′′′′′ �  can be

done by direct expansion of Chebyshev polynomials for a
chosen order p, or by an efficient iterative algorithm that
works for any order (e.g. [6][7]). The final step before the
application of the Q-D scheme is the expansion of CR(y) in
Taylor series around y=1 with sign inversion, what is
equivalent to substitution x=1-y. It results with polynomial
BR(x) that has the same form as CR(y) but different
coefficient values.
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This final substitution ensures that all the roots of BR(x)
are positive as required by the Q-D algorithm, satisfying the
following inequality:
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By combining all these transformations together, the
final nonlinear mapping from x2k to ϑ2k is:
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for k=1,2,...,p/2, where "arctan2" denotes a four-quadrant
arctangent function.

Coefficients bRk can be determined from cRk using a
simple recursive algorithm that requires only summations (i
denotes the iteration number, i=1,2,...p/2).
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with the initial iteration given by:
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After the final iteration (i=p/2), the signs of the odd
power coefficients are inverted, resulting with desired bRk :
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Q-D root-finding algorithm can now be applied on BR(x)
as described in section II, resulting with simultaneous
solution for all roots: x2,x4,..,xp. The whole procedure is then
repeated for Q'(z) and its roots: x1,x3,..,xp-1.

IV.  CONVERGENCE AND ACCURACY

A new estimates of all polynomial roots are found in
each iteration of the Q-D algorithm. Since the roots are



determined simultaneously, it would be advantageous to
have the same or at least similar convergence speed for all
of them. Otherwise the number of iterations would be
imposed by the root with the slowest convergence. In our
preliminary experiments Q-D algorithm was applied
without any frequency scale compression (α=0) and it was
observed that the roots that are closer to 0 converge much
faster then the outer ones. It was also observed that the
convergence speed can be equalized if the roots are
geometrically related, such that the quotient of any two
successive roots is approximately constant. This has led to
an idea of applying a nonlinear frequency transformation
that would map the roots to new positions that are better
suited for the Q-D algorithm. The compression parameter α
was varied and the convergence speed was evaluated on the
actual speech data. It was found that the best equalization of
the convergence speed for the 10th order LPC model is
obtained with α=0.6. The maximum and the mean absolute
values of the LSF errors determined on a database with
120000 LSF vectors are shown in Figure 2. as a function of
the number of Q-D iterations, it1. The upper 10 curves
correspond to the max. errors while the lower 10 are for the
mean errors. It can be seen that for α=0.6, all the LSFs are
almost grouped together, except for the first two and the
last one that converge a little bit faster. Convergence is
faster at the beginning of the procedure (only two iterations
are needed to reduce the mean error 10 times), but it slows
down for higher iteration numbers (e.g. at it1=20, five
iterations are necessary for the same reduction).
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Figure 2. Maximum and mean absolute LSF errors vs.
number of Q-D iterations for αα=0.6

The quality of the LSF estimation was also evaluated by
calculating the spectral distortion induced by inaccurate
computation, as it is usually done in the evaluation of the
LSF quantization. It was determined that for it1=4 and
α=0.6, the average and maximum spectral distortions are
SDavg=0.39dB and SDmax=4.01dB respectively, with only
1.4% of frames with distortion above 1dB. The accuracy of
LSF estimation used in the actual coders doesn't have to be
much higher then this.

V. COMPUTATIONAL COMPLEXITY

All steps involved in the proposed LSF computations
are listed in Table 1, displaying the number of basic
mathematical operations required for each step, where n is
equal to p/2. Computational complexity for the Newton-
Raphson method [6] is also given in the last three rows for
comparison. It should be noted that the complexity of the
proposed method is only linearly proportional to p, what is
especially important for high order LPC analysis.

Table 1. Computational complexity of the algorithm
Equ. Operation Add. Mult. Div.

(14) kkk qra ′′→  , 4n 0 0

(22) kk qr ′′′′→ , 2(n2+n) 2(n2+n) 2

[7] QkRk cc ,→ n2-n 2(n-1) 2

(30) QkRk bb ,→ n2+n 0 0

(5)(6) )0()0( , kk ex 0 0 2n

(3)(4) Q-D 4(n-1)*it1 2(n-1)*it1 2(n-1)*it1

Total
4(n-1)*it1

+(4n2+6n)
2(n-1)*it1

+(2n2+4n-2)
2(n-1)*it1

+(2n+4)
(n=5, it1=4) 194 100 46
(n=10, it1=20) 1180 598 384

[6] Newton-Raps
(3n2+n-4)*it2

+(2n2+4n-4)
(3n2+n-6)*it2

+(n2-5n+4)
4(n-1)*it2

+(2n)
(n=5, it2=6) 522 448 106
(n=10, it2=6) 2072 1878 236

VI.  CONCLUSION

A new computationally efficient algorithm for
calculation of the LSFs was proposed in the paper. It was
shown that with properly chosen nonlinear frequency
compression, a sufficiently accurate estimation of LSFs can
be obtained in only 4 to 5 iterations of the Q-D algorithm.
The computational complexity of the algorithm compares
favorably to other known techniques.
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