
 

 

  
Abstract—In this paper usefulness of quasi-Newton iteration 

procedure in parameters estimation of the conditional variance 
equation within BHHH algorithm is presented. Analytical solution of 
maximization of the likelihood function using first and second 
derivatives is too complex when the variance is time-varying. The 
advantage of BHHH algorithm in comparison to the other 
optimization algorithms is that requires no third derivatives with 
assured convergence. To simplify optimization procedure BHHH 
algorithm uses the approximation of the matrix of second derivatives 
according to information identity. However, parameters estimation in 
a/symmetric GARCH(1,1) model assuming normal distribution of 
returns is not that simple, i.e. it is difficult to solve it analytically. 
Maximum of the likelihood function can be founded by iteration 
procedure until no further increase can be found. Because the 
solutions of the numerical optimization are very sensitive to the 
initial values, GARCH(1,1) model starting parameters are defined. 
The number of iterations can be reduced using starting values close 
to the global maximum. Optimization procedure will be illustrated in 
framework of modeling volatility on daily basis of the most liquid 
stocks on Croatian capital market: Podravka stocks (food industry), 
Petrokemija stocks (fertilizer industry) and Ericsson Nikola Tesla 
stocks (information’s-communications industry). 
 

Keywords—Heteroscedasticity, Log-likelihood Maximization, 
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I. INTRODUCTION 
AXIMUM likelihood estimation (MLE) is usually 
concerned in parameters evaluation in models with 

nonstacionary variance (heteroscedasticity). Maximum 
likelihood estimation chooses coefficient estimates that 
maximize the likelihood of the sample data being observed. 

Likelihood function, for linear regression model, is defined 
as joint density function for observed output 
variables 1 2, , ..., ny y y . According to the assumption that 
observations are normally distributed, likelihood function is 
defined as: 
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From above definition the joint density function is given as a 
product of all normally distributed variables iy . For practical 
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reasons function (1) is transformed into monotone increasing 
function, by taking it's natural logarithm: 
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Speaking statistically, it is easy to take expectations and 

variance of the sums, rather then products. Function defined in 
(2) is called log-likelihood function [6]. By taking partial 
derivatives of log-likelihood function with respect to 
parameters 0 1, , ..., kβ β β  and 2σ , and setting them equal 
to zero, results in the same estimation of vector β  as in OLS 
case (Ordinary Least Squares). 

Estimators given by maximization of log-likelihood 
function are equivalent to OLS estimators if and only if i.i.d. 
assumption is introduced (independently and identically 
distributed variables). Speaking statistically, assumption that 
variables iy  have normal distribution with constant variance 
is equivalent to the assumption that variables iε  have standard 
normal distribution with zero mean and variance equal to 
unity, i.e. iε  ~ ( )0,1N . 

However, in modeling financial time series with high 
frequencies, the assumption of constant variance is unrealistic. 
Therefore, it is assumed that variance is time-varying 
(heteroscedasticity). It is well-known that returns from 
financial instruments such as exchange rates, equity prices and 
interest rates measured over short time intervals, i.e. daily or 
weekly, are characterized by volatility clustering and ARCH 
effects. Models which are used to account daily volatility 
(standard deviation of returns) are GARCH(p,q) models [1]. 
Autocorrelation of the squared returns suggests high 
dependency between them, i.e. ARCH effect exists. This 
means that volatility is conditioned on its past information's. 

Assuming that tσ  is time-varying, log-likelihood function 
can be expressed as: 
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By taking first derivatives of function (3), and after some 
rearrangement: 
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and setting the system of equations (4) equal to zero, becomes 
to complex to solve, i.e. it is difficult to solve it analytically. 
Therefore numerical approach is needed. 

II. NUMERICAL OPTIMIZATION PROCEDURE 

A numerical approach is needed when variance 2
tσ  is 

described through conditional variance equation according to 
GARCH(1,1) model: 
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In relations (5) Engle sets the multiplicative structure of 

innovation process 2
t t tu=ε σ  assuming  . . .(0,1)tu i i d∼ . 

Numerically, the maximum can be found by "walking up" 
the likelihood function until no further increase can be found. 
The interest of this paper is to estimate parameters of the 
GARCH(1,1) model by maximization of the log-likelihood 
function using BHHH algorithm, and to define starting values 
very close to global maximum. Each iteration moves to a new 
value of the parameters at which ( )ln L β  is higher than at the 
previous step. 

To determine the best value of 1i+β , a second-order 

Taylor’s approximation of ( )1ln iL +β  around ( )ln iL β  is 
used: 
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Now we find the value of 1i+β  that maximizes approximation 
in (6): 
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The Newton procedure uses this formula [13]. The step from 
the current value of iβ  to the new value is ( )1

i iH g−−  the 

gradient vector multiplied by the negative of the inverse of the 
Hessian. The scalar λ  is introduced in the Newton iterative 
formula to assure that each step of the procedure provides an 

increase in ( )ln L β . The adjustment is performed separately 
in each iteration: 
 

( )1
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+ = + −β β λ                                                         (8) 

 
The vector ( )1

i iH g−− is called direction, denoted as id , and 

λ  is called the step size. Classical modified Newton iterative 
procedure specified in (8) is often referred as Newton-
Raphson algorithm when Hessian is determined analytically 
[3]. Even so, calculation of the Hessian is usually 
computation-intensive, i.e. analytical Hessian is rarely 
available. Therefore, alternative to calculation of inverse 
Hessian matrix is it's approximation. 

Suppose that the log likelihood function has regions that are 
not concave. In these areas, the classical modified Newton 
procedure can fail to find an increase. If the function is 
convex at iβ , then the Newton procedure moves in the 
opposite direction to the slope of the log-likelihood function 
and 1

iH −−  is positive definite. 
Therefore Newton-Rapshon algorithm has two main 

disadvantages: 
 calculation of the Hessian is computation-intensive 
 the procedure does not guarantee an increase in each step 

if the log-likelihood function is not globally concave. 

III. LOG-LIKELIHOOD MAXIMIZATION WITHIN BHHH 
ALGORITHM 

Berdnt, Hall, Hall and Hausman (1974) proposed using 
information identity in the numerical search for the maximum 
of the log-likelihood function [4]. In particular, iterative 
procedure is defined as: 
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According to the relations in (9) information identity means 

that the asymptotic variance-covariance matrix of a maximum 
likelihood estimator is equal to the variance-covariance matrix 
of the gradient of the likelihood function [4]. By the central 
limit theorem, the asymptotic distribution of β̂  is multivariate 
normal with mean vector pβ  and variance matrix equal to 

inverse of negative expected Hessian: 
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In other words, the unbiased estimation of variance-
covariance matrix can be approximated as the inverse of the 
outer product of gradients (OPG) as follows: 
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After presentation of some properties of OPG estimators, 

numerical optimization procedure of BHHH algorithm could 
be summarized in following steps: 
1. determine initial vector of parameters initβ , and 
convergence criteria 0.0001tol = , 
2. at current iteration  calculate a direction vector 

( ) 1
i id H

−
⎡ ⎤= −⎣ ⎦β , while ( )iH− β  is calculated by the outer 

of the gradients, 
3. calculate a new vector 1i i id+ = +β β λ , where λ  is scalar. 

Start with 1=λ . If ( ) ( )i i if d f+ >β β  try with 2=λ . If 

( ) ( )2i i i if d f d+ > +β β  try with 4=λ , etc. until lambda is 

found for which ( )i if d+β λ  is in maximum, 
4. if convergence criteria is satisfied algorithm stops, if not 
repeat steps from 2 to 4. 

IV. VECTOR OF PARAMETERS ESTIMATION IN VOLATILITY 
MODELS 

Since the introduction by Engle [7] of the ARCH(p) model 
(Autoregressive Conditional Heteroscedasticity) and it's 
generalization, i.e. GARCH(1,1) model by Bollerslev [5] a 
wide range of extensions and modifications have been 
developed. 

It has been shown that ARCH(p) process with infinite 
number of parameters is equivalent to generalized ARCH 
process, i.e. GARCH(p,q) process which is very well 
approximated by simple GARCH(1,1). As the time lag 
increases in an ARCH(p) model it becomes more difficult to 
estimate parameters. Besides it is recommended to use 
parsimonious model as GARCH(1,1) that is much easier to 
identify and estimate (model has just one lagged square error 
and one autoregressive term). 

When there is asymmetric volatility clustering Glosten, 
Jagannathan and Runkle proposed asymmetric GARCH(1,1) 
model, in which leverage effect is measured with parameter 
associated to dummy variable: 

 
( )2 2 2

0 1 1 1 1 1 1

1
1

1

1 0
0 0

t t t t

t
t

t

d

if
d

if

− − −

−
−

−

= + + +

<⎧
= ⎨ ≥⎩

σ α α γ ε β σ

ε
ε

                                (12) 

 
From expression (12) it can be seen that good news from 
previous day, when 1 0td − = , influences conditional variance 
by parameter 1α , and a bad news, when 1 1td − = , effects 

conditional variance by sum of parameters 1 1+α γ .If is 
founded that parameter 1 0>γ  and statistically significant, 
then negative shocks have larger effects on volatility than 
positive shocks, assuming that other estimated parameters are 
nonnegative (simple test to investigate the leverage effect is to 
test the significance of first-order autocorrelation coefficient 
between lagged returns and current squared returns. If there is 
asymmetric information influence it is expected for this 
coefficient to be negative). 

In Table I parameters estimation of a/symmetric 
GARCH(1,1) model, using BHHH algorithm, are presented. 

From Table I it can be seen that asymmetric information 
influence is present in Podravka stocks, while parameter 1γ  is 
omitted in other two stocks (there was no leverage effect in 
Petrokemija and Ericsson NT stocks). Number of iterations is 
much reduced assuming initial vector of parameters very close 

to global maximum: [ ]0.00001 0.2 0.1 0.8init = τβ . The 
reason we introduced these starting values lies in expectation 
that volatility reacts at low intensity on past market 
movements ( 1α ), and that conditional volatility decays 
slowly, i.e. long time is needed for shocks to die out 
( 1 1+α β ). In initial vector it is also incorporated the 
assumption that the bad news effects the volatility by 50% 
more than the good news. 

On example of Podravka stocks, if we have not assumed 
these starting values, by default software would use 

[ ]0.0002473 0 0 0init = τβ , which would result in 
portion of not concave likelihood function at null iteration. 
STATA 9.1 package was used in parameter estimation with 
initial values 1 1 1 0= = =α γ β , while 0α  is calculated as 
variance of returns from observed sample [8]. Hence, eleven 
iterations would be needed in comparison to 6 iterations. 

In Fig. 1 convergences of estimated parameters of 
GARCH(1,1) model on example of Petrokemija stock from 
Zagreb Stock Exchange, as well as convergence of log-
likelihood are presented. 

 
 
 
 

TABLE I 
PARAMETERS ESTIMATION USING BHHH ALGORITHM 

Stocks Parameter estimation 
of the GARCH(1,1) 

model a Podravka Petrokemija Ericsson NT 

0α  0.0000376 0.0002552 0.0000476 

1α  0.3009699 0.4147483 0.2801536 

1γ  0.1532592 - - 

1β  0.419941 0.2214572 0.221457 
Number of iterations 6 10 12 

a Parameter values are estimated using initial vector of parameters as: 
[ ]τβ 8.01.02.000001.0init =  
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Fig. 1 Convergences of estimated parameters and log-likelihood of 
GARCH(1,1) model of Petrokemija stock (10 iterations) 

 
Small changes in parameter values, with small increases in 

log-likelihood function, from one iteration to the next iteration 
could be evidence that convergence has been achieved. Even 
so, small changes in iβ  and ( )ln iL β  accompanied by a 
gradient vector that is not close to zero indicate that we are not 
effective in finding the maximum. At each iteration the step 
size is reduced (stepping backward) or increased (stepping 
forward) in purpose to calculate new vector for which the 
maximum of log-likelihood function is increased the most [8]. 
Step size is reduced when the initial step is bad, and it is 
increased when the initial step is good. 

Table II shows how step size is increased (doubled) in each 
iteration as long as ( )ln iL β  continues to rise. 

 

The advantage of this approach of doubling step size is that 
it usually reduces the number of iterations (procedure 
presented in Table II is obtained using S+FinMetrics module 
of S-PLUS package, where likelihood is normalized in each 
step). Procedure stops at last iteration when a convergence 
criterion is satisfied. In theory the maximum of log-likelihood 
occurs when the gradient vector is zero. Namely, in practice 
the calculated gradient is never exactly zero, but can be very 

close. Therefore, ( ) 1T
i i ig H g−−  is often used to evaluate 

convergence: 
 

( ) 1 0.0001T
i i ig H g−− <                                                       (13) 
 

If (13) is satisfied, the iterative process stops and the 
parameters at current iteration are considered as estimates. 

Estimated conditional volatilities of Podravka, Petrokemija 
and Ericsson stocks are presented in Fig. 2 and 3, from 13 
December 2004 to 8 November 2007 (728 trading days). 

 
 

Fig. 2 Conditional volatilitiy of Petrokemija stocks 

 

 

 

 
 

TABLE II 
DOUBLING STEP SIZE IN FIRST 4 ITERATIONS OF LIKELIHOOD 

MAXIMIZATION 

 

PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 37 JANUARY 2009 ISSN 2070-3740

PWASET VOLUME 37 JANUARY 2009 ISSN 2070-3740 635 © 2009 WASET.ORG



 

 

 
 

Fig. 3 Conditional volatilities of Podravka and Ericsson NT stocks 
 

All estimated parameters in Table I are significant at 
empirical p-value less then 5%. Also sum of parameters 

1 1+α β  in modeling Ericsson volatility indicate that there is 
high volatility persistence, i.e. conditional variance decays 
slowly [12]. It means that GARCH(1,1) model is 
nonstacionary, i.e. it follows integrated GARCH model 
(IGARCH(1,1) model belongs to familiy of long memory 
models when long time is needed for shocks in volatility to die 
out). Even so, parameter 1α  detects low intensity reaction of 
volatility on past information’s. 

Because the stationary conditions of estimated model of 
Podravka and Petrokemija stocks are satisfied the 
unconditional long-term variance can be calculated. 
Unconditional long-term standard deviation of Podravka 
returns is 1.36%, and long-term standard deviation of 
Petrokemija returns is 2,65%. Also, on example of Podravka 
stocks, it is evident that bad in formations effects volatility 
50.92% more than the good information’s. 

V. CONCLUSION 
To investigate if local maximum is the global optimum we 

should use different starting values and observe whether 
convergence occurs at the same parameter values. Empirical 

research has showed that initial vector of parameters as null-
vector is not appropriate. 

Namely, BHHH algorithm has approved to be faster when 
good initial parameters are used (close to global maximum). 
To simplify optimization procedure BHHH algorithm uses the 
approximation of the matrix of second derivatives according 
to information identity: "at the true value of parameter vector 
β  the expected value of the outer product of the first 
derivatives is equal to minus the expected value of the second 
derivatives". 

Convergence is assured because the approximation of the 
inverse of the Hessian matrix is guaranteed to be a positive 
definite. Even so, convergence problem may arise, because the 
more parameters in the model are entered the "flatter" the log-
likelihood function becomes, and therefore the more difficult 
it is to maximize. 
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