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Abstract

The lowpass systems with minimum second order moment of the impulse response are
presented. Therefore the obtained systems have the largest possible energy concentration in
time. The optimization of the transfer function parameters is carried out for the functions
ranging from the second to the tenth order, with finite zeros. The optimum pole-zero positions
suitable for filter design are given together with properties of the systems.
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1 INTRODUCTION

In many applications the systems with small time spread of the impulse response as
well as small and short ringing are required. There are methods for design of such filters in
the frequency and time domain, and they can be found in [1]. Most of them approximate the
shape of the prescribed impulse response, while others optimize a particular property of the
system time response that may be described by an integral criterion. If the criterion can be
expressed by the system parameters through simple relations, it can be used not only for
characterization but for optimization procedure as well. Here we propose the use of the
integral criterion to find a class of filters with minimum time spread of the impulse response
h(t).

The first and the second order moments can be used as integral criteria having the
mentioned property. In particular, when impulse response is nonnegativd), h{s) two
moments, centroid and standard deviation are
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They can be attractive definitions of the delgyand the rise time, for analytical
purposes [2], [3].

However, if h(t) is not nonnegative, the resulting central moment can become small,
not only because of the small time spread, but because the positive, h(t)>0, and the negative
contribution, h(t)<0, of the impulse response may cancel each other. It seams that the choice
of the absolute value |h(t)| in (1) is better, but unfortunately, it is not easy to work with. The
central moment of |h(f)|which gives the power spread along the time axis, is more tractable.
Therefore, we will use second central moment of this function to minimize the response
spread.



2 MOMENT AND TRANSFER FUNCTIONS

The second order moment of the squared impulse response around cgnsrgigén
by
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We define a measure of impulse response spread by the central moment (2), normalized to
impulse response energy
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For the optimization procedure in the complex domain, the criteri@h&uld be expressed

by the transfer function poles;, pnd zeros,izThe impulse response of the N-th order filter
with simple poles and M<N finite zeros is given by
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The pole residues arg,K=1,2,...,N. Now, the second moment and the impulse response total
energy can be expressed as function of poles, zeros and residues as
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Besides the system order N and number of zeros M, no other requirements are set to restrict
the frequency domain behavior of the system.

3 OPTIMIZATION PROCEDURE

The positions of poles and zeros of causal filters with the most compact impulse
response can be found by solving the problem
min Ez[z-,p-] .
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In our optimization procedure the frequeny andw, and quality factor Qand Q were

used, instead of the poles and zergsarmqul z Usingw, and @ andw, and Q, a rational
transfer function with even number of zeros can be written in the form
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for N even and N odd, respectively.



In a stable system poles, and Q are positive. Positive values af and Q in (7)
will give zeros in the right half plane. Square values of goal function variables were
employed rather than constrained optimization procedure. Finally, optimum system poles and
zeros were found as

min E,|w,Q2,w2,Q2] .
B o Qp.2,Qp (8)

For searching minimum Quasi-Newton method with BFGS formula for Hessian
matrix update [4] was used. In each iteration, a bisection type line search was performed
followed by quadratic interpolation. In situations when Hessian matrix had irregular inverse,
a steepest descent method was forced by setting Hessian matrix to identity.

To obtained causal filters with the most compact impulse response, the optimization is
carried out for the second moment, and system orders from N=2 to N=10, and two and four
zeros. The parametey is chosen to be 1 that will not change the generality of the solution.

4 OPTIMIZATION RESULTS
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Figure 1 Impulse response spread of obtained

interesting to note that the poles are located
very closely to ellipses that have the joint
center at the complex plane origin, similar as in the case of the systems with symmetric
impulse response [5]. Zeros are grouped around the point 5+4j for the systems with one pair
of zeros, and around points 6+4j and 5+11j for the systems with two pairs of zeros.

The impulse response of the all-pole system is shown in Figure 3. It is a bell-shaped
response, with small and short ringing. The impulse response of the filters with one pair of
complex zeros is given in Figure 4. The presence of zeros improves the response symmetry
and causes the ringing before the main pulse. The corresponding step responses have small
overshoots and undershoots, as shown in Figure 5 and Figure 6. In both cases the overshoots
are below 3% for N>2. Generally, the step response overshoot is smaller than 1.2% for odd
order systems and<9.

The optimization results with presence of two pairs of zeros are similar in character to
the systems described above. The impulse response withhas somewhat smaller time
spread and larger leading edge ringing. The step response consequently has shorter rise-time
for larger number of zeros. Such transfer functions can be suitable in the design of linear
delay networks.

The step responses normalizeduigs=1 will have rise-time quasi independent of
number of zeros for the given system order. It takes values 2.17 s to 2.43 s for 2<N<10.

systems.



Table 1 Transfer function parameters of systems Table 2 Transfer function parameters of systems
with two pairs of complex zeros.

with one pair of complex zeros.

N Op Qp (O Q, 034B N [ Qp 0y Q. 034
3 3.5801 | 1.1122 | 7.8547 | 0.5442 3.0765 7.7238 | 2.0223 | 11.2956 | 0.7328
1.8684 ’ 51 4.5227 | 0.9259 | 9.3981 | 0.5223 | 5.0867
4 5.3578 | 1.5391 | 6.2596 | 0.6314 39624 2.5976
2.7472 | 0.6394 9.8576 | 2.4930 | 11.7152| 1.1242
7.0263 | 1.9830 | 6.2471 | 0.6459 6| 6.4354 | 1.2483 | 6.6435 | 0.5839 | 6.4912
51 4.1418 | 0.9131 4.5278 3.4550 | 0.6101
24171 11.7845| 2.9638 | 11.7924 | 1.2158
8.6126 | 2.4651 | 6.4843 | 0.6491 7 8.3135 | 1.5823 | 6.4986 | 0.5951 73700
6| 5.6760 | 1.2291 5.5917 4.9527 | 0.8403 ’
3.0909 | 0.6056 3.0461
10.1409 | 3.0016 | 6.7937 | 0.6493 13.5688 | 3.4580 | 12.1498 | 1.2387
7.2342 | 1.5695 10.1356 | 1.9288 | 6.6145 | 0.5994
7 4.3469 | 0.8318 6.2190 8 6.6522 | 1.1101 8.1610
27114 3.7363 | 0.5907
11.6260| 3.6055 | 7.1269 | 0.6486 15.2574 3.9940 | 12.6001 | 1.2417
3 8.7817 | 1.9335 6.8803 11.9051| 2.2903 | 6.8130 | 0.6012
5.8056 | 1.1035 9 8.4011 | 1.3981 8.8154
3.2921 | 0.5885 5.0969 | 0.7912
13.0770 | 4.2889 | 7.4664 | 0.6477 3.2904
10.3086 | 2.3254 16.8789 | 4.5856 | 13.0835| 1.2380
9| 7.3278 | 1.3982 7.4870 13.6265| 2.6690 | 7.0436 | 0.6020
4.4696 | 0.7878 10(10.1504 | 1.6997 9.7009
2.9080 6.7070 | 1.0342
14.5002 | 5.0642 | 7.8050 | 0.6467 3.8942 | 0.5791
11.8130| 2.7506
10| 8.8636 | 1.7111 8.2661
5.8829 | 1.0333
3.4345 | 0.5781
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Figure 2 Zero pole positions of optimum systems with all zeros at the infinity, systems with one pair of
complex zeros and systems with two pairs of complex zgres, t

The amplitude and the group delay responses, normalizegygel, are shown in

Figure 7, to Figure 10, in the form suitable for comparison with the classic filter
approximations, given for example in [7]. The amplitude response is quasi gaussian. The
group delay curves illustrate near constant approximations. Zeros improve the average slope
of the group delay within the passband of the higher order systems.



2.5 3.5
N=10
3.0
2.0
/
© /] ©
1.5 2 /|
g %\\ £ 2.0
& &
[} [}
5 1.0 5 15
E E
o o
£05 E 10
N=2 0.5
0
N=10 0 ﬁ:
-0.5 -0.5
0 1 2 3 4 5 0 3 4 5
t [s] t[s]
Figure 3 Impulse response of optimum systems Figure 4 Impulse response of optimum systems
with all zeros at the infinity 1. with one pair of complex zerog,1.
4.5 3.5
4.0 \ 3.0
T s S A
= |\ M=o 8 2.5 S
£3.0 Ve 2 S~
2.5 = 1 s 2. =
SNRUE/N M= = AM=2)
220 H L £ ".\ /“‘3\ / 9 15
= : . . - ) I Y N N Y SR
g; s \ / \ [/ \ / \\ ['/ é .................
HRIFARIVAR VAR Zaln it
210 3 7 7 g =0
PV a
0 -0.5
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
N N
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Figure 7 Amplitude response of optimum Figure 8 Amplitude response of optimum
systems with all zeros at the infinity, systems one pair of complex zeros,

Wsae=1. Wse=1.
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Figure 9 Group delay of optimum systems with  Figure 10 Group delay of optimum systems one
all zeros at the infinitygsqe=1. pair of complex zerosygs=1.

5 CONCLUSION

By minimization the second order moment of the squared impulse response, a hew
class of finite order systems is obtained. Based on the used criterion, the obtained filters have
the largest possible energy concentration in time. The impulse response has small and short
ringing. The amplitude response is quasi gaussian, with quasi constant group delay. The
presence of zeros improves the impulse response energy concentration and the group delay.
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