
FILTERS WITH MINIMUM IMPULSE RESPONSE
MOMENT

Mladen Vucic and Hrvoje Babic
Faculty of Electrical Engineering and Computing

Unska 3, Zagreb, HR10000, Croatia
E-mail: mladen.vucic@fer.hr and hrvoje.babic@fer.hr

Abstract
The lowpass systems with minimum second order moment of the impulse response are
presented. Therefore the obtained systems have the largest possible energy concentration in
time. The optimization of the transfer function parameters is carried out for the functions
ranging from the second to the tenth order, with finite zeros. The optimum pole-zero positions
suitable for filter design are given together with properties of the systems.
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1 INTRODUCTION

In many applications the systems with small time spread of the impulse response as
well as small and short ringing are required. There are methods for design of such filters in
the frequency and time domain, and they can be found in [1]. Most of them approximate the
shape of the prescribed impulse response, while others optimize a particular property of the
system time response that may be described by an integral criterion. If the criterion can be
expressed by the system parameters through simple relations, it can be used not only for
characterization but for optimization procedure as well. Here we propose the use of the
integral criterion to find a class of filters with minimum time spread of the impulse response
h(t).

The first and the second order moments can be used as integral criteria having the
mentioned property. In particular, when impulse response is nonnegative, h(t)≥0, its two
moments, centroid and standard deviation are
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They can be attractive definitions of the delay td, and the rise time τ, for analytical
purposes [2], [3].

However, if h(t) is not nonnegative, the resulting central moment can become small,
not only because of the small time spread, but because the positive, h(t)>0, and the negative
contribution, h(t)<0, of the impulse response may cancel each other. It seams that the choice
of the absolute value |h(t)| in (1) is better, but unfortunately, it is not easy to work with. The
central moment of |h(t)|2, which gives the power spread along the time axis, is more tractable.
Therefore, we will use second central moment of this function to minimize the response
spread.



2 MOMENT AND TRANSFER FUNCTIONS

The second order moment of the squared impulse response around centroid tm is given
by
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We define a measure of impulse response spread by the central moment (2), normalized to
impulse response energy
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For the optimization procedure in the complex domain, the criterion E2 should be expressed
by the transfer function poles, pj, and zeros, zi. The impulse response of the N-th order filter
with simple poles and M<N finite zeros is given by
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The pole residues are Kr, r=1,2,...,N. Now, the second moment and the impulse response total
energy can be expressed as function of poles, zeros and residues as
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Besides the system order N and number of zeros M, no other requirements are set to restrict
the frequency domain behavior of the system.

3 OPTIMIZATION PROCEDURE

The positions of poles and zeros of causal filters with the most compact impulse
response can be found by solving the problem
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In our optimization procedure the frequency ωp and ωz and quality factor Qp and Qz were
used, instead of the poles and zeros, pj and zi. Using ωp and Qp and ωz and Qz, a rational
transfer function with even number of zeros can be written in the form
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for N even and N odd, respectively.



In a stable system poles ωp and Qp are positive. Positive values of ωz and Qz in (7)
will give zeros in the right half plane. Square values of goal function variables were
employed rather than constrained optimization procedure. Finally, optimum system poles and
zeros were found as
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For searching minimum Quasi-Newton method with BFGS formula for Hessian
matrix update [4] was used. In each iteration, a bisection type line search was performed
followed by quadratic interpolation. In situations when Hessian matrix had irregular inverse,
a steepest descent method was forced by setting Hessian matrix to identity.

To obtained causal filters with the most compact impulse response, the optimization is
carried out for the second moment, and system orders from N=2 to N=10, and two and four
zeros. The parameter tm is chosen to be 1 that will not change the generality of the solution.

4 OPTIMIZATION RESULTS

The impulse response spread of
obtained systems is shown in Figure 1 for
various numbers of zeros. The presence of
zeros apparently reduces the energy spread in
time.

Numerical values of the rational
transfer function parameters ωp, Qp, ωz and
Qz are given in Table 1 and Table 2. For the
all pole transfer functions, the numerical
values can be found in [6].

For the rational transfer functions
with tm=1, the examples of pole-zero
positions are shown in Figure 2. It is
interesting to note that the poles are located
very closely to ellipses that have the joint

center at the complex plane origin, similar as in the case of the systems with symmetric
impulse response [5]. Zeros are grouped around the point 5+4j for the systems with one pair
of zeros, and around points 6+4j and 5+11j for the systems with two pairs of zeros.

The impulse response of the all-pole system is shown in Figure 3. It is a bell-shaped
response, with small and short ringing. The impulse response of the filters with one pair of
complex zeros is given in Figure 4. The presence of zeros improves the response symmetry
and causes the ringing before the main pulse. The corresponding step responses have small
overshoots and undershoots, as shown in Figure 5 and Figure 6. In both cases the overshoots
are below 3% for N>2. Generally, the step response overshoot is smaller than 1.2% for odd
order systems and N≤9.

The optimization results with presence of two pairs of zeros are similar in character to
the systems described above. The impulse response with tm=1 has somewhat smaller time
spread and larger leading edge ringing. The step response consequently has shorter rise-time
for larger number of zeros. Such transfer functions can be suitable in the design of linear
delay networks.

The step responses normalized to ω3dB=1 will have rise-time quasi independent of
number of zeros for the given system order. It takes values 2.17 s to 2.43 s for 2<N<10.

Figure 1 Impulse response spread of obtained
systems.



The amplitude and the group delay responses, normalized to ω3dB=1, are shown in
Figure 7, to Figure 10, in the form suitable for comparison with the classic filter
approximations, given for example in [7]. The amplitude response is quasi gaussian. The
group delay curves illustrate near constant approximations. Zeros improve the average slope
of the group delay within the passband of the higher order systems.

Table 1 Transfer function parameters of systems
with one pair of complex zeros.

Table 2 Transfer function parameters of systems
with two pairs of complex zeros.

      
Figure 2 Zero pole positions of optimum systems with all zeros at the infinity, systems with one pair of

complex zeros and systems with two pairs of complex zeros, tm=1.



Figure 3 Impulse response of optimum systems
with all zeros at the infinity, tm=1.

Figure 4 Impulse response of optimum systems
with one pair of complex zeros, tm=1.

Figure 5 Step response overshoot of optimum
systems.

Figure 6 Step response undershoot of optimum
systems.

Figure 7 Amplitude response of optimum
systems with all zeros at the infinity,
ω3dB=1.

Figure 8 Amplitude response of optimum
systems one pair of complex zeros,
ω3dB=1.



Figure 9 Group delay of optimum systems with
all zeros at the infinity, ω3dB=1.

Figure 10 Group delay of optimum systems one
pair of complex zeros, ω3dB=1.

5 CONCLUSION

By minimization the second order moment of the squared impulse response, a new
class of finite order systems is obtained. Based on the used criterion, the obtained filters have
the largest possible energy concentration in time. The impulse response has small and short
ringing. The amplitude response is quasi gaussian, with quasi constant group delay. The
presence of zeros improves the impulse response energy concentration and the group delay.
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