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Abstract 

The lynch-pin of the structuralist account of logic endorsed by Koslow has two 
components: one is the definition of an implication structure, while the other amounts 
to the definition of the logical operators as functions defined relative to an implication 
structure. 
In this paper I first present the basic tenets of the structuralist account of logic. Then, 
in the discussion which follows I give reasons for rejecting certain definitions which 
form part of the theory and thirdly I point out some general difficulties arising from 
such an account of logic. 
 

Introduction 

The structuralist account of logic endorsed by Koslow (Koslow 1992, 2007) is one of 

the most appealing contemporary formulations of structuralism in logic. 

But, what does structuralism in logic amount to? Is it analogous with structuralism in 

mathematics or other domains? And if yes, in which sense? 

In this paper I try to answer these questions by presenting the basic tenets of Koslow’s 

theory; I then analyse his views and offer reasons for holding that some aspects of his 

structuralist account are flawed. Finally, I try to show that Koslow’s theory of logic 

fails to achieve a satisfactory answer to the question of a possible reduction of logic to 

structure(s).    

One of the fields that is paradigmatically about structures is mathematics. This can be 

read in two ways: mathematics is about different structures such as the vector space 

structure, the natural number structure, the group structure etc., while the possibility 

of reducing mathematical theories to set theory, gives sense to viewing mathematics 

as about the (common) set-theoretic structure. Philosophically speaking, the 

(ontological) reduction of mathematical objects to structures leads to interesting 

results that aim to solve some ontological, as well as epistemological, problems in the 

philosophy of mathematics (see (Resnik 1997), (Shapiro 1997), (Hellman 2001)), 

even though it also brings to the surface some difficulties such as the problem of 
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structures that admit non-trivial automorphisms (for more details see for example 

(Hellman 2001, p.193)).  

What about logic? Is there any analogy with mathematics, in the sense of being about 

(different) structures? Or is it maybe the case that logics share a universal structure? 

As is well known, different logics are based on different principles.  Examples are 

legion. Let us just mention the case of relevance logic and its constraint of a necessary 

relevant connection between the premises and the conclusion in any argument, 

absolutely absent in classical logic. 

Does it mean that the proposal of a common logical structure and, consequently, of a 

universal logic, is destined to fail?  In this paper I will try to answer this question 

through a discussion of the tenets of the structuralist account of logic.  

 

Koslow’s structuralist account of logic 

The lynch-pin of Koslow’s structuralist account of logic is the notion of implication 

structure and the definition of logical (and modal) operators relative to an implication 

structure. Let us see what these definitions amount to and what results they imply.  

An implication structure is any order pair: ((S, ⇒); where S is a non-empty set, while  

“⇒” is an implication relation. 

An implication relation is (implicitly) defined as any relation that satisfies the 

following conditions: 

(1) Reflexivity:          A ⇒ A, for each A in S 

(2) Projection:         A1, A2, …, An ⇒ Ak,  for every k=1, …, n, and for each Ai in S  

                                 (i = 1, …,n) 

(3) Simplification:    If  A1, A1, A2, …, An ⇒ B, then  A1, A2, …, An ⇒ B, for all Ai 
                                 (i = 1, …,n) and B in S 

(4) Permutation:      If   A1, A2, …, An ⇒ B, then  Af(1), Af(2), …, Af(n) ⇒ B, for any 
                                 permutation f of  {1, …,n} 

(5) Dilution (or Thinning):   If   A1, A2, …, An ⇒ B, then  A1, A2, …, An, C  ⇒ B, for  
                                              any Ai  (i = 1, …,n), B and C in S 

(6) Cut:                     If   A1, A2, …, An ⇒ B, and B, B1, B2, …, Bm ⇒ C, then   
                                  A1, A2, …, An, B1, B2, …, Bm ⇒ C, for any Ai, Bj, B and C  
                                  (i, j = 1, …,n) 
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Someone might object that a different choice of constraints would be more fruitful 

and economical since clearly Reflexivity follows from Projection, and Dilution 

follows from Projection and Cut. Nevertheless, Koslow keeps the list of constraints 

for the sake of greater articulateness, based on Gentzen’s theory.  

Given the constraints, there are examples of implication relations that immediately 

come to mind, such as the notion of (semantic) consequence or the (syntactic) notion 

of deducibility for a set of sentences of some first-order logical theory. But, 

interestingly enough, these examples do not even remotely exhaust all the 

possibilities.  Either in the sense of getting unusually defined logical operators, given 

a set of propositions of first-order logic or certain examples of logical operators 

defined on elements of S that are either not syntactic objects or truth bearers.  

 The logical operators can act in a broad variety of settings, sentential and 
            otherwise. In particular, the actions of the operators on structures of sets, 
            names, and interrogatives, to cite just some nonstandard examples, are 
            mentioned because the items in these cases fail in an obvious way to be 
            syntactical or fail to be truth-bearers. (Koslow 1992, p.9) 

Set inclusion, for example, given any set of subsets of a non-empty set S, also fulfils 

all the mentioned constraints, so (S, ⊆) exemplifies the implication structure. Other 

examples may be found in the context of the theory of individuals and erotetic logic 

(Koslow 1992, p. 209-229). 

Such a definition might seem to be needlessly general, especially given its non-

economicity, but this point is not lost on Koslow since its generality is more a virtue 

than a limitation. Analogously, it is possible to get some rather weird group structure 

examples or mathematically uninteresting equivalence relations. Of course, such 

examples might be more or less philosophically, mathematically or logically 

interesting and fruitful. 

Given the definition of implication structures, the logical operators are defined 

relative to such structures, i.e. as functions defined on structures. And here again, 

given the possibility of non-standard implication relations, the same applies to the 

operators as well.  

Let us take the example of the hypothetical operator H⇒. For any elements A and B in 

the implication structure (S, ⇒), H⇒(A, B) is the hypothetical having A as the 

antecedent and B as a consequent, if and only if the following conditions are fulfilled: 

(H1)  A, H⇒(A, B) ⇒ B 
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(H2) H⇒(A, B) is the weakest element satisfying the condition (1). It means that, 

for any element T of the implication structure such that A, T ⇒ B, it follows that    

T ⇒ H⇒(A, B) 

Such a definition leaves open per se the answer to the question as to whether the 

hypothetical, given an implication structure, may fail to exist or not. And the 

following example solves the dilemma positively. 

Let us take the implication structure (S, ⇒), in which S={A, B, C, D} and the 

implication relation is given in the following way: 

                     A 

                     
                    B 

 
             C          D 

In such a structure, the hypothetical H⇒(A, B) does not exist (not to be confused with 

the fact that A⇒B); namely, H⇒(A, B) is, by definition, the weakest member T of S 

such that: A, T ⇒ B. Since A⇒B, the condition is fulfilled by any element of S, but 

there is no weakest element. C cannot be the weakest element since  A, D ⇒ B, while 

D≠> C (see the condition (H2) above). D cannot be the weakest for the same reason. 

(See Koslow (1992) for more examples). 

As easily noted, such a definition does not put any constraints on truth conditions, 

syntactic features or others; as Koslow points out: 

 There is no appeal to truth conditions, assertibility conditions, or any 
syntactical features or semantic values of the elements of the structure. 
(Koslow 1992, p. 78) 

 
The fact that the elements of an implication structure are not necessarily syntactic 

objects having a special sign design or elements having a semantic value, is what 

make the explanation/definition of the logical operators free of such constraints. 

 

The structuralist account of logic – critical remarks 

I will concentrate on certain aspects of the structuralist account of logic and make a 

number of quite general remarks. 

First, if we have a look at the six conditions (defined as (1)Reflexivity,…,(6)Cut) that 

any relation has to fulfil in order to be an implication relation, we may ask how is the 

left-hand side of the expression A1, … , An ⇒B to be construed? In the case in which S 
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is a non-empty set of sets and the implication relation is set inclusion, the sequence 

A1, … , An is the intersection of sets (Koslow 1992, p. 53). Since the intersection of 

sets is their conjunction, it turns out that in order to interpret the sequence A1, … , An, 

i.e. in order to determine that the implication relation is set inclusion, we ought to 

know what the intersection, i.e. the conjunction of sets is. It follows that in certain 

cases we ought to know how a certain logical operator is defined prior to having 

determined an implication relation on a non-empty set. According to the structuralist 

account of logic, it should be the other way round.  

Secondly, one of the most interesting results of the structuralist account of logic is the 

definition of the operators for interrogatives: 

Let Q be a set of interrogatives 

S - a set of sentences inclusive of the sentential direct answers to the questions in Q 

S’ = S ∪ Q. 

A direct answer need not be a true one: 

We shall use the term “interrogative” to include any question that has a direct 
answer. The most important feature of the direct answers to a question is that 
they are statements that, whether they are true or false, tell the questioner 
exactly what he wants to know – neither more nor less. (Koslow 1992, p. 220) 

 

The implication relation on S’ (‘⇒q’) is defined as follows (Koslow 1992, pp.218-

229): 

Let M1?, M2?, …, Mn? and R? be questions in Q,  

F1, F2, …, Fm and G be statements of S (the set of M’s or the set of F’s may be empty 

but not both), and 

Ai be a direct answer to the question Mi? (i=1,…,n).  

Then 

(1.)  F1, F2, …, Fm, M1?, M2?, …, Mn? ⇒q R?  if and only if there is some direct   

answer B to the question R? such that  

       F1, F2, …, Fm, A1, A2, …, An ⇒ B 

(2.)  F1, F2, …, Fm, M1?, M2?, …, Mn? ⇒q G  if and only if     

       F1, F2, …, Fm, A1, A2, …, An ⇒ G 

Such a definition is problematic. Let us see why. Let the set of F’s be empty (for the 

sake of simplicity), and let us examine the case in which a question implies a 

statement (the second condition in the definition). Let the statement G be any false 
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statement, e.g. a false answer to the question R?. In this case, whether M1? ⇒q G or 

not depends on whether A1 ⇒ G, and the latter depends on what answer A1 (to the 

question M1?) we choose. If the answer we choose is a false one, then M1? ⇒q G, 

otherwise M1? ≠>q G. More generally, the same problem appears whenever the 

statement G is false. In this case, given a collection of interrogatives Mi? (i=1,…n), 

their respective direct answers Ai, and a set of true statements Fi (i=1,…n),  there is 

nothing in Koslow’s definition that allows us to uniquely determine whether F1, F2, 

…, Fm, M1?, M2?, …, Mn? ⇒q G or not.  

Thirdly, let us consider a more general difficulty with the theory. Even though we 

might expect that certain results that hold given the operators classically defined hold 

in non-standard cases too, Koslow shows it is not the case. Let us mention the cases 

of implication structures in which (((A→B)→A)→A)  is not a thesis or examples of 

structures in which the hypothetical with false antecedents can sometimes be true, and 

sometimes false (Koslow 1992, pp. 83-90). 

These are features of the system, not of the structure, so it is not odd that such results 

are not necessarily present in non-standard implication structures. Nevertheless, 

having a true hypothetical whenever the antecedent is false (or having certain 

expressions as thesis) is not a marginal result given the operators classically defined. 

Two questions arise at this point: how do we get from the semantic-and-syntactic-

features-free definitions to the syntactic rules for formula formation or the (semantic) 

truth tables, giving results that do not follow from the structurally defined operators? 

And how can a system have so many basic features that are not, in some form or 

another, already present in the structure? 

Such problems make us think that the characterization of the operators relative to the 

implication structure does not, in itself, obtain the semantic and syntactic results we 

expect to get in the standardly defined implication structures. For these reasons 

Koslow’s structuralist account does not satisfactorily solve the task of characterizing 

the logical operators relative to implication structures and even though tempting in 

many philosophical and logical aspects, it makes us sceptical as to whether a general 

logical structure might, after all, be defined. 
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