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ABSTRACT

The properties of the symmetric impulse response filters
with real and complex zeros are considered. The pole-zero
locations of the rational transfer functions are found, by
minimization of the symmetry error. The contribution of
zeros to the symmetry error is shown and compared to the
systems with all zeros at the origin. The design procedure
of such filters based on time or frequency domain
requirements is outlined.

1 INTRODUCTION

In discrete time systems the finite impulse response (FIR)
can be obtained, what enables the design of causal systems
with a symmetric impulse response and an ideal linear
phase. The realization of FIR filters typically requires quite
a large number of memory locations as well as
multiplications. In practical applications, however, an ideal
linear phase system is not always necessary. This means
that IIR systems with approximately symmetric impulse
response or approximate linear phase will also have
application, since they are computationally more efficient
than FIR filters.

The finite order systems based on a design requirement
in the time domain are, generally, different from those
based on the frequency domain requirements. We have
recently used the impulse response symmetry as a design
criterion for IIR filters [1]. In this paper we will extend the
optimization of the IIR filters by adding real and complex
zeros to the transfer functions and investigate their
influence to the system properties.

2 IMPULSE RESPONSE SYMMETRY

The discrete form of the impulse response symmetry error
is given by
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where h(n) is the filter impulse response. Symmetry line is
placed between samples S-1 and S. The error ES is
normalized to the energy of the impulse response
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The value E expressed by transfer function poles and zeros,
is used as the optimization criterion [1].

The real and imaginary part of poles, di, and zeros, ck,
were used as the goal function variables. Finally, the
optimum poles and zeros were found from
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A Quasi-Newton method with BFGS formula for
Hessian matrix update was used for searching for the
minimum [2].

The optimization procedure was performed from the
third up to the tenth order transfer functions, N=3 to N=10,
and the number of complex zeros, M=2 and M=4. The
delay parameter was varied from S=3 to S=30 samples.

3 OPTIMUM SYSTEMS WITH COMPLEX ZEROS

The symmetry error for various numbers of zeros is shown
in Figure 1. The curve (a) for all zeros at the origin and (b)
N-1 real zeros are computed earlier and are presented in [1].
In this paper, the diagram is extended for the systems with
(c) one real zero and (d) two and (e) four complex zeros.

The obtained symmetry errors are generally smaller for
higher system orders and larger numbers of complex zeros,
as shown in Figure 1. The largest increase of symmetry is
obtained by (d) one complex pair, M=2. The addition of the
second complex pair (e) is less efficient, but still useful.
Adding more complex zeros would contribute little to the
symmetry, so the increased realization complexity would
not pay off. Therefore, we will consider only cases with
M=2 and M=4.

Figure 1.  Symmetry error of optimized systems, S=10.



The symmetry of the impulse response is more improved
by an additional pair of poles than by an additional pair of
zeros for N<5. It is more improved with an additional pair
of zeros for N≥5, as one can conclude from Figure 1.

Contribution of one optimum real zero, (c), to the
symmetry error is negligible, as well as the contribution of
(b) the N-1 real zero.

For example, pole and zero positions for order N=5 and
N=9 and four complex zeros are given in Figure 2. It is
interesting to note that poles are very nearly equidistant in
the frequency, what is typical for linear phase systems.
Zeros are outside the unit circle.

The impulse responses of the optimum systems are quasi
gaussian, Figure 3, with better symmetry and smaller
ringing for larger system orders N, and number of complex
zeros M. Delay of the response is S-1/2, while the length is
practically L=2S-1.

The amplitude response in dB versus frequency in linear
scale is given in Figure 4. The parabolic character of the

attenuation is obvious throughout the band up to 4ω3dB.
This means that the dominant part of the frequency
response approximates gaussian response. In fact, the
parabolic part is given by a simple equation
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which is valid for systems with two and four complex
zeros. The amplitude responses follow parabola in a wider
band for larger system orders, as shown in Figure 4.

The group delay curves approximate a constant with a
ripple, as shown in Figure 5. However, the ripple is not
equal for a given N, but is increasing with frequency.
Apparently, larger group delay error is tolerable in the
frequency region where amplitude attenuation is high.

Properties of the obtained systems are generally similar
to the continuous time systems with symmetric impulse
response, presented in [3].

Figure 4. Amplitude responses of discrete time
systems with four complex zeros, S=10.

Figure 3. Impulse response of the optimum system
with four complex zeros, S=10.

Figure 5. Group delay of discrete time systems with
four complex zeros, S=10.

Figure 2. Pole and zero locations of the optimum
system with four complex zeros, S=10.



4 FILTER DESIGN

Filter design is similar to the design of filters with all zeros
at the origin, described in [1]. It can be based on either (i)
tolerable symmetry error in the time domain, or (ii)
attenuation in the frequency domain.

(i) System order, N, can be selected from the required
symmetry error using appropriate curves in Figure 1.
Symmetry line, S, can be chosen from the desired impulse
response length L=2S-1. The resulting IIR filter is
approximately equivalent to a gaussian FIR filter of the
same length.

(ii) Filter design in the frequency domain can be based
on attenuations αp and αs at passband ωp and stopband ωs.
Required frequency ω3dB can be calculated from the
passband ωp and attenuation αp using (4).

The necessary system order N for the filter with M=N-1
real zeros can be found from Figure 6 and the required

Figure 7. Cutoff frequencies ω3dB of the optimum
systems with N-1 real zeros.

Figure 8. Amplitude responses of the optimum
systems with two complex zeros, S=10.

Figure 9. Cutoff frequencies ω3dB of the optimum
systems with two complex zeros.

Figure 10. Cutoff frequencies ω3dB of the optimum
systems with four complex zeros.

Figure 6. Amplitude responses of the optimum
systems with N-1 real zeros, S=10.



attenuation at the stop band frequency αs . Although the
figure shows a particular case where S=10, it can be used
for a rough estimation of necessary system order N in the
range S=3 to S=30.

The necessary S can be read out from the diagram in the
Figure 7 using estimated N and calculated ω3dB. The
diagram was obtained by computing examples of the filters
for various N and S. When parameters N and S are known,
only one run of the optimization process (3) is usually
sufficient to obtain the numerical values of poles and zeros.

Amplitude responses of filters with one and two pairs of
complex zeros are shown in Figure 8 and Figure 4,
respectively. Corresponding diagrams ω3dB(N, S) are shown
in Figure 9 and Figure 10. The procedure for estimation N
and S is the same as described above.

It should be noted that the parabolic parts of the
amplitude responses in Figure 4, Figure 6 and Figure 8 are
not depended on the system order. In fact, the "tails" of the
responses diverge from the parabolic part at various
attenuations determined by N. Thus, the high stop band
attenuations for these filters can be obtained by increasing
N only when point (αs, ωs) is outside the parabolic part, i.e.
outside the curve expressed by (4).

5 THE EFFECT OF ZEROS

The presence of zeros in the transfer function is generally
useful. Being complex, they increase impulse response
symmetry and reduce its ringing. In the frequency domain,
they reduce the slope of the amplitude response and widen
constant group delay bandwidth. For the illustration of their
influence, the amplitude and group delay response of the
filter with N=6 are shown in Figure 11 and Figure 12.

Optimum location of a single real zero is approximately
at the point -1.1+0j. It is interesting that optimization of
N-1 real zeros results with one zero with multiplicity N-1,
located left of the point -1+0j, as shown in [1]. The real
zeros show much lower influence to the impulse response
symmetry as shown by curves (b) and (c) in Figure 1, than

complex zeros shown by curves (d) and (e). The real zeros
increase the amplitude response slope and the attenuation
around Nyquist frequency, Figure 11.

Generally, the presence of zeros increases the realization
complexity, compared to the system with all zeros at the
origin. The optimum position for real zeros suggests the use
of a zero, located at zr=−1+0j, with multiplicity
Mr=N-1-Mz, where Mz is the number of complex zeros. The
realization of the factor

rM)1z(K += (5)

of the transfer function will not require multipliers.

6 CONCLUSION

A method for optimization of IIR filters with symmetric
impulse response was developed. The proposed error
criterion produces the best symmetry of samples about the
symmetry line, for a given system order. The properties of
the transfer functions with real and complex zeros are
analyzed. Two and four complex zeros are very useful for
the increase of the impulse response symmetry, and
improvement of the group delay response. The optimum
real zeros influence the slope of the amplitude curves
outside gaussian part and increase the attenuation near the
Nyquist frequency.
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Figure 11. Amplitude response of optimum systems,
with various zeros, N=6, S=10.

Figure 12. Group delay of optimum systems, with
various zeros, N=6, S=10.


