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ABSTRACT

The lowpass systems with minimum higher order
moments of the impulse response are presented. The
systems have the largest possible energy concentration in
time. The optimization of the transfer function parameters
is carried out for the functions ranging from the second to
the tenth order, with finite zeros. The optimum pole-zero
positions suitable for filter design are given together with
properties of the systems.
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1 INTRODUCTION

In many applications the systems with small time
spread of the impulse response as well as small and short
ringing are required. One approach is optimization of a
particular property of the system time response that may
be described by an integral criterion. If the criterion can
be expressed by the system parameters through simple
relations, it can be used not only for characterization but
for optimization procedure as well. Here we propose the
use of the impulse response moments as the integral
criterion to find a class of filters with minimum time
spread of the impulse response and small and short
ringing. The first and the second order moments, namely
centroid and standard deviation of the impulse response
can be used, when impulse response is nonnegative,
h(t)≥0, [1]:
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These expressions can be used as integral criteria for
system optimization, [2].

However, if h(t) is not nonnegative, the resulting
central moment can become small, not only because of the
small time spread, but because the positive, h(t)>0, and

the negative contribution, h(t)<0, in the integrals (1) may
partly cancel each other. It seams that the choice of the
absolute value |h(t)| in (1) is better, but unfortunately, it is
not easy to work with, i.e. express response parameters by
the transfer function parameters. The central moment of
|h(t)|2, which gives the power spread along the time axis,
is more tractable. Therefore, we will use even central
moments of this function to minimize the impulse
response spread. Using central moments of the higher
order as the integral criterion the ringing with smaller
amplitude and duration can be achieved. The n-th order
moments of the squared impulse response around centroid
tm are given by
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The parabola (t-tm)n is in fact the weighting function
that will "punish" ringing more efficiently for higher n.

2 MOMENT AND TRANSFER
FUNCTIONS

We define a measure of impulse response spread by
the central moment (2), normalized to impulse response
energy, which is, in fact, the zeroth moment
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For the optimization procedure in the complex
domain, the criterion En should be expressed by the
transfer function poles pi and zeros zi. The impulse
response of the N-th order filter with simple poles is given
by
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where the pole residues are Kr, r=1,2,...,N. Now, the n-th
central moment can be expressed as function of poles,
zeros and residues as
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3 OPTIMIZATION PROCEDURE

The positions of poles and zeros of causal filters with
the most compact impulse response can be found by
solving the problem
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In our optimization procedure the frequency ωp and
ωz and quality factor Qp and Qz were used, instead of the
poles and zeros, pj and zi. Using ωp, Qp, ωz and Qz a
rational transfer function with even number of zeros can
be written in the form
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for N even and N odd, respectively.

In a stable system ωp and Qp are positive. Positive
values of ωz and Qz in (7) will give zeros in the right half
plane. Square values of goal function variables were
employed rather than constrained optimization procedure.
Finally, optimum system poles and zeros were found as
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Optimization will force impulse response to
concentrate around tm and practically extend to 2tm. The
parameter tm is chosen to be 1 that will not change the
generality of the solution.

For searching minimum Quasi-Newton method with
BFGS formula for Hessian matrix update [3] was used.
We have obtained previously parameters of the all pole
transfer functions [4]. Here we optimize transfer functions
with one pair of complex zeros for systems up to the tenth
order. We found in [5] that more zeros than one pair do
not improve the system properties significantly.

4 OPTIMIZATION RESULTS

Numerical values of the rational transfer function
parameters ωp, Qp, ωz and Qz for one pair of complex
zeros are given in Table 1 to Table 4. For the all pole
transfer functions, the numerical values of pole positions
can be found in [4].

For the rational transfer functions with tm=1, the
examples of pole-zero positions are shown in Figure 1. It
is interesting to note that the poles are located very closely
to ellipses that have the common center at the complex
plane origin. To illustrate the behavior of the filter class
with one pair of complex zeros, the response curves in the
time and frequency domain are given for the systems with
minimum fourth order moment.

      
Figure 1 Zero pole positions of the systems with minimum second, fourth and sixth order moments, with one pair of

complex zeros, tm=1.



The impulse response is given in Figure 2. Compared
to the all-pole systems [4] the presence of zeros improves
the response symmetry, decreases the response spread and
causes the ringing before the main pulse. The impulse
response here is also bell-shaped with shorter duration and
somewhat larger ringing than in the all-pole case [4]. The
step response is shown in Figure 3. The overshoot is
smaller than 1% already at n=4. Thus we may consider
the step response very nearly monotonic for n≥4.

The amplitude and the group delay responses,
normalized to ω3dB=1, are shown in Figure 4 and Figure 5
in the form suitable for comparison with the classic filter
approximations, given for example in [6]. The amplitude
response is quasi gaussian. The group delay curves
illustrate approximation of a constant despite no
requirements were given in the frequency domain. The
bandwidth of quasi-constant group delay is extending well
beyond cutoff frequency ω3dB. Compared to [4] the zeros
improve the average slope of the group delay within the
passband.

The optimization results for all moment orders are
similar in character to the systems of fourth order
described above. The impulse response shows smaller
undershoots for higher moment n, as it can be seen in
Figure 6. The step response overshoots are also smaller
for higher order moments, as shown in Figure 7. For
example at n=8 the overshoot is smaller than 0.17%.
Therefore, the step response is almost monotonic for n>4
what is a consequence of used integral criterion.

Shorter rise-time causes the wider passband so the
rise-time bandwidth product trω3dB is spread from 2.45 to
2.17 for n=2 and 2.19 to 2.17 for n=8, for various system
orders N.

The amplitude attenuation in the stop band is higher
for lower moments, Figure 8. The group delay ripple is
decreasing for higher moments and become smooth for
n≥6 as can be seen from Figure 9.

Table 1 Transfer function parameters of systems with
one pair of complex zeros, n=2.

Table 2 Transfer function parameters of systems with
one pair of complex zeros, n=4.



Table 3 Transfer function parameters of systems with
one pair of complex zeros, n=6.

Table 4 Transfer function parameters of systems with
one pair of complex zeros, n=8.

Figure 2. Impulse response of the optimum systems
based on the fourth moment, M=2, tm=1.

Figure 3. Step response of the optimum systems
based on the fourth moment, M=2, tm=1.



Figure 6. Impulse response of the optimum systems
for various moment orders, N=6, M=2,
tm=1.

Figure 7. Step response of the optimum systems for
various moment orders, N=6, M=2, tm=1.

Figure 4. Amplitude response of the optimum
systems based on the fourth moment, M=2,
ω3dB=1.

Figure 8. Amplitude response of the optimum
systems for various moment orders, N=6,
M=2, ω3dB=1.

Figure 5. Group delay of the optimum systems based
on the fourth moment, M=2, ω3dB=1.

Figure 9. Group delay of the optimum systems for
various moment orders, N=6, M=2, ω3dB=1.



5 CONCLUSION

By minimization the higher order moments of the
squared impulse response, a new class of finite order
systems is obtained. Based on the used criterion, the
obtained filters have the largest possible energy
concentration in time. The impulse response is short and
has small and short ringing giving very nearly monotonic
step response for higher moments. The amplitude
response is quasi gaussian, with nearly constant group
delay within passband. The presence of zeros improves
the impulse response energy concentration and the group
delay as compared to the all-pole systems. The optimal
pole-zero positions are given in this paper together with
properties of the systems, so the filter design can be
carried out. The obtained systems can be favorably
compared to similar systems with linear phase optimized
in the frequency domain.
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