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ABSTRACT

Time functions whose duration and bandwidth are as
small as possible have practical as well as theoretical
interest. Many criteria are employed for calculation of
such time functions. Moments of the impulse response
and moments of the frequency response can be used for
characterization of response time and frequency band. The
second moments were used for the definition of the
uncertainty principle. In this paper response functions of
finite order systems are characterized not only by the
second but also with fourth, sixth and eight moments. To
find out properties of obtained functions and values of
time frequency band products, a numerical optimization is
carried out for all-pole transfer functions, up to the eight
orders. Properties of obtained systems are given and
compared.

Keywords: filter design, time-bandwidth product,
impulse response moments, higher order moments

1 INTRODUCTION

The transmission rate of digital signal trough the
given channel bandwidth will be determined by the signal
pulse duration [1]. As short signals require wide
bandwidth, the optimum is a compromise given by
minimum of the time and frequency product

nnnP βα=  . (1)

Various measures might be used for time spread αn

and frequency spread βn [2]. Here we use high order
moments n=2, 4, 6 and 8 for spread characterization and
also as the integral criterion for optimization
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Uncertainty principle is defined by the second
moments. For noncausal signals the product satisfy
expression [2]

2
1P2 ≥  . (4)

The equality value is obtained for Gauss function.
For causal signals a similar relation and optimum
functions has been found [3]. The real, finite order
systems will only approximate the mentioned optimum
functions obtained with the second moment [3], [4]. We
have found that the use of higher moments could give
additional insight in the systems with minimum time-
frequency products. It could also give real systems with
small and short response ringing.

Higher moments, similar as the second moment,
enable a simple mathematical treatment and optimization.

2 MOMENTS AND TRANSFER
FUNCTIONS

Time spread and bandwidth definitions (2) and (3)
are suitable for causal functions with corresponding
change of integral limits. Thus, we define a measure of
impulse response spread by the n-th order central
moment, and bandwidth by the n-th order moment, both
normalized to the impulse response energy.

For optimization procedure in the complex domain,
the criterion (1) should be expressed by the transfer
function poles pi, and zeros, zi. The N-th order filter
impulse response for simple poles, and M<N zeros, is
given by
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where the pole residues are Kr, r=1,2,...,N. Now, the n-th
moment of the impulse response can be expressed as
function of poles, zeros and residues as
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Impulse response energy can be obtained using (6)
assuming n=0.

The n-th moment of the frequency response can be
expressed by the impulse response derivative, using
Parseval's relation
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Expression (7) can be computed using (6) assuming
transformed derivative

{ } )s(Hs)t(hL 2/n)2/n( = ,   n=2, 4, 6, 8 (8)

where residues Qr of the transform (8) are given by
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To ensure convergence of moment integral (3), the
number of zeros and poles should satisfy inequality

2N2nM2 −≤+ , or 2/n1MN ++≥  . (10)

3 OPTIMIZATION PROCEDURE

Poles and zeros positions of causal filters with
minimum time-bandwidth product can be found solving
the problem

[ ]ji
n
n

p,z
p,zPmin

ji
. (11)

Although expressions (1) to (11) can be applied to
any linear stable system with simple poles and zeros, in
this paper only all-pole transfer functions are considered.
Furthermore, in our optimization procedure the frequency
ωp and quality factor Qp of poles were used, instead of the
poles, pj. This variable set enables the pole position on the
whole complex plane. Using ωp and Qp, an all-pole
transfer function can be written in the form

∏
−

=
ω+

ω
+ω+

= 2/)1N(

1i

2
pi

pi

pi2
0p

0

)s
Q

s()s(

H
)s(H  ,

(12)

when N is odd, and similar when N is even.

In a stable system, ωp and Qp are positive. A square
values of goal function variables, rather than constrained
optimization procedure were used. Finally, optimum
system poles were found as
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For searching minimum Quasi-Newton method with
BFGS formula for Hessian matrix update was used [5]. In
each iteration a bisection type line search was performed
followed by quadratic interpolation. In situations when
Hessian matrix had irregular inverse, a steepest descent
method was forced by setting Hessian matrix to identity.

To get causal filters with the minimum time-
bandwidth product, the optimization is carried out for
moments n=2, 4, 6 and 8, and system order, N=2 to 8. The
parameter is taken tm=1 what will not change the
generality of the problem.

4 OPTIMIZATION RESULTS
The numerical values of the pole parameters ωp and

Qp, are given in Table I and Table II.

For all-pole transfer functions with tm=1, the
examples of pole position are shown in Figure 1. It is
interesting to note that poles are very nearly placed on
ellipses with ellipses center located at the complex plane
origin, similar as in the case of the systems with
symmetric impulse response [6].

  
Figure 1. Pole positions of the optimum systems with

n=2 and n=4, normalized to tm=1.



4.1 The fourth moment system

To illustrate behavior of the considered class of
systems, the complete data are given for the system with
minimum product of fourth moments in the time and the
frequency domain. Impulse response is shown in Figure 2.
It is a bell-shaped response, with small time spread and
undershoots. For some applications it is interesting to see
the step response which is shown in Figure 3 for systems
normalized to tm=1. The overshoots are bellow 0.70 %.

Amplitude and group delay responses are shown in
Figure 4 and Figure 5, respectively, in a form suitable for
comparison with classic filter approximations, given for
example in [7]. The amplitude response is quasi gaussian.
The group delay curves illustrate an approximation of a
constant. The bandwidth of quasi-constant group delay is
extending well beyond cutoff frequency ω3dB.

4.2 Comparison of systems with minimum
2nd, 4th, 6th and 8th moment

The optimization results for all moment orders are
similar in character to the systems of fourth moment
described above. Impulse response shows shorter ringing
for the higher moments, n, as it is expected from the used
criteria (3). The higher moments with weighting function
of higher power, in fact, "punish" more the "tails" of the
responses. Bandwidth is also wider for higher moments.
Undershoot of the impulse response is smaller than 2 %
and overshoot of the step response is smaller than 0.7 %
for all moments and N≥3. Thus the step response is very
nearly monotonic.

Table I. Transfer function parameters for tm=1. Table II. Transfer function parameters for tm=1.

Figure 2. Impulse response of the optimum systems
based on fourth moment, tm=1.

Figure 3. Step response of the optimum systems
based on fourth moment, tm=1.



Amplitude attenuation in stop band is higher for
lower moments, and it is generally higher than response of
Bessel and Gaussian filters, but smaller than at filters with
equiripple phase filters [7] or filters with symmetric
impulse response [6]. Group delay approximate constants
with curves which are getting monotonic for higher
moments.

The time-bandwidth product Pn, for various moments
n, and system orders N, are shown in Figure 6. The
products asymptotically converge to steady values for
large N. For the second moment it is well-known limit
p2=1/2, (4), while other asymptotic values apparently
depend on used moment order.

5 CONCLUSION

The numerical optimization of time-bandwidth
product is minimized for systems of finite order. Product
is expressed by higher moments of squared impulse
response and squared frequency response. By this, the

uncertainty principle for real systems is extended, and the
new classes of systems with optimal properties are
obtained. These classes for various moments approximate
the quasi gaussian impulse response with negligible
amplitude and duration of ringing. Amplitude responses is
also gaussian, with nearly constant group delay in the
passband.
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Figure 4. Amplitude response of the optimum
systems based on fourth moment, ω3dB=1.

Figure 5. Group delay of the optimum systems based
on fourth moment, ω3dB=1.

Figure 6. Time-bandwidth products for the optimum
systems with n=2, 4, 6, and 8.


