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Blind multispectral image decomposition by
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�-divergence-based nonnegative tensor factorization (NTF) is applied to blind multispectral image (MSI) de-
composition. The matrix of spectral profiles and the matrix of spatial distributions of the materials resident
in the image are identified from the factors in Tucker3 and PARAFAC models. NTF preserves local structure
in the MSI that is lost as a result of vectorization of the image when nonnegative matrix factorization
(NMF)- or independent component analysis (ICA)-based decompositions are used. Moreover, NTF based on
the PARAFAC model is unique up to permutation and scale under mild conditions. To achieve this, NMF-
and ICA-based factorizations, respectively, require enforcement of sparseness (orthogonality) and statistical
independence constraints on the spatial distributions of the materials resident in the MSI, and these con-
ditions do not hold. We demonstrate efficiency of the NTF-based factorization in relation to NMF- and ICA-
based factorizations on blind decomposition of the experimental MSI with the known ground truth. © 2009
Optical Society of America
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Blind or unsupervised multispectral (MSI) and hy-
perspectral image (HSI) decomposition attract in-
creased attention because of their capability to dis-
criminate materials resident in the MSI/HSI without
knowing their spectral profiles [1,2]. However, most
blind decomposition schemes rely on two-
dimensional (2D) representation of the MSI/HSI, al-
though it is inherently three-dimensional (3D). In
this Letter we represent a MSI/HSI as a three-way
array or a 3D tensor X� �R0+

I1�I2�I3 with elements xi1i2i3
where i1=1, . . ., I1; i2=1, . . ., I2; i3=1, . . ., I3; and R0+ is
a real manifold with nonnegative elements. Each in-
dex is called a way or mode, and the number of levels
on one mode is called the dimension of that mode. An
MSI/HSI is a set of I3 spectral band images with the
size of I1�I2 pixels. Two ways of X� are for rows and
columns, and one way is for the spectral band. This is
standard notation that is adopted for use in multiway
analysis [3].

2D representation of MSI has two disadvantages:
(i) the 3D tensor X� has to be mapped through three-
mode flattening, also called unfolding and matriciza-
tion, to matrix X�3��R0+

I3�I1I2, whereupon the local
structure of the image is lost; and (ii) matrix factor-
ization X�3�=AS employed by linear mixing models
[1,2] suffers from indeterminacies because ATT−1S
=X�3� for any invertible T; i.e., infinitely many �A ,S�
pairs can give rise to X�3�.

Meaningful solution of the factorization of X�3� is
characterized by TT−1=P�, where P is a permuta-
tion matrix and � is a diagonal matrix. These permu-
tation and scaling indeterminacies are standard for
blind decompositions and are obtained by imposing
sparseness (orthogonality) constraints on S by non-
negative matrix factorization (NMF) algorithms [4]

and statistical independence constraints by indepen-
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dent component analysis (ICA) algorithms [1,5,6].
Orthogonality constraints imply that materials resi-
dent in the image do not occupy the same pixel foot-
print, but that is not a correct assumption, especially
in airborne and spaceborne remote sensing. The sta-
tistical independence assumption is also not correct
for MSI and HSI data, especially when materials are
spectrally similar, which occurs in the case of low-
dimensional MSI with coarse spectral resolution [7].

Only very recently tensor factorization methods
were employed in MSI/HSI analysis for the purpose
of dimensionality reduction, denoising, target detec-
tion, and material identification [8–10]. For the
purpose of MSI decomposition we adopt two widely
used 3D tensor models: the Tucker3 model [11] and
the PARAFAC/CANDECOMP model [12,13]. The
Tucker3 model is defined as

X� � G� �1A�1��2A�2��3A�3�, �1�

where G� �R0+
J1�J2�J3 is a core tensor, �A�n�

�R0+
In�Jn�n=1

3 are factors, and �n denotes the n-mode
product of a tensor and a matrix A�n�. The result of
G� �nA�n� is a tensor of the same order as G� but with
the size Jn replaced by In. The PARAFAC model is a
special case of the Tucker3 model when G� is a super-
diagonal tensor with all elements zero except those
for which all indices are the same. Compared with
PARAFAC, the Tucker3 model is more flexible owing
to the core tensor G� , which allows interaction be-
tween one factor and any factor in the other modes
[14]. In the PARAFAC model factors in different
modes can interact only factorwise. However, this re-
striction enables uniqueness of tensor factorization
based on the PARAFAC model within the permuta-
tion and scaling indeterminacies of the factors under

very mild conditions [15,16] without the need to im-
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pose any special constraints on them such as sparse-
ness or statistical independence.

Assuming that J1=J2=J3=J and J�I3 the unique-
ness condition is reduced to kA�1�+kA�2�+kA�3� �2J+3,
where kA�n� is the Kruskal rank of factor A�n� [15,16].
Because of interaction between the factors there is no
such theoretical guarantee on the uniqueness of ten-
sor factorization based on the Tucker3 model. How-
ever despite this, the Tucker3 model has been used
successfully in HSI analysis for dimensionality re-
duction, denoising and target detection [8,9]. To iden-
tify spatial distributions of the materials resident in
the MSI/HSI we refer to the standard linear mixture
model used in MSI/HSI data analysis [1,2,10]:

X�3� � AS, �2�

where the columns of A�R0+
I3�J represent spectral

profiles of the J materials resident in the image,
while the rows of S�R0+

J�I1I2 represent spatial distri-
butions of the same materials. As already stated,
without additional constraints there are infinitely
many decompositions satisfying model (2). From the
Tucker3 model (1) and the linear mixture model (2),
the matrix of spectral profiles and tensor of spatial
distributions of the materials are identified as

A � A�3�,

S� � G� �1A�1��2A�2� = X� �3�A�3��−1, �3�

where S� �R0+
I1�I2�J. The second approximation for S�

in relation (3) is less sensitive to numerical errors
than the first one because only one reconstructed
quantity, array factor A�3�, is involved in the recon-
struction of S� . We can also express the three-mode
flattened version of tensor X� —this is matrix X�3�—in
terms of the three-mode flattened core tensor G� ; this
yields matrix G�3��R0+

J�JJ and array factors �A�n��n=1
3

as [17]

X�3� � A�3�G�3��A�2�
� A�1��T, �4�

where � denotes Kronecker’s product. In direct com-
parison between relations (2) and (4) we arrive at

A � A�3�,

S � G�3��A�2�
� A�1��T = �A�3��−1X�3�. �5�

Again, a numerically more accurate approximation of
S is obtained from the second part of relation (5).

Various cost functions can be used as discrepancy
measures between a tensor and its model. In this
Letter we employ �-divergence because it is adapt-
able to noise statistics [17] and because it has been
demonstrated in [18] that it outperforms NTF based
on least-square error function [19]. We refer to Ap-
pendix A and to [17] for �-divergence-based update
NTF algorithms [Eqs. (13)–(15)].

We have compared the performance of �-NTF,
second-order (SO) NMF [20], and dependent compo-
nent analysis (DCA) algorithms on a real world ex-

ample: blind decomposition of the experimental
weak-intensity fluorescent red–green–blue (RGB) im-
age of the skin tumor shown in Fig. 1(b). For the pur-
pose of tumor demarkation it is of interest to extract
a spatial map of the tumor as accurately as possible.
The DCA algorithm combines the joint approximate
diagonalization of eigenmatrices ICA algorithm [6]
and innovation transform-based preprocessing [21] to
enhance statistical independence among materials
present in the MSI and improve the accuracy of the
ICA. The MSI contains three spectral bands and
three materials: tumor, surrounding tissue, and the
ruler added to the scene to give perspective about the
size of the tumor. A high-intensity image of the same
tumor is shown in Fig. 1(a). It was used for estima-
tion of the binary spatial maps of tumor and sur-
rounding tissue necessary for the estimation of the
receiver-operating-characteristic (ROC) curves. Spa-
tial maps of the tumor extracted from Fig. 1(b) are
shown in Figs. 1(c)–1(e). Implementation
of the Tucker3 �-NTF algorithm was based on
MATLAB Tensor Toolbox provided in [22]. The tensor of
spatial distributions of materials was identified by
means of the second part of relation (3). SO NMF and
DCA algorithms were based on the 2D the MSI rep-
resentation of relation (2).

According to the ROC curves shown in Fig. 2 the
�-NTF algorithm exhibited best performance, i.e.,
yielded largest area under the ROC curve. A

Fig. 1. (Color online) Experimental fluorescent MSI
(RGB) image of skin tumor: (a) high-intensity version, (b)
low-intensity version. Spatial maps of the tumor extracted
from Fig. 1(b) by means of (c) �-NTF algorithm [18] with
�=0.1, (d) SO NMF algorithm [5], (e) DCA algorithm [7,21].
(f) Evolution curve calculated by level set method on Fig.
1(b) after 1000 iterations. Dark red color indicates that tu-
mor is present with probability 1, while dark blue color in-

dicates that tumor is present with probability 0.
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state-of-the-art intensity-based image segmentation
algorithm—that is, the level set method [23]—has
also been applied to Fig. 1(b). The result in Fig. 1(f)
shows the evolution curve after 1000 iterations. Be-
cause of weak boundaries the method failed to con-
verge.

�-NTF, SO NMF, and DCA algorithms were imple-
mented in MATLAB on a 2.4 GHz Intel Core 2 Quad
Processor Q6600 based desktop computer with 4 GB
RAM. Computation times are given, respectively, as
4783 s, 30 s, and 3.6 s. In the implementation of the
innovation-based DCA algorithm a tenth-order linear
prediction filter was used.

Appendix: Elements of Tucker3 �-NTF Algorithm

Multiplicative update rules for core tensor G� and fac-
tors �A�n��n=1

3 in relation (1) are obtained by minimiz-
ing �-divergence as

G� ← G� ���X� /X̂� �.��1A�1�T�2A�2�T�3A�3�T

E� �1A�1�T�2A�2�T�3A�3�T 	 .1/�

,

�A1�

A�n� ← A�n�����X� /X̂� �.���n�GA
�n�T

11TGA
�n�T 	 .1/�

, �A2�

where � denotes element-wise multiplication and /
denotes element-wise division. In relation (A1) E� is a
tensor with all elements equal to 1. In relation (A2) 1
denotes a vector whose every element is 1. The nu-
merator in (A2) is calculated as

��X� /X̂� �.���n�GA
�n�T = ��X� /X̂� �.��m�nA�m�T�nG�n�

T ,

where G�n� represents the n-mode flattened version of
the core tensor G� . The denominator in (A2) is com-

Fig. 2. (Color online) ROC curves calculated for spatial
maps of the tumor shown in Figs. 1(c)–1(e): open squares,
�-NTF algorithm based on Tucker3 model with �=0.1; as-
terisks, DCA algorithm [6,21]; open triangles, SO NMF
algorithm.
puted as
1TGA
�n�T = �G� �m�n1TA�m���n�

T ,

where G� �m�n1TA�m� denotes m-mode products be-
tween core tensor G� and matrices 1TA�m� for all
m=1, . . . ,N and m�n.
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