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Abstract. We compare classical methods for singular perturbation problems, such as El–
Mistikawy and Werle scheme and its modifications, to exponential spline collocation schemes.
We discuss subtle differences that exist in applying this method to reaction–diffusion problems
and advection–diffusion problems. If the advection–diffusion–reaction problem is specified in
such a way that two boundary internal layers exist, collocation method is incapable of cap-
turing only one boundary layer, which happens when no reaction term is present. Thus the
existing collocation scheme in which the approximate solution is a projection to the space piece-
wisely spanned by {1, x, exp (±px)} is inferior to the generalization of El–Mistikawy and Werle
method proposed by Ramos. We show how to remedy this situation by considering projections
to spaces locally spanned by {1, x, x2, exp (px)}, where p > 0 is a tension parameter. Next,
we exploit a unique feature of collocation methods, that is, the existence of special collocati-
on points which yield better global convergence rates and double the convergence order at the
knots.

1 Theory
We compare some popular methods for solving a singularly perturbed boundary value prob-

lem
− εu′′ (x) + a (x)u′ (x) + b (x) u (x) = f (x) , u (0) = α, u (1) = β, (1)

where ε, a (x) > 0, ε << a (x) and b (x) ≥ 0. On one side is El–Mistikawy method, on
the other a few collocation methods. Depending on the presence of advection or reaction term,
there seems to be no unique answer as to the ‘best’ possible method in all the cases. As for
El–Mistikawy method, a number of references exist, see [8] for more recent ones. This method
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is in the class of operator fitted methods, in fact a projection of finite-element type to the space
of splines associated with the dual of the operator −εD2 + aD, see [7]. Direct collocation
methods are projections to spaces locally spanned by polynomials or combination of expo-
nentials and polynomials, in practice those that belong to Ker(D4) or Ker(D2(D2 − p2)),
where p > 0 is the ’tension parameter’, to be determined a priori from asymptotic argu-
ments. We do not consider collocation by polynomial B-splines, since it would require Shiskin
meshes for convergence, and is not in the class of operator–fitted methods. For collocation by
combination of exponentials and powers, the one that projects to L{1, x, exp (±px)} [3, 2]
is suitable whenever there is a reaction term present; if there is none, we propose to use
L{1, x, x2, exp (px)} = Ker(D4 − pD3) instead; the associated splines we call advection–
diffusion splines, or AD–splines for short. In both cases on non-polynomial collocation, the
underlying spline spaces are weak Chebyshev spaces [5], which allow fast evaluation of local
basis by knot insertion [6]. For spline collocation, two variants exist, depending on the global
smoothness: C2, in which case we collocate at the knots, and C1, where collocation points must
be placed between the knots. In the C1 case, following the ideas in [1], we can explicitly find
collocation points which are optimal, i.e. yield maximal convergence rates at the knots. In the
sequel, we shall consider C1 collocation only.

2 Examples
Here we show only selected examples; the first one is the advection–diffusion problem

εu′′ (x) − u (x)′ = exp (x) , u (0) = u (1) = 0, (2)

uexact (x) =
ex/ε (1 − e) + ex

(
e1/ε − 1

)
+ e − e1/ε

(e1/ε − 1) (ε − 1)
, (3)

and the second one is the reaction–diffusion problem

− εu′′ (x) + u (x) = 1, u (0) = u (1) = 0, (4)

uexact (x) =
eA(x−1) − e−A(x−1) − eAx + e−Ax + eA − e−A

eA − e−A
, A =

1√
ε
. (5)

Let h be the stepsize, h = 1/N , where N is the number of points for EMW (El–Mistikawy
and Werle scheme), RAM (Ramos modification, see [4]) and FDM (Finite Difference Method)
methods, and the number of knots for C1 and AD–splines.

The problems (2) and (4) were tested numerically by changing the parameters ε and N as

ε = 2−k, k = 2, 3, . . . , 14, N = 2m, m = 4, 5, . . . , 12, (6)

for every method except RAM. It seems that RAM method is not applicable to problem (2)
where the reaction term, b (x), is zero, despite the explicit condition b (x) ≥ 0 in [4] (here it
would be −b (x) ≥ 0 because of the slightly different definitions of BVP (1)). Also, there are no
numerical tests of RAM method in [4] applied to the pure advection–diffusion problem. How-
ever, RAM method is superior to classical EMW for the reaction–diffusion problems. Absolute
errors for the above described test were calculated as

Ea = max
i

(
unum

i − uexact
i

)
, i = 0, . . . , N. (7)

Comparison between EMW and AD method reveals that overall error is in favor to AD, in
the sense of the order of accuracy and behavior for small ε. Also, as it can be seen from Fig. 2,
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AD is superior both to the classical C1 tension splines and EMW method in case of advection–
diffusion problem (2). However, in case of pure reaction–diffusion problem (4), AD does not
reproduce well the left boundary condition (not shown here). Contrary to this, RAM and C1 are
far better for reaction–diffusion problem, with errors in favor to RAM method, especially for
the combination of small ε and N (see Fig. 3), while EMW fails to reproduce both boundary
conditions and is even worse than the simple FDM upwind method (also not shown).

3 Conclusions
As can be seen from the above examples, AD is superior for the pure advection–diffusion

problem to classical C1 tension splines and EMW method (its max error is also much smaller
than max error for C1 tension splines). However, in case of pure reaction–diffusion problem
AD fails to reproduce properly the left boundary condition, what is expected. RAM and C1 are
considerably better here. For the advection–diffusion–reaction problem AD method is better
than EMW, C1 and RAM, especially for small ε, as long as the condition a (x) > 0 is met.
Other methods are not so sensitive to the sign of a (x).
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Figure 1: log |Ea| for problem (2), EMW method (left) and AD method (knot errors, right); ε and N are from (6).
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Figure 2: Ea for AD, C1 and EMW method. Here ε = 2−13, N = 64, 10 points per interval are taken to plot the
global AD error (black solid line). Knot errors for C1 and EMW errors are scaled by multiplication ·10 −3.
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Figure 3: log |Ea| for problem (4), RAM method (left) and C1 method (knot errors, right). The rest as in Fig. 1.
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