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Abstract—This paper demonstrates the use of self-oscillation
identification experiments for tuning line following controllers for
marine vehicles. Two approaches are described: first, when the
controller output is yaw rate and second when controller output
is reference heading. In the first case, low level controlleris yaw
rate while in the second it is heading controller. The identification
by use of self-oscillations (IS-O) has been applied to identify
the steering equation (for the case of the first controller) and
it was used to identify the heading closed loop (for the case of
the second controller). The second controller has been tested on
different inner loop structures in order to prove the functi onality
of the method. The IS-O method has been chosen because of
its simplicity and applicability in the field (effects of external
disturbances are minimized). The methodology was applied
to autonomous catamaran Charlie. The results are presented
in the paper and demonstrate that the proposed method for
identification as well as the developed algorithms give satisfactory
performance. All algorithms and results presented here area
result of a joint work of researchers at the Consiglio Nazionale
delle Ricerche, Genova and the University of Zagreb.

I. I NTRODUCTION

Control of unmanned marine vehicles is commonly divided
in three levels. The principle level of control is motion control
and it usually implies the control of yaw and surge velocities.
Mid control level, or guidance control, has the task to generate
reference signals for the low level controllers. This level
implies heading control and trajectory and/or path following.
Trajectory following implies following a time-parameterized
curve, while path following implies following a planar path
without temporal constraints. Finally, the upper level of control
includes mission planning. This paper will address the problem
of path following - the main objective is to have the vessel
converge to a desired path and follow it regardless of the
external disturbances (sea currents, wind, etc.). The firststep
to designing any type of controller is identification of system
dynamics. Usually, identification of marine vehicles’ mathe-
matical model is performed in open loop where a great number
of experiments have to be performed. Identification procedure
for autonomous catamaran Charlie is reported in [1], while
similar techniques used on underwater vehicles are reported
in [2], [3], [4]. All these experiments are based on finding
the vehicle’s drag (from steady-state experiments) and inertia
(from zig-zag manoeuvres or open-loop transient characteris-
tic). The greatest advantage of these identification techniques
is that the model parameters can be determined with great

Fig. 1. Unmanned surface vehicle Charlie.

precision given enough experimental data. On the other hand,
the disadvantages are the effects of the omnipresent external
disturbances on the identified parameters, and the fact thatthe
procedure itself is time-consuming.

The identification method which has been proposed here is
based on self-oscillations, [5]. The motivation for introducing
this method comes from the fact reported in [6] that due to the
closed loop procedure the influence of external disturbances
is minimized. In addition to that, the algorithm itself is very
time conservative and is easily automated. On the other hand,
in order to use this method, exact mathematical model of the
identified process has to be known. Also, due to assumptions
on the higher harmonics, the identified parameters can slightly
differ from the real values.

The paper is organized as follows. This section is followed
by description of Charlie catamaran, gives line following
equations and a short introduction to self-oscillations. Section
2 describes the application of self-oscillation identification
method to marine vehicles. In Section 3, two approaches to
designing line following controllers are presented. Experimen-
tal results are given in Section 4 and the paper is concluded
with Section 5.
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Fig. 2. Line following.

A. Charlie USV

The Charlie USV (see Fig. 1) is a small catamaran-like
shape prototype vehicle originally developed by the CNR-
ISSIA for the sampling of the sea surface microlayer and
immediate subsurface for the study of the sea-air interaction,
[7]. Charlie is 2.40m long, 1.70m wide and weighs about 300
kg in air. The propulsion system of the vehicle is composed
of a couple of DC motors (300W @ 48 V ). The vehicle
is equipped with a rudder-based steering system, where two
rigidly connected rudders, positioned behind the thrusters, are
actuated by a brushless DC motor. The navigation instrumen-
tation set is constituted of a GPS Ashtech GG24C integrated
with compass KVH Azimuth Gyrotrac able to compute the
True North. The on-board real-time control system, developed
in C++, is based on GNU/Linux and run on a Single Board
Computer (SBC) which supports serial and Ethernet commu-
nications and PC-104 modules for digital and analog I/O. The
steering equation of Charlie can be described with (1) where
r is yaw rate,ψ is heading,τN commanded yaw torque, and
parameters to be identified are yaw inertiaIr , and dragkr|r|
(see [1] for details on model parameters).

Ir ṙ = −k̃r|r|r|r| + τN
ψ̇ = r

(1)

For Charlie ASV, the yaw torque control is described with
τN = n2δ where δ is the rudder angle andn is propeller
revolution rate.

B. Line Following Equations

The line following approach is shown in Fig. 2. The aim is
to steer the vehicle moving at surge speedur in such a way
that its path converges to the desired line. Ifγ is orientation of
the line that should be followed, a new parameterβ = ψ − γ

(vehicle’s orientation relative to the line) is defined. Having
this in mind, the line following equations (2) - (5) can be
written, whereν is drift due to external disturbances which is
perpendicular to the direction of the desired path.

ṙ = −kr|r|
Ir

r|r| + 1

Ir
τN (2)

ψ̇ = r (3)

β̇ = r (4)

ḋ = ur sinβ + ν (5)

The nonlinearities of the line-following model appear in (2)
and (5). The first one can be eliminated by introducing a
low level yaw rate or heading feedback. The second nonlinear
equation can be linearized if angleβ is assumed to be small.
In that case, (5) can be rewritten asḋ = urβ + ν.

C. Identification by Use of Self-Oscillations (IS-O)

The idea of using self-oscillations to determine system
parameters was introduced in [8]. Since then, the method has
been applied in process industry for tuning controllers. First
application of the method in marine control was introduced
on underwater vehicles and is reported in [9] and [10]. Since
then, it has also been applied for heading controller tuningof
marine surface vehicles, [11]. The self-oscillation experiment
is done in closed loop which consists of a nonlinear element,
the process and a unity feedback. The method is based upon
forcing the system into self-oscillations - the magnitudeXm

and frequencyω of the obtained self-oscillations can be used
to determine the process’ parameters. The link between the
space of process’ parameters and the space of magnitudes and
frequencies of self-oscillations is the Goldfarb principle given
with

GP (jω) = − 1

GN (Xm)
= − 1

PN (Xm) + jQN(Xm)
(6)

whereGN (Xm) = PN (Xm) + jQN(Xm) is the describing
function of the nonlinear element andGP (jω) is the process
frequency characteristic, [5]. It should be stressed that the
nonlinearity mostly used in the closed loop is a relay with
hysteresis, but need not necessarily be. However, there are
some advantages which made this element most commonly
used in practice:a) every system whose Nyquist characteristic
passes through the II quadrant can be caused to oscillate;b)
it is insensitive to noise andc) it is easily implementable, [5].
In the case of relay with hysteresis, the describing function

parameters areP (Xm) = 4C
πXm

√

1 −
(
xa
Xm

)2

andQ(Xm) =

− 4C
πX2

m
xa, whereC is relay output andxa is hysteresis width.

Detailed derivation of the general algorithm for determining
parameters of an LTI process ofn-th order can be found
in [12]. The same paper includes modifications for astatic
systems and systems with delays. In the following subsections
only final results of the algorithm for linear systems and
methodology for using the proposed method on nonlinear
systems are given.

II. IS-O APPLIED TOMARINE VEHICLES

A. Identifying Steering Equation

The steering equation of marine vehicles can be de-
scribed using (1). The proposed identification by use of



TABLE I
HEADING CLOSED LOOP TRANSFER FUNCTIONS DEPENDING ON THE

CONTROL ALGORITHM (e = ψref − ψ)

Name Algorithm ψ

ψref

P KPψ
KKP

Ts2+s+KKP

PD KPψ +KD ė
KKR+KKDs

Ts2+(1+KKD)s+KKR

P-D KP e+KDψ̇
KKP

Ts2+KKDs+KKP

PI KP e+KI
∫
e

KKI+KKP s
Ts3+s2+KKP s+KKI

I-P −KPψ +KI
∫
e

KKI
Ts3+s2+KKP s+KKI

PID KP e+KD ė+KI
∫
e

KKDs
2+KKP s+KKI

Ts3+(1+KKD)s2+KKP s+KKI

PI-D KP e+KI
∫
e−KDψ̇

KKP s+KKI
Ts3+(1+KKD)s2+KKP s+KKI

I-PD KI
∫
e−KPψ −KDψ̇

KKI
Ts3+(1+KKD)s2+KKP s+KKI

self-oscillations can also be used on nonlinear systems. If
the system is in oscillatory regime (due to the presence of
the nonlinear element) and under the assumption that the
oscillations are symmetric, heading and its derivations can
be written asψ = Xm sin(ωt), ψ̇ = Xmjω sin(ωt) and
ÿ = −Xmω

2 sin(ωt). Unity feedback implies thatτN =
−GN (Xm)ψ. Combining these equations with (1), a nonlinear
trigonometric equation is obtained. By developing the nonlin-
ear term into a Fourier series where only the first harmonic
is retained,cos (ωt) |cos (ωt)| ≈ j 8

3π
sin (ωt), (7) and (8) can

be derived.

Ir =
PN

ω2
(7)

kr|r| = −3π

8

QN

Xmω2
(8)

B. Identifying Heading Closed Loop

Heading controllers can have different structures. Naturally,
heading closed loops depend on these structures. For heading
control it is rather important to have smooth control signals,
especially if actuators cannot bear abrupt changes (e.g. rud-
ders) which occur during step reference changes. This is why
”-” controllers are often used, e.g. I-PD controller implies
that the control difference is taken through the integration
channel, while proportional and derivative channel are con-
nected directly to heading, [13]. This can be quite convenient,
especially if we note that the derivation channel connected
to the heading signal is in fact the yaw rate measurement
which is almost always available. Table I shows heading closed
loop transfer functions for numerous control algorithms under
the assumption that the steering equation is described witha
Nomoto model. This assumption does not limit the application
of the proposed procedure since the control algorithm can be
modified in such a way that the nonlinearity inherent to the
steering equation can be compensated for, e.g. as describedin
[14]. All algorithms, except for classic PID, have at most three
poles and one finite zero. We will exclude the classic PID
algorithm due to the fact that leading the control difference
directly through the derivation channel can seriously damage
the actuator. In practice, PI-D controller is used instead.
Having this in mind, the general self-oscillation algorithm
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which has been introduced in [12] will be used to identify a
third order transfer function with one finite zero. The general
algorithm formulation is omitted due to limited space.

Let us suppose that heading closed loop transfer function
can be written as in (9).

ψ

ψref
=

b1ψs+ 1

a3ψs3 + a2ψs2 + a1ψs+ 1
(9)

With an assumption that heading closed loop gain is 1, i.e.
b0 = 1, and using the procedure presented in [12] with
n = 3 andm = 1, after redundant measurements are omitted,
algorithm (10) can be applied.
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(10)
In (10), ω = [ ω1 · · · ωε ]T , P = [ P1 · · · Pε ]T

and Q = [ Q1 · · · Qε ]T are vectors of measurements
where elementsPi andQi are real and imaginary parts of
the nonlinear element, respectively, andωi frequency of the
self-oscillations obtained in thei-th experiment. The unknown
parameters are easily obtained by solving the matrix equation.

III. L INE-FOLLOWING CONTROLLER FORCHARLIE ASV

Line following controllers can be implemented using two
procedures. First is to generate reference yaw rate, which
implies that the inner closed loop is yaw rate based as shown
in Fig. 3 (Method 1). The second approach is to generate
referent heading as output from the line following controller
(Method 2). This implies that there exists and inner heading-
based closed loop as shown in Fig. 4. If inner closed loop
controller can be tuned, than Method 1 is advised because
of its simplicity. If heading controller already exists and
its structure or parameters cannot be changed, Method 2 is
advised because line following controller is tuned without
changing the dynamics of the inner control loop. Design
procedure for both methods is described in the following
sections.



A. Controller Design - Method 1

This method assumes that the low level controller is a yaw
rate controller, i.e. the line following controller gives referent
yaw raterref , as output. First we give the yaw rate closed loop
transfer function design, and than the line following controller
design is presented.

1) Yaw rate controller: The yaw rate controller is a P-D
controller modified to compensate the process’ nonlinearity,
and it is given with (11).

τN = KIr

t∫

0

(rref − r) dt−KPrr + k̃rrr |r| (11)

The inner closed loop transfer function is
r

rref
=

1
Ĩr
KIr
︸︷︷︸

a2r

s2 + KPr
KIr
︸︷︷︸

a1r

s+ 1

wherea2r anda1r are the desired closed loop transfer function
parameters. The controller parameters are then given with (12).

KPr = a1r

a2r
KIr = Ĩr

a2r
(12)

2) Line following controller: According to Fig. 3, open
loop transfer function is given with d

rref
= ur

s2
r

rref
, the line

following controller is given with

rref = KPd (dref − d) +KDd

d

dt
(dref − d) (13)

which yields the closed-loop transfer function given with (14)
wherea4d, a3d, a2d anda1d are desired line following closed
loop transfer function parameters.

d

dref
=

1 + KDd
KPd

s

a2r

urKPd
︸ ︷︷ ︸

a4d

s4 + a1r

urKPd
︸ ︷︷ ︸

a3d

s3 + 1

urKPd
︸ ︷︷ ︸

a2d

s2 + KDd
KPd
︸︷︷︸

a1d

s+ 1

(14)
Combining (12) and (14), the line following controller param-
eters can be calculated using (15).

KIr = a2d

a4d
Ĩr KPr = a3d

a4d
Ĩr

KPd = 1

ura2d
KDd = a1d

ura2d

(15)

Now it is clear that by setting the desired line following
closed loop dynamics, the inner closed loop parameters are
set automatically.

3) Algorithm: The algorithm for designing line following
controllers according to Method 1 can be summarized as
follows.

I Perform one self-oscillation experiment on open loop
steering system (1) and determine magnitudeXm and
frequencyω of self-oscillations.

II CalculateĨr and k̃r|r| using (7) and (8).
III Define desired line-following closed loop dynamics (a4d,

a3d, a2d anda1ψ).
IV Calculate yaw rate and line-following controller parame-

ters using (15) and identified̃Ir.
V Implement yaw rate (11) and line following (13) con-

trollers.

B. Controller Design - Method 2

As it was already mentioned, in this case the only tunable
controller is the line following controller which gives referent
headingψref , as output. It is shown in II-B that the closed
loop heading control can be approximated with 3 poles and a
zero giving the transfer function in a form (16).

ψ

ψref
=

b1ψs+ 1

a3ψs3 + a2ψs2 + a1ψs+ 1
(16)

The parameters in (16) are not known so two self-oscillation
experiments have to be carried out as described in II-B. For
the purpose of controller tuning, transfer function (16) is
simplified using the Algorithm for simplification of heading
closed loop transfer function and results in a transfer function
with two poles and one finite zero.

1) Algorithm for simplification of heading closed loop
transfer function:

I Calculate additional parametersQ, R, D, S and T .
Q = 1

9a2

3ψ

(3a1ψa3ψ − a2
2ψ)

R = 1

54a3

3ψ

(9a3ψa2ψa1ψ − 27a2
3ψ − 2a3

2ψ)

D = Q3 +R2

S =
3

√

R +
√
D

T =
3

√

R−
√
D

II Find the real polep = − 1

3

a2ψ

a3ψ
+ S + T .

III Find the two complex poles’ parametersωn =
√

1

−pa3ψ
,

ζ =

√
−pa3ψ

2

(
a2ψ

a3ψ
+ p

)

.
IV Calculate the new, simpler, transfer function (17) where

b̄1ψ = b1ψ + 1

p
, ā1ψ = 2ζ

ωn
, ā2ψ = 1

ω2
n

.

ψ

ψref
≈ b̄1ψs+ 1

ā2ψs2 + ā1ψs+ 1
(17)

2) Line following controller: According to Fig. 4, open
loop transfer function is given with d

ψref
= −ur

s

ψ

ψref
. where

ψ

ψref
is described with (17). The line following controller is

than given with

ψref = −Kψψ −Krr −Kdd+KId

t∫

0

(dref − d) dt (18)

which yields the closed loop transfer function (19) witha0 =
urKId

ā2ψ+b̄1ψKr
, a1 =

urKd+b̄1ψKIdur

ā2ψ+b̄1ψKr
, a2 =

1+Kψ+b̄1ψKdur

ā2ψ+b̄1ψKr
and

a3 =
ā1ψ+Kr+b̄1ψKψ

ā2ψ+b̄1ψKr
.

d

dref
=

(
b̄1ψs+ 1

)
a0

s4 + a3s3 + a2s2 + a1s+ a0

(19)

From here, the controller parameter vectorΘK =
[
Kr Kψ Kd KId

]
can be calculated by solving the

matrix equation (20).





1− a3b̄1ψ b̄1ψ 0 0

−a2b̄1ψ 1 b̄1ψur 0

−a1b̄1ψ 0 ur urb1ψ

−a0b̄1ψ 0 0 ur




ΘK =






a3ā2ψ − ā1ψ

a2ā2ψ

a1ā2ψ

a0ā2ψ






(20)
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Fig. 5. Rudder activity for two different model functions.

3) Algorithm: The algorithm for designing line following
controllers according to Method 2 is as follows.

I Perform two self-oscillation experiments on a closed loop
steering system (9) and determine magnitudesXm1, Xm2

and frequenciesω1, ω2 of self-oscillations.
II Calculatea3ψ , a2ψ, a1ψ andb1ψ using (10).

III Use the Algorithm for simplification of heading closed
loop transfer function to calculatēa2ψ, ā1ψ and b̄1ψ.

IV Define desired line following closed loop dynamics (a4,
a3, a2 anda1).

V Calculate line following controller parameters using (20).
VI Implement line following controller using algorithm (18).

IV. EXPERIMENTAL RESULTS

The following section will give experimental results for line
following responses. All controllers are tuned using the IS-O
method. The tuning of line following controllers using Method
2 was tested with two different closed loop structures: Case1
is achieved by a P-D controller and Case 2 by a I-PD heading
controller. These experiments were performed to demonstrate
that the proposed methodology works for various inner loop
control structures.

A. Choosing the Model Transfer Function

A model transfer function used in controller design for
both cases has to be chosen appropriately. Given the fact that
during transient response rudder is almost always saturated
(in order to achieve fast dynamics), the criterion for choosing
the model transfer function is rudder activity. It is required
that rudder activity in steady-state is low in order to minimize
energy consumption and mechanical stress. Fig. 5 clearly
demonstrates this issue. First 30s of the response is with
model function in Bessel form with characteristic frequency
ωc = 0.5s−1 (”faster” model). The following part of the
response is with model Bessel function withωc = 0.211s−1

(”slower model”). Since the model function describes only
input-output behavior of the closed loop, internal signalshave
to be checked a posteriori.

B. IS-O for Methods 1 & 2

The relay parameters for both methods can be found in
Table II. For Method 1, relay output was commanded rudder

TABLE II
RELAY PARAMETERS FOR CASES1 & 2.

Method Case IS-O Experiment #1 IS-O Experiment #2
1 C = 25◦, xa = 10◦

2 1 C = 20◦, xa = 5◦ C = 15◦, xa = 5◦

2 2 C = 10◦, xa = 5◦ C = 30◦, xa = 10◦
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Fig. 6. IS-O results for (a) Method 1 and (b) Method 2 (Case 2)

angleδ, while for Method 2 it was commanded headingψref .
Experiments for Methods 1 & 2 are shown in Fig. 6(a) and
Fig. 6(b), respectively (Case 2 is shown for Method 2). In
both cases, duration of the experiment is short and last about
5 oscillations per experiment. The relay parameters for Method
2 were chosen in such a way that the rudder during the
experiments never saturates. This is very important because
only in that case true inner loop dynamics can be identified.

C. Results for Method 1

The path is shown in Fig. 7(a) and responses during the
path in Fig. 7(b). If controller output is not saturated, the
vehicle might start circling. This is why the controller output
is saturated so that the approach angle to the line is30◦.

D. Results for Method 2, Cases 1 & 2

The paths for cases 1 and 2 are shown in Fig. 8(a) and
Fig. 9(a), respectively. Corresponding responses are shown
in Fig. 8(b) and Fig. 9(b), respectively. In both cases, the
approach angle to the line (controller output) is saturatedto
30◦. The results show that rudder activity in steady state is
sufficiently low and that line following is performed without
error. This proves that design procedure is valid and can be
used regardless of the inner loop structure.

V. CONCLUSION

The paper presents the use of IS-O method applied to
designing line following controllers. The proposed controllers
were applied to autonomous catamaran Charlie. Two ap-
proaches are presented. The first, where controller outputs
reference yaw rate, is used when low level controllers can
be tuned. The second, where output is reference heading,
is used when heading controller is already tuned. For this
approach results are given for two cases demonstrating how
the proposed methodology does not depend on the heading
controller structure. Both approaches have proved to be simple
and feasible in field conditions. In addition to that, controllers
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Fig. 7. Method 1: (a) U-turn and line following, (b) responses
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Fig. 8. Method 2, Case 1: (a) U-turn and line following, (b) responses

demonstrated satisfactory performance: low rudder activity
and small steady-state error.
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