Visualizations of Rose-Surfaces

Sonja Gorjanc (sgorjanc@grad.hr)
Faculty of Civil Engineering, University of Zagreb

Roses

Roses or *rhodonea* curves R(n,d), treated here, can be expressed by the polar equations $r = \cos \frac{n}{d} \varphi$ or $r = \sin \frac{n}{d} \varphi$, where $n, d \in \mathbb{N}$ and GCD(n,d) = 1.

 $n \cdot d$ order of R(n,d) point O number of double points period number of petals

	(/ / 1					
odd	n+d	<i>n</i> -ple	$\frac{1}{2}n(d-1)$	$d\cdot\pi$	n	
even	2(n+d)	2 <i>n</i> -ple	2n(d-1)	$2d \cdot \pi$	2n	

Table: Some properties of R(n, d) according to [3, pp. 358-369].

According to [1], the implicit equation of R(n, d) is the following:

$$\left(\sum_{k=0}^{\lfloor d/2 \rfloor} \sum_{j=0}^{k} (-1)^{k+j} \binom{d}{2k} \binom{k}{j} (x^2 + y^2)^{\frac{n+d}{2} - k + j} \right)^s - \left(\sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \binom{n}{2k} x^{n-2k} y^{2k} \right)^s = 0$$

where s = 1 for $n \cdot d$ odd, and s = 2 for $n \cdot d$ even.

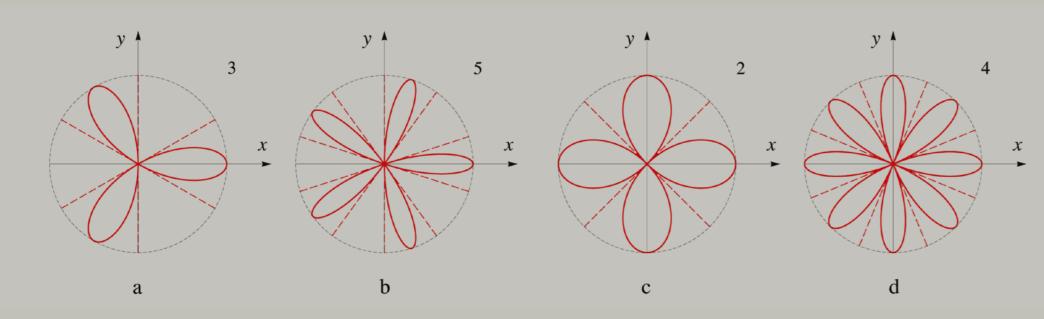


Figure: If n is odd, the rose R(n, 1) is n—petalled curve with n tangent lines at the origin (Fig. a and b). If n is even, the rose R(n, 1) is 2n—petalled curve with n double tangent lines at the origin (Fig. c and d).

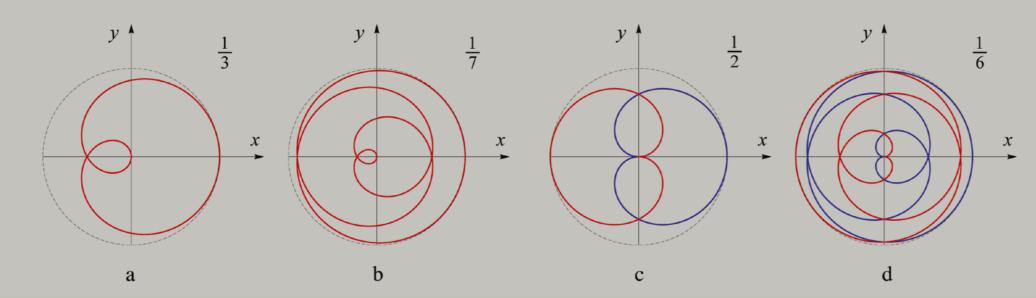


Figure: If d is odd, the rose R(1,d) has only one petal (Fig. a and b). If d is even, the rose R(1,d) has two petals (Fig. c and d).

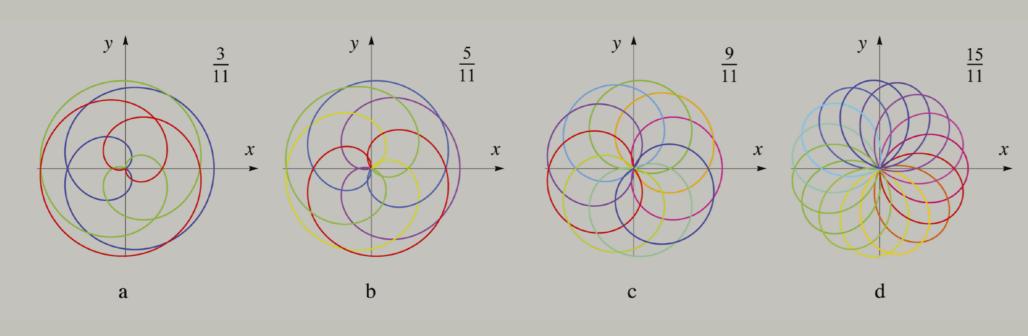
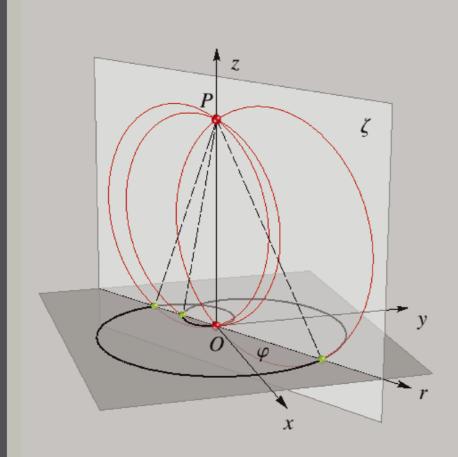


Figure: Four roses with petals coloured by different colors.

Rose-Surfaces

Definition

Let P(0,0,p) be any point on the axis z and let R(n,d) be a rose in the plane z=0. A rose-surface $\mathcal{R}(n,d,p)$ is the system of circles c_i which lie in the planes ζ through the axis z with diameters $\overline{PR_i}$, where $R_i \neq O$ are the intersection points of the rose R(n,d) and the plane ζ .



Parametric equations of $\mathcal{R}(n,d,p)$

$$x = \frac{1}{2}\cos\varphi(\cos\frac{n}{d}\varphi + \sqrt{p^2 + \cos^2\frac{n}{d}\varphi}\sin\theta)$$

$$y = \frac{1}{2}\sin\varphi(\cos\frac{n}{d}\varphi + \sqrt{p^2 + \cos^2\frac{n}{d}\varphi}\sin\theta)$$

$$z = \frac{1}{2}(p + \sqrt{p^2 + \cos^2\frac{n}{d}\varphi}\cos\theta),$$

 $(\varphi, \theta) \in [0, d \cdot \pi) \times [0, 2\pi)$ for $n \cdot d$ odd, $(\varphi, \theta)) \in [0, 2d \cdot \pi) \times [0, 2\pi)$ for $n \cdot d$ even.

According to [1], the implicit equation of $\mathcal{R}(n,d,p)$ can be written in the following form:

$$(x^2 + y^2 + z^2 - p \cdot z)^{s \cdot d} = (x^2 + y^2)^{\frac{s(d-n)}{2}} \left(\sum_{k=0}^{\infty} (-1)^k \binom{\frac{n}{d}}{2k} x^{\frac{n}{d} - 2k} y^{2k}\right)^{s \cdot d}$$

where s = 1 for $n \cdot d$ odd, and s = 2 for $n \cdot d$ even.

$n \cdot d$		order	axis z	points O and P	double circles
odd	d < n	n+d	(n-d)-ple	<i>n</i> -ple	$\frac{1}{2}n(d-1)$
odd	d > n	2 <i>d</i>	0-ple	<i>d</i> -ple	$\frac{1}{2}n(d-1)$
even	d < n	2(n+d)	2(n-d)-ple	2 <i>n</i> -ple	n(2d-1)
even	d > n	4 <i>d</i>	0-ple	2 <i>d</i> -ple	n(2d-1)

Table: Some algebraic properties of $\mathcal{R}(n,d,p)$ according to [1] and [2, p251]

The tangent cones at O and P are proper for $P \neq O$, and split into planes for P = O.

Examples

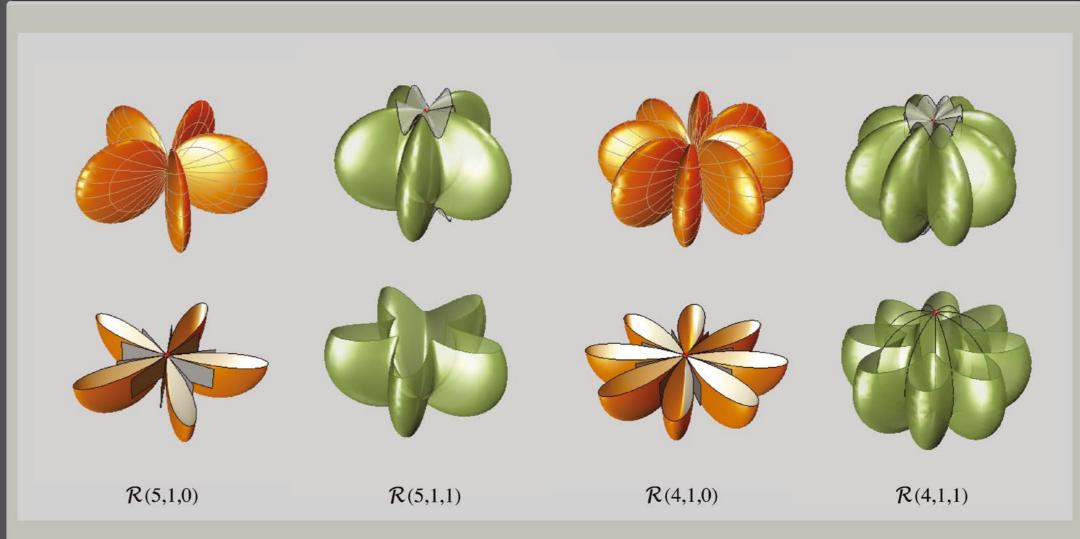


Figure: Four rose-surfaces with the tangent cones at the multiple points P and O

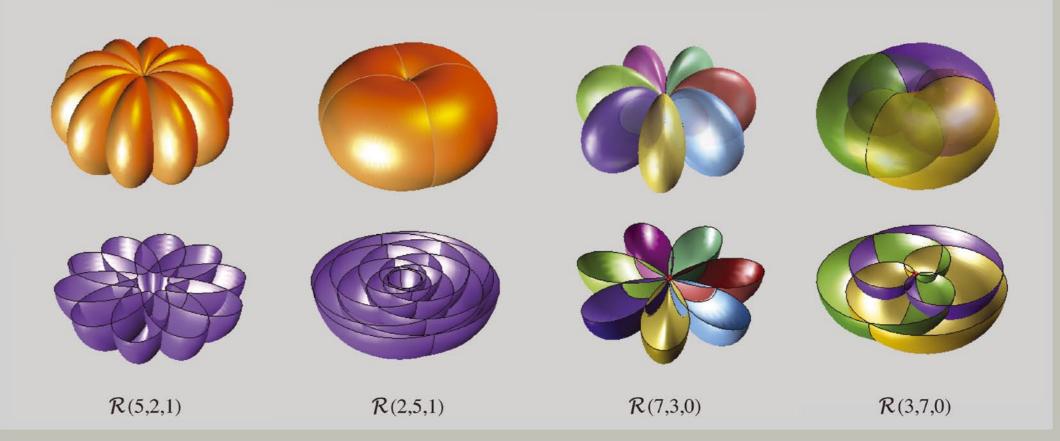


Figure: Four rose-surfaces.

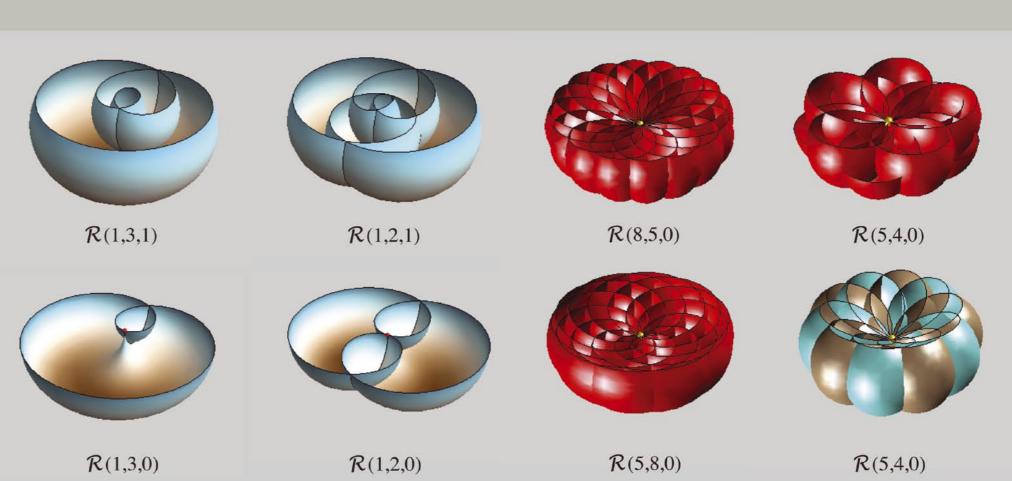


Figure: Seven rose-surfaces.

References

☐ Gorjanc, S.: Rose-Surfaces. (manuscript)

Harris, J.: Algebraic Geometry. Springer, New York, 1995.

Loria, G.: *Spezielle algebraische und transzendente ebene Kurven*. B. G. Teubner, Leipzig-Berlin, 1910.