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ABSTRACT: For any graph G by V (G) and E(G) we denote the vertex-set and

the edge-set of G, respectively. For graph G subset D of the vertex-set of G is called

a total dominating set if every vertex v ∈ V (G) is adjacent to at least one vertex

of D. The total domination number γt(G) is the cardinality of the smallest total

dominating set.

In this paper we examine total dominations on linear and double hexagonal chains

and determine upper bound for total domination numbers for such graphs.
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1. INTRODUCTION

Let G be connected graph with vertex-set V (G) and the edge-set E(G). Subset D of

the vertex-set of G is called a dominating set if every vertex v ∈ V \ D is adjacent

to at least one vertex in D. The domination number γ(G) is the cardinality of the

smallest dominating set.

Set D is a total dominating set if every vertex v ∈ V is adjacent to at least one

vertex of D. The total domination number γt(G) is the cardinality of the smallest

total dominating set.

Hexagonal systems are geometric objects obtained by arranging mutually congru-

ent regular hexagons in the plane. They are of considerable importance in theoretical

chemistry because they are natural graph representation of benzenoid hydrocarbons

[3]. Each vertex in hexagonal system is either of degree two or of degree three. Vertex

shared by three hexagons is called an internal vertex of the respective hexagonal sys-

tem. We call hexagonal system catacondensed if it does not posses internal vertices,

otherwise we call it pericondensed.

A hexagonal chain is a catacondensed hexagonal system in which every hexagon is

adjacent to at most two hexagons. Linear hexagonal chain is hexagonal chain which

is a graph representation of linear polyacene. The linear hexagonal chain with h

hexagons will be denoted with B(h). A double hexagonal chain consists of 2 con-

densed identical hexagonal chains.

Since chemical stuctures are conveniently represented by graphs, where atoms

correspond to vertices and chemical bounds correspond to edges, many physical and

chemical properties of molecules are well correlated with graph theoretical invariants.

2



One very important graph theoretical invariant is total domination number [2].

In [2] total domination was investigated on the Cartesian products of two paths and

many interesting results were obtained.

In this paper we deal with total domination on linear hexagonal chain, and on

double hexagonal chain B(2h) that is consisted of 2 identical linear hexagonal chains

with h hexagons. As result we give an upper bound for total domination number in

such chains.

2. UPPER BOUND FOR TOTAL DOMINATION

ON LINEAR HEXAGONAL CHAINS

For isomorphic graphs the total dominating number is equal. Therefore, each hexagon

will be represented with its isomorphic graph that is illustrated in Figure 1.

ISOMORPHISM

Figure 1

Let B(h) be the linear hexagonal chain with h hexagons represented by the following

figure:
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...

Figure 2

The above structure is isomorphic with the one illustrated in Figure 3. In such struc-

ture each vertex is denoted by (i, j), i = 1, 2, j = 1, . . . , 2h + 1.

...

(1,1) (1,2)

(2,3)

(1,4) (1,5) (1,6) (1,7) (1,2h-1) (1,2h) (1,2h+1)(1,1) (1,2) (1,3) (1,4)

(2,2h+1)(2,2h)(2,2h-1)(2,7)(2,6)(2,5)(2,4)

(1,3)

(2,2)(2,1)

Figure 3

Theorem 2.1. Let B(h) be the linear hexagonal chain with h hexagons. Then

γt(B(h)) ≤ 2h + 2. (1)

Proof. From Figure 4 it follows that the total dominating set of B(h) is

D = {(1, k), (2, k) | k = 1, . . . , 2h + 1, k odd},

so γt(B(h)) ≤ |D| = 2h + 2.

Figure 4
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Remark 2.2. Theorem 2.1 also holds for a hexagonal systems and its isomor-

phic graphs represented in Figure 5a and Figure 5b, respectively. It is easy to find

isomorphism beteween these structures and B(h).

... ...

a) b)

Figure 5

5



3. UPPER BOUND FOR TOTAL DOMINATION

ON DOUBLE HEXAGONAL CHAINS

Let B(2h) be the double hexagonal chain with h hexagons on each linear chain. See

Figure 6.

...

...

Figure 6

Again, we will determine the upper bound for total domination number on its iso-

morphic graph:

...

(1,1) (1,2)

(2,3)

(1,4) (1,5) (1,6) (1,7) (1,2h-1) (1,2h) (1,2h+1)(1,3)

(2,2h+1)(2,2h)(2,2h-1)(2,7)(2,6)(2,5)(2,4)(2,2)(2,1)

...

(3,4) (3,2h+2)(3,2h+1)(3,2h)(3,8)(3,7)(3,6)(3,5)(3,3)(3,2)

(2,2h+2)

Figure 7

Lemma 3.1 γt(B(2 · 3)) ≤ 10.

6



Proof: Let us consider set D0 = {(1, 3), (1, 4), (1, 7), (2, 1), (2, 2), (2, 4), (2, 7), (3, 4), (3, 7), (3, 8)}.

This is the total dominating set for B(2 · 3), so γt(B(2 · 3)) ≤ 10.

Theorem 3.2 Let B(2h) be the double hexagonal chain. Then

γt(B(2h)) ≤





5h

2
+ 2, if h ≡ 0(mod)4

10
⌊h

4

⌋
+ 6, if h ≡ 1(mod)4

10
⌊h

4

⌋
+ 8, if h ≡ 2(mod)4

10
⌈h

4

⌉
, if h ≡ 3(mod)4

Proof: We consider the set

D =
{

(1, 3 + 8k), (1, 4 + 8k), (1, 7 + 8k), (2, 1 + 8k), (2, 2 + 8k), (2, 4 + 8k), (2, 7 + 8k),

(3, 4 + 8k), (3, 7 + 8k), (3, 8 + 8k) | k = 0, 1, . . . ,
⌊h

4

⌋}
.

Then, we consider blocks B(2 · 3)k, k = 0, 1, 2, . . . ,
⌊h − 3

4

⌋
, h ≥ 3. See Figure 10.

We will denote B(2 · 3)k with Ck. Blocks Ck and Ck+1 have no common vertices nor

common edges. For each block Ck we have total dominating set

Dk =
{

(1, 3 + 8k), (1, 4 + 8k), (1, 7 + 8k), (2, 1 + 8k), (2, 2 + 8k), (2, 4 + 8k), (2, 7 + 8k),

(3, 4 + 8k), (3, 7 + 8k), (3, 8 + 8k)
}

and

γt(Ck) ≤ |Dk| = 10, k = 0, 1, 2, . . . ,
⌊h − 3

4

⌋
.

Notice that for k = 0 we have total dominating set D0 from Lemma 3.1.
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Figure 10

a) Let us consider first h ≡ 3(mod)4. Then D is total dominating set and we have

γt(B(2h)) ≤ |D| = 10
(⌊h

4

⌋
+ 1

)
= 10

⌈h

4

⌉
.

If we add 4 hexagons to B(2 · 3), then the structure that is not totally dominated by

the set D0 is B(2·1), and from Theorem 2.1 and Remark 2.2 it follows γt(B(2·1)) ≤ 6.

From this, we conclude γt(B(2 · 5)) ≤ 10 + 6 = 16, and the total dominating set is

S0 = D0 ∪ {(2, 9), (2, 10), (1, 10), (1, 11), (2, 12), (3, 12)}.

By adding 6 hexagons to B(2 · 3), we can see that the structure which is not to-

tally dominated by D0 is B(2 · 2). For this structure we can easily see that the set

{(1, 3), (1, 4), (2, 1), (2, 2), (2, 4), (3, 4), (3, 5), (3, 6)} is total dominating set, so γt(B(2·

2)) ≤ 8. Now we conclude γt(B(2 · 6) = 10+8 = 18. We choose the total dominating

set S1 = (S0 \ {(1, 10)}) ∪ {(1, 12), (2, 14), (3, 14)}.

By the same procedure we conclude that γt(B(2 · 7)) ≤ 10 + 10 = 20, and the total

dominating set is S2 = (S1 \ (2, 14), (3, 14)) ∪ {(1, 15), (2, 15), (3, 15), (3, 16)}.

If h = 11 we have the same situation as above: we start with B(2 · 7) and then

we add hexagons, step by step. By induction on h = 3((mod)4), we conclude that
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γt(B(2h)) ≤ |D| = 10
⌈h

4

⌉
.

b) If h ≡ 0(mod)4, it is easy to see that the total dominating set is

D ∪ {(2, 2h + 1), (2, 2h + 2)}

and

γt(B(2h)) ≤ 10
⌊h

4

⌋
+ 2.

c) If h ≡ 1(mod)4, then the total dominating set is

D ∪ {(2, 2h + 1), (2, 2h + 2), (1, 2h + 2), (1, 2h + 3), (2, 2h + 4), (3, 2h + 4)}

and γt(B(2h)) ≤ 10
⌊h

4

⌋
+ 6.

d) If h ≡ 2(mod)4, then the total dominating set is

D∪{(2, 2h+1), (2, 2h+2), (1, 2h+2), (1, 2h+3), (2, 2h+4), (3, 2h+4), (2, 2h+6), (3, 2h+6)}

and γt(B(2h)) ≤ 10
⌊h

4

⌋
+ 8.

Remark 3.8. Theorem 3.7 also holds for a hexagonal systems and its isomorphic

graphs represented in Figure 11a and Figure 11b, and also for structures represented

in Figure 11c and 11d, respectively. It is easy to find isomorphism beteween all these

structures and B(2h).
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... ...

a) b)

... ...

... ...

c) d)

... ...

Figure 11
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