
An Autonomy Oriented Computing Approach to Image-Component Labeling

Branko Samarzija and Slobodan Ribaric
Faculty of Electrical Engineering and Computing

University of Zagreb
Unska 3, 10000 Zagreb, Croatia

E-mail: {branko.samarzija, slobodan.ribaric}@fer.hr

Abstract

This paper presents an Autonomy Oriented Computing
(AOC) approach to gray-level image-component labeling.
The basic elements of such AOC systems are autonomous
entities placed in an environment. The environment, in our
case, is viewed as a two-layer 2D lattice containing a gray-
level image in the first layer and a notice board at the sec-
ond layer. The environment serves as the place where au-
tonomous entities reside, roam and operate. The goal of
each autonomous entity is to locate and label image pixels
belonging to the homogeneous component according to the
specified criteria of the region’s homogeneity. During the
image exploration and evaluation the entities rely on their
reactive and rational behaviors, such as diffusion, breed-
ing and communication. By communicating, the entities are
able to determine distinct components by assigning them
different labels. Experiments based on a simulation of the
proposed AOC system were run over a set of images from
”blocks world”.

1. Introduction

Approaches based on Autonomy Oriented Computing
(AOC) differ from traditional Artificial Intelligence (AI)
and Multi-Agent System (MAS) studies in that AOC pays
special attention to the role of self-organization, a powerful
methodology as demonstrated in Nature, as well as AOC’s
suitability for problems that involve distributed, locally in-
teracting or rational entities [1]. An AOC system A is for-
mally described with the 3-tuple: A = ({e1, e2, . . . , eN},
E, Φ), where {e1, e2, . . . , eN} is a group of N autonomous
entities, E is an environment in which entities reside and
Φ is the system objective function, which is usually a non-
linear function of the entity states. The system objective
function is incorporated into the performance of the enti-
ties through their behavioral rules by implicitly regulating
entities toward the desired configuration.

AOC-based approaches are intended to solve hard com-
putational problems. In attempting to do so, AOC system
modeling reproduces and relies on lifelike behavior in the
computation. With detailed knowledge of the underlying
mechanisms, simplified lifelike behavior can be used as

a model for a general-purpose problem-solving technique.
Such a technique, in our case, refers to low-level image pro-
cessing. A number of autonomous entities are spread over
the image as their environment E in order to, through their
courses of life, replicate some lifelike behaviors on the in-
dividual level. This approach leads to a state of the system
that gives emerging results at the macroscopic level to the
particular image-processing task.

AOC systems as applied to image processing is a rela-
tively new area of research that studies the emergent behav-
iors in a lattice where entities react to the digital-image en-
vironment according to a set of behavioral rules [5]. The ba-
sic idea for such research originates from the theory of self-
reproducing automata [2], cellular automata [3] and it is also
inspired by MAS theory [4] and distributed-behavior-based
agent concepts. Several algorithms for image feature ex-
traction based on evolutionary agents have been proposed in
[5]: image edge detection, moving-character border search-
ing, multiple-feature extraction and image feature tracking.
Furthermore, autonomous agent-based image segmentation
has been proposed by [6]. In this approach a digital image
is viewed as a two-dimensional cellular environment inhab-
ited by agents. Agents organized into four different classes
according to their attribute values had the goal to find and
label four homogeneous regions on a given image, relying
on reactive behaviors of the directional breeding and diffu-
sion. Face detection and localization using a behavior-based
agent approach was proposed in [7][8].

Motivated by Nature-inspired problem solving and the
formal framework of AOC system modeling, we propose
an approach to gray-level image-component labeling. The
proposed AOC-based system is described by the group of
autonomous entities with reactive and rational behaviors, as
well as the environment containing a given image and the
system objective function Φ.

2. The AOC system for image-component
labeling

The image contains a number of pixels that according
to their characteristics, based on some statistically defined
criteria, can be grouped into homogeneous regions and con-
sequently into components. A gray-level image viewed as a
two-dimensional lattice represents an entities’ search space,

and that it is the main part of the AOC system’s environ-
ment. Autonomous entities have a goal to visit, evaluate and
mark all the pixels that satisfy the criteria of homogeneity.
After that, based on communication among the entities, ac-
cording to 8-neighborhood connectivity, the marked regions
are transformed into components with different labels.

2.1. Environment

The environment E serves as the domain in which the
autonomous entities roam [1]. It contains an internal repre-
sentation of the problem in the form of a virtual landscape
encapsulating all the accessible knowledge and information
associated with the problem’s structure. For the component-
labeling problem environment E is characterized as a two-
layer two-dimensional (2D) lattice of size W ×H contain-
ing a gray-level image in the first layer E1. The layer E0,
called a notice board, consists of a 2D lattice of memory
cells (Fig. 1). The notice board holds a socially shared

E

E

0

1

Image

Notice board

entity

0 1 2 . . . W-1
0
1
2

.
.

.

H-1

Figure 1. Environment E

memory in the form of a blackboard that is used by all the
entities for the purpose of information interchange. In our
case the notice board is also used for storing the final result
of the component-labeling process.

While roaming from pixel to pixel entities read infor-
mation from the notice board associated with the pixel at
which they are temporarily located and adjust their behav-
ior accordingly (see the algorithm in Fig. 2). Entities also
have the ability to leave information at the notice board for
the other entities that could possibly visit the same pixel in
the future. For the component-labeling problem the enti-
ties leave certain patterns called labels that denote different
components in the image. After the communication activi-
ties of the entities, labels remaining in the notice board rep-
resent the final solution of the component-labeling process.

The third main aspect of the environment is that it keeps
a central clock that helps to synchronize the behaviors of all
the autonomous entities.

2.2. System objective function

The system objective function Φ for image-component
labeling is defined as a state-oriented function and it maps a
multi-set of the internal states of all the entities at the given
cycle of the central clock into a set of integer values Z:

Φ(cycle) : IS∞ → Z, (1)

where IS∞ denotes a multi-set of IS = {active,
communicable, sleep, dead} and Z is a set of integers.
Mapping Φ(internal state)(cycle) returns the number of

entities with an internal state equal to internal state,
where internal state ∈ IS, at the given central clock
cycle (cycle = 1, 2, 3, . . .). The goal values of the system
objective function for the image-component labeling are
Φ(active)(cycle) = 0 and Φ(communicable)(cycle) = 0.
These values define the end of any entity activity in the sys-
tem A.

2.3. Entities

Autonomous entities, based on a simultaneous interac-
tion with their local part of an environment E, have the
ability to make changes on it. The local part of the envi-
ronment E represents an area in which the entity has the
ability to sense and read information contained in the envi-
ronment necessary to assess its further actions. While doing
so, an individual autonomous entity can be viewed as an au-
tomaton dynamically governed by its behaviors B, to either
reactively or deliberatively operate in its environment [5].

Each entity is formally described by the 3-tuple
(S,F,B), where S describes the state of the entity, F is
the entity’s evaluation function, and B is the collection of
behaviors performed by the entity.

Entity’s state S: The state of the entity is defined as
follows:

S = (internal state, age, p,m,Ls), (2)

where:
internal state – defines the entity’s internal state,

which can be: active is the initial state in which the en-
tity stays while roaming from pixel to pixel and performing
pixel evaluation; communicable is the state that the entity
enters when it finds an unmarked pixel which is evaluated
as logical ”true” by the evaluation function F (i.e., the pixel
belongs to the homogeneous region). The entity will stay in
this state while applying communication behavior with its
neighbors in order to determine the unique component la-
bel; sleep is the state that the entity enters when the compo-
nent label is determined; dead is the state that entity enters
when its age exceeds its lifespan. Such an entity is not uti-
lizable for further image processing, so it is removed from
the environment E.
age - entity’s age. All entities initially placed in the sys-

tem or created as a result of performing self-reproduction
behavior from its parent have initial ages set to zero. The
entity’s age is incremented during the performance of each
type of behavior from the B except the interaction by com-
munication with its neighbors. During communication with
its neighbors the entity’s ages are frozen (i.e., they are con-
stant over time).
p – entity’s position in the environment E. Since all the

entities are operating on the pixels this parameter represents
the coordinates of the pixel at which the entity is temporar-
ily located.
m - entity’s memory. A memory provides the entity’s

ability to store information obtained by communication

with its neighbors during the component-labeling process.
The memory is initially empty.
Ls - entity’s lifespan. When the entity’s age reaches Ls

as a threshold value, an entity changes its state to dead and
vanishes from the environment E. This parameter can be
viewed as a measure of how much work the entity could
perform before it dies.

Entity’s evaluation function F: In order to assess if a
pixel at which it is currently positioned belongs to the ho-
mogeneous region an entity performs the evaluation func-
tion F on its local part of the environment E. The local
part of the environment E for an entity ek is defined as a
square region centered at the entity’s current pixel position,
denoted by ek.p with radius R using L∞ norm.

It is assumed that the homogeneity of the local part of
the entity’s environment E (i.e., the image segment) can
be specified using the criterion for homogeneity. This cri-
terion is based on the relative contrast, the regional mean
and the regional standard deviation of the gray-level inten-
sity (like in [6]). The evaluation function performed by an
entity ek located at the pixel ek.p, where ek.p = (i, j),
i = 0, 1, 2, . . . ,W − 1 and j = 0, 1, 2, . . . ,H − 1, is ex-
pressed as follows:

F(ek.p, R) = non contrast criterion(i, j)(R)

∧mean criterion(i, j)(R) (3)
∧ std criterion(i, j)(R),

where ∧ denotes logical AND, andR is the radius of the en-
tity’s local part of the environment E centered at the pixel
ek.p using L∞ norm. The result of the evaluation function
F is logical ”true” or logical ”false”. The non-contrast cri-
terion is expressed as follows:

non contrast criterion(i, j)(R) ={
true if non contrast(i, j)(R) ≥ δ
false otherwise (4)

non contrast(i, j)(R) =
i+R∑

m=i−R

j+R∑
n=j−R

c(i, j,m, n) (5)

c(i, j,m, n) =
{

1 if |E1(i, j)−E1(m,n)| ≤ η
0 otherwise (6)

where E1(i, j) denotes the intensity value of the pixel (i, j)
on the given image. The non-contrast criterion specifies
the required number of pixels, which should be equal to,
or greater than, a predefined constant δ, within the entity’s
local part of the environment E. The mean and the standard
deviation criteria can be expressed as follows:

mean criterion(i, j)(R) ={
true if mean(i, j)(R) ∈ [µ1, µ2]
false otherwise (7)

mean(i, j)(R) =
1

(2R+ 1)2

i+R∑
m=i−R

j+R∑
n=j−R

E1(m,n) (8)

std criterion(i, j)(R) ={
true if std(i, j)(R) ∈ [λ1, λ2]
false otherwise (9)

std(i, j)(R) = (10)

1
(2R+ 1)

√√√√ i+R∑
m=i−R

j+R∑
n=j−R

(E1(m,n)−mean(i, j)(R))2

where µ1 and µ2 represent the lower and upper positive pre-
defined thresholds for which the mean criterion is evaluated
as logical ”true” if its value falls between those two limits.
Otherwise, the mean criterion will be evaluated as logical
”false”. λ1 and λ2 define the lower and upper predefined
thresholds for the standard-deviation criterion.

The evaluation function F = ”true” at the pixel ek.p tells
the entity that its local part of the environment is homoge-
neous. In this case the entity changes its state from active
to communicable and leaves the mark in E0 at the position
ek.p.

Entity behaviors B: The entity behaviors B consist of
the following behaviors: Diffuse, Self reproduce and
Communication.
Diffuse – the entity is performing the reactive behav-

ior diffuse if an evaluation function F at its current pixel
ek.p returns logical ”false”. The entity will change its cur-
rent pixel position to another randomly chosen pixel posi-
tion within its local part of the environment E, which is not
occupied by another entity. It should be noted that if the en-
tity is not able to move to another pixel within its local part
of the environment E, because all the pixels have already
been occupied by other entities, the entity will stay at the
current pixel until one of the neighboring pixels becomes
free. The entity’s age will be increased by 1 for each cycle
of the central clock.
Self reproduce – if an entity obtains logical ”true”

from the evaluation function F, the entity will leave a mark
at the notice board E0 associated with the entity’s current
pixel position ek.p. Subsequently, depending on the num-
ber of non-occupied pixels within its 8-neighborhood, the
entity will reproduce from zero to eight offspring entities.
If all the pixels around the entity are occupied by other
entities, no offspring entities will be created. After ap-
plying the self reproduce behavior the entity will change
its state to communicable, and will be ready to perform
communication behavior in the following cycles of the
central clock.
Diffuse and self reproduce behaviors are regarded as

being reactive since they are entirely determined by the lo-
cal state of the entity’s environment.
Communication – this type of behavior is performed

only by entities whose state is set to communicable. While
applying communication behavior an entity is immov-
able. The entity is located at the pixel that it has previ-
ously found and which belongs to the homogeneous re-
gion according to the evaluation function F. The en-
tity’s goal is to determine the unique component label for

the pixel at its current position ek.p. Communication
behavior consists of sending messages (send messages),
processing messages (process messages) and receiving
messages (receive messages). Communication includes
all the neighboring entities located within the entity’s 8-
neighborhood. The message generated by the entity con-
tains only a number computed from the pixel’s position co-
ordinates ek.p = (i, j) using row ordering (i.e., the content
of the message is i ·W + j, where W is width of the im-
age). This number is unique for each pixel position inside
the image lattice since one pixel position can contain only
one entity at a time. When the entity receives a message
containing a number smaller than its current number com-
puted from its pixel position or stored in its memory ek.m,
the entity will store this number in its memory and also pass
this number on as a message to all its neighbors. In the other
case, messages containing a number greater than, or equal
to, the number that is already stored in the entity’s memory
are not considered and will be discarded.

Through a number of central clock cycles, entities that
belong to the same homogeneous region, by performing
communication behavior, will get the same number stored
in their memories. This number is unique for each compo-
nent and represents a component label. After a predefined
number of central clock cycles being inactive in the state
communicable (i.e., not receiving any message), the entity
will change its state to sleep.

3. The AOC based algorithm for image-
component labeling

An algorithm for AOC-based image-component labeling
based on the previous description is given in Fig. 3.

The system A is initialized by clearing the notice board
E0, loading the image to E1 as well as loading the follow-
ing parameters: initial number of entities N, entity lifespan
Ls, entity local environment radiusR, threshold limits δ and
η for relative non-contrast criterion, threshold limits µ1 and
µ2 for region mean criterion, threshold limits λ1 and λ2 for
standard deviation criterion. Initially, N entities are initial-
ized by setting the following: the entity’s internal state to
active, the entity’s age to zero, and the entity’s position p
to a random pixel within the image lattice sizedW ×H that
is not previously occupied by another entity. An entity also
clears its memory and sets its lifespan Ls, which is constant
and is equal for all the entities (Fig. 3; line 1− 6).

An entity performs actions depending on its internal state
and the characteristics of the local part of its environment.
Every entity in the active state, in order to find a pixel that
belongs to the homogeneous region and that has not been
detected by any other entity, performs a sequence of ac-
tions that includes reading E0, evaluating E1 with func-
tion F and writing the results back to the E0. Depend-
ing on the results obtained from F, the entity applies the
behaviors diffuse and self reproduce. After applying
the self reproduce behavior, the entity changes its internal
state to communicable in which it repeatedly performs the
behavior communication (Fig. 3; line 9− 31). The activi-

ties within a cycle of the central clock are described (Fig. 3;
line 8−35). Behavior communication for the entity ei is
described in Fig. 2. In every central clock cycle the entity in
the state communicable has the ability to receive messages
from its eight neighbors (receive messages). These mes-
sages are temporarily stored in entity’s memory ei.m. The
entity processes the messages contained in the memory dur-
ing each central clock cycle. For synchronization purposes
the entity processes only those messages that were received
in the previous cycle. While processing messages, the en-
tity compares the numbers contained within each received
message to the number stored in its memory, which is the
smallest number so far. If a new smallest number is found,
it is stored in the entity’s memory and a message contain-
ing the new smallest number is forwarded to all the entity’s
neighbors. If the entity does not receive any message within
W +H central clock cycles, where W and H are the width
and height of the analyzed image, the entity will write the
smallest number from its memory to the notice board E0

and change its internal state to sleep.

ei.m← ei.receive messages()
ei.process messages()
ei.send messages()
if # of central clock cycles from the last received message >
H +W then

ei.write E0(the smallest number in memory ei.m)
ei.internal state← sleep

end if

Figure 2. Detailed description of behavior
communication

4. Experiments

The proposed AOC-based system has been implemented
as a program simulator and it was run on a set of 250 images
containing objects from ”blocks world” [11]. The goal of
the component labeling was to detect all the objects present
in a given image and to assign every object a different label.
The parameters used in the simulation are obtained from a
subset of 30 images, and tested on the remaining 220 im-
ages. The simulation parameters are listed in Table 1.

Table 1. Simulation parameters
Parameter Value
Initial number of entities (N) 100
Entity lifespan (Ls) 10
Local environment radius (R) 3
Relative contrast threshold (δ) 10
Relative contrast threshold (η) 25
Region mean limits [µ1, µ2] [0, 255]
Standard deviation limits [λ1, λ2] [0,20]

Initially, N entities are randomly distributed over the
environment E. Fig. 4 shows a series of intermediate
steps during the image segmentation and component label-
ing. Figure 4.a) represents an input gray-level image of size
768 × 576. In Fig. 4.b) the initial state of the environment
E is shown: one hundred entities are distributed randomly

1: E0 ← 0, E1 ← image . clears all cells in the notice board and loads image
2: Load parameters: N, Ls, R, δ, η, µ1, µ2, λ1, λ2

3: Create N entities
4: for entity ei (i = 1, 2, 3, . . . , N) do . entity initialization
5: ei.internal state← active, ei.age← 0, ei.p← random position, ei.m← 0, ei.Ls ← Ls

6: end for
7: Φ(active)(0) = N and Φ(communicable)(0) = 0 , cycle = 0

8: while Φ(active)(cycle) > 0 or Φ(communicable)(cycle) > 0 do
9: for entity ei (i = 1, 2, 3, . . . , Ncycle) do . Ncycle is number of entities in state active in cycle cycle

10: if ei.internal state = active then
11: ei.read E0(ei.p) . read information from the notice board at pixel ei.p
12: if ei is located at pixel not yet visited by any entity then
13: ei.F(ei.p, R) . evaluate entity’s local part of environment E
14: ei.write E0(write result of F)
15: if ei is located at pixel that belongs to homogeneous region then
16: ei.behavior self reproduce()
17: ei.internal state← communicable
18: else
19: ei.behavior diffuse()
20: end if
21: else
22: ei.behavior diffuse()
23: end if
24: ei.age = ei.age+ 1
25: if ei.age > Ls then
26: ei.internal state← dead
27: end if
28: else if ei.internal state = communicable then
29: ei.behavior communication() . See Fig. 2. for detailed description of behavior communication
30: end if
31: end for
32: Remove all entities with internal state = dead
33: Add new entities generated in this cycle by behavior self reproduce
34: cycle = cycle+ 1
35: Evaluate Φ(active)(cycle) and Φ(communicable)(cycle)

36: end while
37: Notice board E0 contains final result (labeled components)

Figure 3. AOC based algorithm for image component labeling

over E1 (shown as white pixels). E0 is not shown. Fig.
4.c) shows the state of the system A at the central clock
cycle = 10. The shown image is obtained by overlap-
ping the layers E0 and E1, where the square-like regions
represent parts of the image that have been marked as ho-
mogeneous by the entities so far. Fig. 4.d) represents the
state of the environment at cycle = 30. It can be seen that
the number of entities in the state active has increased, but
the number of entities in the state communicable has in-
creased a great deal. This is due to the region mean cri-
terion limits µ1 and µ2, set as 0 and 255, respectively. In
this particular case the region mean criterion is not impor-
tant, which allows us to obtain a whole image segmented,
including all the objects and the background. Only the parts
of the image that are very inhomogeneous, like the borders
between the objects or the textures with steep gradients, are
not segmented. Otherwise, if it is necessary to detect only
one type of objects within a known or experimentally de-
termined range of intensity values, the region mean limits
could be set accordingly. Fig. 4.e) shows the state of the en-
vironment at cycle = 141, when there are no entities with
the internal state active. However, all the remaining enti-

ties are in the state communicable, which means that at this
phase of activity, the entities only perform communication
behavior in order to determine the unique component labels
for the detected homogeneous regions. At the cycle = 230
no entities in the state active, nor the state communicable
remain in the system A, which means according to the eval-
uation function F that this state of the system is considered
as the end of the image-component labeling process. Dur-
ing this cycle all the entities, immediately before changing
the internal state to sleep, wrote the smallest number from
their memories to the notice board E0. Fig. 4.f) depicts the
final result of the image-component labeling. E0 contains
five different labels, which mean that four objects and the
background have been detected.

During the experiments the initial number of entities
was varied between 100 and 50000 (0.022% to 11.3% of
the number of total image pixels), while the entity lifes-
pan was constant (Ls = 10). We have noticed that, de-
pending on the set parameters for the relative contrast, the
regional mean and standard deviation, if many pixels sat-
isfy the entity evaluation function F then it is better to ini-
tially have a larger number of entities, since in that case the

(a) Gray level image size
W ×H = 768× 576

(b) Initial distribution of entities,
Φ(active)(0) = 100,
Φ(communicable)(0) = 0

(c) Φ(active)(10) = 7397,
Φ(communicable)(10)=38198

(d) Φ(active)(30) = 10613,
Φ(communicable)(30)=223141

(e) Φ(active)(141) = 0,
Φ(communicable)(141)

= 427734

(f) Final result
Φ(active)(230) = 0,
Φ(communicable)(230) = 0

Figure 4. Simulation Results

component-labeling process tends to complete in a fewer
number of central clock cycles. The average number of cen-
tral clock cycles needed for the image-component labeling
was 235 cycles, while the average simulator processing time
for the PC-based dual-core processor running at 2.8 GHz
was 191ms. Distinct object were successfully labeled on
208 out of 220 tested images. Remaining 12 images (5.5%
of 220) produced results in which at least two different ob-
jects gained the same label. These images contained two or
more overlapped objects with similar gray-level properties
and hence the entity evaluation function was unable to dif-
ferentiate borders between such objects and assigned them
the same label.

5. Conclusion

This paper describes an AOC-based approach to image-
component labeling. A number of entities with carefully
defined properties and behaviors, initially distributed over
the image, with the ability to communicate directly or in-
directly, store information in the notice board, show an ex-
ample of how autonomy oriented computing can be utilized
for low-level image-processing tasks. The main advantage
of the proposed approach is that entities, while diffusing,
self-reproducing and communicating, are completely au-
tonomous and they are making decisions directed only by
the state of their local part of the environment. This ap-

proach also shows a great potential for the further introduc-
tion or extension of entities’ states and behaviors, as well
as modeling the system objective function to achieve other
image-processing tasks, such as image feature tracking or
image edge detection. In the future, based on our simula-
tions, AOC-based hardware architecture, which enables en-
tities in the system to act in parallel, will provide at least
the same quality of component labeling as ”classical” ap-
proaches, but will also provide us a hardware framework
for the implementation of naturally inspired behaviors (ant-
colony optimization [9]), with a significant speedup. It can
be seen that with such an architecture the number of cen-
tral clock cycles needed to complete the selected image-
processing task can be used as the performance index. For
comparison purposes, component labeling based on a con-
nected component-labeling algorithm [10] needs about 20
ms or 5.6 · 107 cycles working on a 2.8 GHz processor for
the component labeling. The same task in an AOC-based
hardware architecture can be performed in approximately
250 central clock cycles, without counting the time needed
for system initialization.

Acknowledgment

The work reported in this paper has been supported by
the Croatian Ministry of Science, Education and Sports, as
the part of the R&D project Theory, Modeling and Apply-
ing of Autonomy Oriented Computing Structures (no. 036-
0361935-1954).

References

[1] J. Liu, X. Jin, K. C. Tsui, Autonomy Oriented Computing,
1st edition, Springer, New York, 2004.

[2] J. Von Neumann, Theory of Self-Reproducing Automata,
edited and completed by A. W. Burks, University of Illinois
Press, Urbana, 1966.

[3] J. H. Holland, Adaptation in Natural and Artificial Systems,
The University of Michigan Press, Ann Arbor, MI, 1975.

[4] J. Ferber, Multi-Agent Systems, Addison-Wesley, New York,
1999.

[5] J. Liu, Y. Y. Tang, Y. C. Cao, ”An evolutionary autonomous
agents approach to image feature extraction”, IEEE Trans.
on Evolutionary Computation, vol. 1, no. 2, pp. 141 - 158,
July 1997.

[6] J. Liu and Y.Y. Tang, ”Adaptive Image Segmentation With
Distributed Behavior-Based Agents”, IEEE Trans. on Pat-
tern Analysis and Machine Intelligence, vol. 21, no. 6, pp.
544 - 551, June 1999.

[7] Y. Wang, B. Yuan, ”Fast method for face location and track-
ing by distributed behaviour-based agents”, IEE Proc. on
Vis. Image Signal Processing, vol. 149, no. 3, pp. 173-178,
June 2002.

[8] D. Kipcic, S. Ribaric, ”A multi-agent-based approach to face
detection and localization”, 27th International Conference
on ITI, pp. 377 - 382, June, 2005.

[9] M. Dorigo, T. Stützle, Ant Colony Optimization, MIT Press,
Cambridge, Massachusetts, 2004.

[10] R. C. Jain, R. Kasturi, B. G. Schunck, Machine Vision, 1st

edition, McGraw-Hill, New York, 1995.
[11] P. H. Winston (ed.), The Psychology of Computer Vision,

McGraw-Hill, New York, 1975.

