

Design Patterns – education and classification

challenge

Mario Konecki, Tihomir Orehovački, Dragutin Kermek

Faculty of Organization and Informatics

University of Zagreb

Pavlinska 2, 42000 Varaždin, Croatia

{mario.konecki, tihomir.orehovacki, dragutin.kermek}@foi.hr

Abstract. Design patterns have been recognized as a

way to simplify and unify applications development

process. There are two problems among others that

can be identified when talking about design patterns.

First there is a problem in education of novices

about patterns and training them to fully understand

how to find the right pattern for some problem.

Second problem is classification and location of

patterns that would make it easier to find the right

pattern for the right problem and right technology.

There are a lot of patterns created almost every

day and there are a lot of books that mention some

classifications and a number of patterns but there is

still a lack of some more practical classification that

would enable one to find the right pattern easily.

In this paper we give a brief overview of and

discussion about problems associated with education
of novices. We give a brief view at patterns and the

most common classification of patterns and we

comment some commonly used technologies in

combination with design patterns. We also discuss

two mentioned problems along with possible ideas for

their resolution.

Keywords. design patterns, education, novices,
classification

1 Introduction

Business world today has become very demanding

regarding the huge number of applications that are

used as a support for various business processes.

There is a need to increase the speed and the degree of

automatization of applications development process.

One of possible approaches to this problem is usage

of design patterns.

Design patterns have been recognized as a mean

that could be useful in solving some fundamental

problems that occurred inside of object-oriented

paradigm such as problems of designing and reusing

applications code and libraries. There were a growing

number of people supporting this belief ([2], [3], [4],

[6], [7], [8], [10], [12], [17], [20]).

The main idea behind design patterns is to support

the reuse of design information, thus allowing

developers to communicate more effectively [23].

Regarding these new paradigms and technologies,

the following questions have arisen [23]:

 Amongst the many different design patterns

that are being discovered, are any related to

each other? What are the characteristics of

such a relationship?

 Do two patterns address a similar problem

area?

 Is it possible to combine two design patterns?

 What are the criteria for classifying design

patterns into categories?

As we can see, the main questions are how to

recognize all existing and developing patterns that are

emerging, how to find the right pattern for the right

problem and how to understand connections between

patterns.

There are a few publications that refer to this

question and the most important and familiar is the

Design Patterns: Elements of Reusable Object-

Oriented Software [11] that introduced the design

patterns in the first place. Although the classification

given in this book is very detailed and answers some

of the mention questions there is still a lack of
understanding about connections and relationships

between patterns and how to find the right pattern for

some particular problem and to be sure that that very

pattern is the best for the job. In this paper one

possible solution to these unanswered questions will

be presented.

Another problem that has emerged is education of

novices about these new concepts, namely about

design patterns. There is a need to recognize the

problems that occur in this type of education and to

refer to its possible solutions. Answers to these

questions are presented in the second part of this
paper.

2 Design patterns

Design pattern is a general and reusable solution to
some problem that is common in the area of software

design (problem-solving and planning for a software

solution). It is a template that tells how to solve some

particular problem and can be use in a variety of

situations.

Design pattern is general in nature, not specific

which means that it cannot be translated directly into

program code. It shows objects, relationships,

interactions, etc. that lead the developer to code

particular solution for some occurring situation. There

are also other types of patterns such as architectural

patterns but design patterns deal exclusively with the

problems of software design. Generally, it can be said

that design patterns are true and tried solutions to

reoccurring software design problems under a

particular context.

The very idea of patterns originated as an
architectural concept by Christopher Alexander

(1977-1979). Later, Kent Beck and Ward

Cunningham started to explore the idea of patterns

usage in programming. Their idea was presented later

in the annual ACM conference OOPSLA in 1986. In

1994 GoF (Gang of Four) - Erich Gamma, Richard

Helm, Ralph Johnson, and John Vlissides wrote a

book titled Design Patterns: Elements of Reusable

Object-Oriented Software [11] which had a great

influence on the popularity of design patterns.

Design patterns provide tested and reliable

solution to commonly occurring problems and

eliminate the possibility of some major problems that

can occur when developer design on their own

without any guidelines. Using design patterns makes

it easier to understand program code to everyone that

is familiar with the particular design that is used.

In spite of many advantages there is some
criticism of design patterns.

Some of the critics and problems are:

 Inclusion of additional levels of indirection

 Unlike components, patterns don’t provide

reuse

 Some argue that design patterns don’t differ

significantly from other forms of abstraction

3 Design patterns classification

In the book “Design Patterns: Elements of Reusable

Object-Oriented Software” [11] there is a defined

catalog which contains about 20 design patterns.

These patterns are grouped into 3 groups (Creational

Patterns, Structural Patterns and Behavioral Patterns).

The structure of all design patterns mentioned in
[11] is given in the figure 1 [23].

All patterns and their relationships are defined

through documentation that consists from following

parts as defined in [11]:

 Design patterns are described in

documentation that makes it easy to use

them. It describes the context in which the

pattern is used, elements and relationships

inside of context that the patterns deals with

and tried to resolve and also some particular

solutions suggestion.

 This documentation consists of several

sections. They are not always the same but

there is one commonly format that is

described in the book Design Patterns:

Elements of Reusable Object-Oriented

Software which was mentioned before. Of
particular interest are the Structure,

Participants, and Collaboration sections

which describe a prototypical micro-

architecture that developers copy and adapt

to their particular designs to solve the

recurrent problem described by the design

pattern.

All sections of this format of documentation are

given in [11].

In this sections structure, there is a part called

Related Patterns that describes possible relationships

between patterns. Design patterns catalogue, as

described in [11], shows classification that is based on

two criteria: jurisdiction (class, object, compound)

and characterization which is already mentioned

(creational, structural, behavioral). These

relationships are described in detail and every one of
them appears to be different and this is the fact that

brings to conclusion that there is a need to classify

these relationships in some matter to ease one in

finding right pattern(s) for some specific domain of

work.

4 Classification of design patterns

relationships

In order to classify design patterns relationships the

main issues that have to be addressed had to be

identified. Two main issues can be recognized in

order to create an adequate relationship classification:

direction of relationship (unidirectional, bidirectional)

and strength of relationship. To efficiently address

these issues a classification between pairs of design

patterns (X, Y) that states the nature of these issues

was formed [23].

This classification includes the following

categories [23]:

 X uses Y in its solution – this means that

when X builds a solution one part of the

problem is similar to problems that are solved

by Y

 X is similar to Y – X and Y address a similar

type of problem

 X can be combined with Y – X can be

combined with Y to solve a problem

This classification of relationships between pairs

of design patterns is shown in figure 2 [23].

By using this classification, a developer can better

decide what patterns to use. He can see which patterns

are similar and which of them are the best for some

particular problem. He can also find the best pattern

to solve some subproblem looking at the patterns that

the main patterns X can use. Another advantage is the

possibility of combining different patterns that can be

combined in order to solve some more or less

complex problem for which none of the patterns alone

has the right answer.

5 Combined classifications

When looking at described classifications there is

a room for further improvement. One general

combined classification that uses all existing and adds

some new ideas could be composed. What is obvious

is that this classification should address both details of

each pattern and also each type of relationships

between them also in detail. As a first level groups of

patterns should be used as units. They should be

described with all possible aspects and relationships

between then should be stated and explained.
In this way user would easily, as it would in the

next lower levels, find where to look for pattern for

some problem but also where to find similar patterns

or patterns that can be combined and joined in solving

a problem. So this level would be the first step in

searching for complete problem solution. The types of

relationships that would denote links between pattern

groups (that are virtually the same as the ones

between patterns) could be the following (taking in

consideration that A is the first group of design

patterns and B the second group):

 A pattern(s) uses B pattern(s) in its

solution

 A has similar pattern(s) to all (some)

patterns from B

 Pattern(s) from A can be combined with

pattern(s) from group B
These relationships could be divided into even

more detailed way. This is discussed below.

At the second level we look at patterns. Each

pattern should also be explained in detail with all

relevant aspects. Along with this each relationships

between patterns has to be defined and well described

in order to make tracking for all necessary patterns for

some particular situation as easy as possible.

Types of relationships that can be found here are a

more detailed version of those used between pattern

groups. Relationships that would be used in this case

are (X represents pattern 1 and Y pattern 2):

 X might/must use Y in its solution in
degree (strength graduation) Z

 X is similar to Y in degree Z

 X can be combined with Y in degree Z

Using these 2 levels of a general classification

could be made that would enable user to find each of

patterns easier and in this way it would also make the

possibility of wrong choices and solutions less likely.

This all is just another challenge that will probably be

addressed in the future research.

5 Design patterns in education

Another problem mentioned is the problem of

education about design patterns. Popularity of design

patterns in software industry established a need to

incorporate design patterns in higher education

institutions. Although the need was recognized there

was no consensus on what patterns to include in this

education or what level of knowledge to provide in

educational programs of this kind. All that was agreed

upon was that early exposure to design patterns and

its principles would benefit the students [5], [9], [16],
[21].

Various learning techniques and models were

proposed in the last years in literature and in various

conferences [9], [14], [19], [22]. The aim to find the

best techniques for learning about design patterns

became a goal of some conferences like OOPSAL,

ECOPS and its mirror in Europe. These conferences

focused on finding the best examples for educational

purposes [1].

When looking at all these efforts a need has

occurred to perform an exploratory study that would

show what are concrete problems in higher education

that arise when talking about design patterns.

Researchers Della, Clark and Wick believed that the

abstract nature of patterns makes them difficult to

comprehend among novices [9], [22]. It was also

noticed that the difficulty to comprehend design
patterns is connected to lack of knowledge and

experience about object-oriented technology [21].

Descriptions of patterns as given in [18] have been

frequently criticized as to simple and incomplete, not

representing real situations in real world [15], [22].

As notices, two main problems that novices encounter

when dealing with design patterns are [13]:

 lack of experience in designing software

 not encountering enough recurring design

problems

 not enough experience with translating design

pattern to code for implementation

Based on all this a need occurred for proper study

that would investigate the causes of problems among

novices in learning design patterns.

A research of this kind was done in [13] and as a

result a list of most common problems in education of

novices about patterns was formed. These problems
are:

 Selection-based errors

 Application specific errors

Selection-based errors refer to capability of

novices to identify applicable patterns to some

particular problem.

Application specific errors are divided into three

sub-categories:

 Mapping of pattern participants

 Misrepresentation errors

 Incomplete design

Mapping of pattern participants refers to process

of incorporating design patterns into the initial class

diagram. The mapped or generated class diagram

should match that of the suggested structure.

Misrepresentation errors are a common errors

when one represents an interface or an abstract class
as a concrete class or does some other similar

misrepresentation.

Incomplete design means that one has left out

some operations or even classes for overall solution

design.

All this points out that a proper leadership and

guidance, as well and new and improved models and

examples of patterns learning, are needed and this

topic today is more actual that ever.

If we look carefully at each of problems

mentioned we can see that we need a complete and

overall approach to whole educational process in

order to solve them. What needs to be incorporated

into mentioned educational process is a set of steps of

which each has to be addressed in great detail.

The first step is to include proper lections and

exercises about software design. There is a great
importance for novices to learn the basics of

designing as it is the very first level in understanding

the whole concept of design patterns. After this first

step is achieved in satisfactory manner the next step

can be undertaken.

The next step would be exposure of novices to a

large series of example problems that would present

them a very need to use something as design patterns.

In this step they would experience various design

problems and goal would be for them to conclude that

there is a fair amount of recurring design problems

that need to be unified and solved in one place that is

one pattern.

Finally, the novices would be presented with

concepts of design patterns as a way to solve

recurring problems that they encountered in previous

step. Along with understanding the concepts of design
patterns novices need to be exposed to a large number

of examples in which they need to connect proper

design pattern to some problem and also they need to

master the whole development process from choosing

a design to completely implementing it trough

concrete computer code.

These steps would as such address all detected

problems that occur among novices regarding

education about design patterns. The key aspect in all
steps are examples and then more examples as

experience is the only true way to go in order to

achieve complete understanding of theoretical and

practical aspect of working with design patterns.

6 Conclusion

In this paper two problems were considered: a

problem of a more practical classification that would

enable easier finding of right pattern for the right

problem and a problem of educating novices about

patterns. Both of these problems are very actual and

need some practical solutions.

Regarding the first problem a classification of

design patters relationships has been presented as a

mean to understand patterns better and to find right

pattern(s) easier by thinking about their relationships

rather than just of patterns themselves. For the second

problem a most reoccurring problems with patterns
education were mentioned and discussed. This is just

a basis for more research on this field and more

practical solutions that are so needed in this particular

field.

References

[1] Alphonce, C., Casperson, M., Decker, A.: Killer

“killer examples” for design patterns,

Proceedings of the 38th SIGCSE technical

symposium on Computer science education,

March 7 – 11, Covington, Kentucky, USA, 2007,

pp. 228-232.

[2] Beck, K.: Patterns and software development,

Dr. Dobb’s Journal, Vol. 19, No. 2, 1993, pp. 18 -

23.

[3] Beck, K., Johnson, R.: Patterns generate

architecture, Proceedings of the 8th European

Conference on Object-Oriented Programming, July

4 - 8, Bologna, Italy, 1994, pp. 139-149.
[4] Buschmann, F.: Rational architectures for

object-oriented software systems, Journal of

Object-Oriented Programming, Vol. 6, No. 5, pp.

30–41., 1993.

[5] Clancy, M., Linn, M.: Patterns and Pedagogy,

ACM SIGCSE Bulletin, Vol. 31, No. 1, pp. 37-

42., 1999.

[6] Coad, P.: Object-oriented patterns,

Communications of the ACM, Vol. 35, No. 9, pp.

153–159., 1992.

[7] Coplien, J.: Advanced C++: Programming

Styles and Idioms, Addison - Wesley, Reading,

MA, 1993.

[8] Coplien, J.O.: Generative pattern languages:

An emerging direction of software design. C++

Report, No. 6, 1994.

[9] Della, L., Clark, D.: Teaching Object-Oriented

Development with Emphasis on Pattern
Application, Proceedings of the Australasian

conference on Computing education, Melbourne,

Australia, 2000, pp. 56-63.

[10] Gamma, E., Helm, R., Johnson, R., Vlissides, J.:

Design patterns: Abstraction and reuse in
object-oriented designs, Proceedings of the 7th

European Conference on Object-Oriented
Technology, July 26-30, Kaiserslautern, Germany,

1993, pp. 406–431.

[11] Gamma, E., Helm, R., Johnson, R., Vlissides, J.:

Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995.

[12] Johnson, R.: Documenting frameworks using

patterns, Proceedings of Conference on Object

Oriented Programming Systems Languages and

Applications, October 18 – 22, Vancouver,

British Columbia, Canada, 1992, pp. 63 – 76.

[13] Masita, A. J., Shahrul, A. M. N.: The difficulties

of Using Design Patterns among Novices: An
Exploratory Study, Proceedings of fifth

International Conference on Computational

Science and Applications, August 26-29, Kuala

Lumpur, Malaysia, 2007, pp. 97-103.

[14] O’Cinneide, M., Tynan, R.: A Problem-Based
Approach to Teaching Design Patterns, Annual

Joint Conference Integrating Technology into

Computer Science Education, Leeds, United

Kingdom, 2004, pp. 80 - 82.

[15] Ouyang, Y.: Explaining Design Patterns

Through One Application, Proceedings of 32
nd

ASEE/IEEE Frontiers in Education Conference,

November 6 – 9, MA, USA, 2002, pp. 6-11.

[16] Porter, R., Calder, P.: Patterns in Learning to

Program – An Experiment?, Proceedings of the

sixth conference on Australasian computing

education, Dunedin, New Zealand, 2004, pp. 241

- 246.

[17] Pree, W.: Meta-patterns: A means for

describing the essentials of reusable o-o
design, Proceedings of the 8th European

Conference on Object-Oriented Programming, July

4 - 8, Bologna, Italy, 1994, pp. 150-162.

[18] Reed, D.: Incorporating problem-solving

patterns in CS1, Proceedings of the twenty-ninth

SIGCSE technical symposium on Computer

science education, February 26 – March 01,

Atlanta, Georgia, USA, 1998, pp. 6-9.

[19] Schmolitzky, A.: A laboratory for teaching OO

language and design concepts with teachlets,
Proceedings of Conference on Object Oriented

Programming Systems Languages and

Applications, October 16 – 20, San Diego,

California, USA, 2005.

[20] Shaw, M.: Heterogeneous design idioms for

software architecture, Proceeding of the Sixth

International Workshop on Software

Specification and Design, Software Engineering

Notes, October 25 – 26, Como, Italy, pp. 158–

165.

[21] Weir, S. B.: An investigation of significant

technical factors affecting the learning and
using of design patterns, Master Thesis, Utah

State University, USA, 2006.

[22] Wick, M. R.: Teaching Design Patterns in CS1:

A Closed Laboratory Sequence based on the
Game of Life, Proceedings of the 36th SIGCSE
technical symposium on Computer science

education, February 23-27, St. Louis, Missouri,

USA, 2005, pp. 487-491.

[23] Zimmer, W.: Relationships between design

patterns, Pattern languages of program design,

ACM Press/Addison-Wesley, 1995.

Appendix A.

Figure 1. Design patterns catalogue structure

Figure 2. Design patterns relationships classification

