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The effect of a single static impurity on the many-body states and on the spin and thermal transport in the
one-dimensional anisotropic Heisenberg chain at finite temperatures is studied. Whereas the pure Heisenberg
model reveals Poisson level statistics and dissipationless transport due to integrability, we show using the
numerical approach that a single impurity induces Wigner-Dyson level statistics and at high enough tempera-
ture incoherent transport within the chain, whereby the relaxation time and dc conductivity scale linearly with
length.
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Transport in the one-dimensional �1D� quantum system of
interacting particles still offers several fundamental theoreti-
cal challenges. In the context of the electron transport
through barriers or weak links the role of repulsive electron-
electron interactions within the wire was shown to be
crucial1,2 since at low temperature T→0 the interaction
within Luttinger-liquid �LL� phenomenology renormalizes
the transmission through the barrier to zero effectively cut-
ting the chain for transport.3 Neglecting the effect of um-
klapp processes within the wire above the Kane-Fisher tem-
perature T� the transmission through the barrier should
become finite1,2 indirectly confirmed in a numerical study of
the 1D spin model.4 On the other hand, in the last decade it
has become increasingly evident that the LL low-energy de-
scription is not enough to establish transport properties, if
they are dominated by umklapp processes. It has been
shown5,6 that pure 1D integrable models of interacting fer-
mions exhibit in spite of umklapp at any T�0 dissipationless
�ballistic� transport manifested, e.g., in a finite charge stiff-
ness D�T�0��0. On contrary, a generic system of interact-
ing fermions would exhibit dissipation in the wire and also
finite dc transport coefficients, e.g., the dc conductivity
���→0�=�0��. The distinction is closely linked to the
statistics of many-body levels,7 which follow the Poisson
level distribution for the integrable system and the Wigner-
Dyson �WD� distribution for the generic nonintegrable
system.5 Random disorder, strong enough to overcome
finite-size effects, in such models generally leads to the WD
statistics for nearest levels,8,9 while the dc transport seems to
be normal �dissipative� at T�0,10 in contrast to the
Anderson-type localization persisting at T=0.11

Our goal is to understand within this context the effect of
a single static impurity in the 1D integrable system of inter-
acting particles. While of fundamental importance this ques-
tion is also directly relevant in connection with ongoing ex-
periments on novel quasi-1D materials where electronic
properties of the pure system can be well described within
the integrable spin-1/2 Heisenberg model12 with dilute impu-
rities introduced in a controlled manner and their influence
studied, e.g., on the thermal transport.

In the following we show on the example of the 1D spin
model with periodic boundary conditions that a single static

impurity can qualitatively change the level statistics to the
WD one, noticed also in the recent study of the onset of
quantum chaos13 although the perturbation scales as 1 /L
where L is the length of the system. At the same time, the
impurity leads to the vanishing of the spin stiffness D at
elevated T�0. In such a situation, it is meaningful to discuss
the decay of the spin and energy current within the ring and
related transport rates 1 /� which we show to be well defined
and scale as 1 /�	1 /L as expected for the homogeneous wire
with a single localized perturbed region.

We consider the 1D anisotropic Heisenberg model �AHM�
with a single-site static impurity field,

H = �
l

J�Sl+1
x Sl

x + Sl+1
y Sl

y + 
Sl+1
z Sl

z� + b0S0
z , �1�

where S� ,�=x ,y ,z are spin-1/2 operators, J is the magnetic
exchange coupling �we use units J=1�, 
 the anisotropy, and
b0 the local impurity field. Numerically we study chain �ring�
of length L with periodic boundary conditions.

In the absence of the impurity the AHM, Eq. �1�, is
integrable and as the consequence reveals the Poisson
level distribution PP�s�=exp�−s� where s= �En+1−En� /
0
�
0 is the average level spacing� as well as the dissipation-
less transport.6 Let us first consider the effect of finite b0 on
the level statistics. We investigate this question by perform-
ing the �full� exact-diagonalization �ED� study of finite-size
systems with L=10–16. It should be pointed that in this
range the number of many-body states varies �in the
Stot

z =0 sector� in a wide range Nst=102–104 and the
corresponding 
0=2�10−2–5�10−4. The general conclu-
sion is that finite b0�0 induces WD distribution PWD�s�
= �
s /2�exp�−
s2 /4� following the random-matrix theory
�RMT� �Ref. 7� in spite of the fact that the perturbation is
only an 1 /L effect �the perturbation b0 /2 relative to the full
energy span 
E�LJ�.

To be concrete we present here two standard tests for the
closeness of the RMT. The first one is parameter � �Ref. 8�
measuring the normalized distance to the WD distribution,
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� = �
0

s0

�P�s� − PWD�s��ds/�
0

s0

�PP�s� − PWD�s��ds , �2�

where P�s� is the actual level distribution and s0=0.473 is
chosen to be the intersection of PP�s� and PWD�s�.8 In order
to stay within the regime of homogeneous density of states
we analyze only one half of intermediate many-body states,
as relevant for the high-T properties discussed here. ED re-
sults for resulting � as a function of b0 for chosen interme-
diate 
=0.8 are presented for different L. To avoid the effect
of higher degeneracy of levels at Stot

z =0,b0=0 presented re-
sults in Fig. 1 are for Stot

z =1. In the absence of impurity
�b0=0� we obtain �=1 since P�s�= PP�s� due to the integra-
bility of the pure AHM. The most important conclusion is
that rather weak impurity b0�0.2 in largest L=16 causes a
fast drop to ��0, i.e., to P�s�� PWD�s�, whereby the thresh-
old value of b0 is decreasing with L so that for largest
L=16 reachable with ED we get P�s�� PWD�s� in the range
0.2�b0�1.5. On the other side, it is quite remarkable that �
starts to recover toward ��1 again for large b0�1. This can
be easily explained by noting that large �b0��1 effectively
cut the ring and lead to the AHM with open ends which is
again an integrable model.

Even stronger probe of the level statistics is the correla-
tion 
3 measuring the level fluctuations beyond the nearest
neighbor levels,7


3 =
1

2N
minA,B�

−N

N

�N�Ẽ� − AẼ − B�2dẼ , �3�

where N�Ẽ� is the integrated density of states with

Ẽ=E /
0.14 
3 should behave as 
3�N /15 for Poisson dis-
tribution, and asymptotically as 
3��ln N� /
2 within the
RMT.7 In Fig. 2 we present results for 
3�N� for fixed 

=0.8 and b0=0.8 as obtained for different L=12–16. A com-
parison with the result expected from the RMT shows that

3�N� approaches the latter very accurately in an interval
N�N��L� with N� strongly �exponentially� increasing with
L, while the deviation into a Poisson-like linear dependence

3	N appears for N�N��L�. Such a generic crossover has
been observed also in other systems15 and one can discuss
the relevance of the related crossover energy scale �=N�
0.
Fast increase in N��L� one can understand by noting that the

impurity perturbation being L independent mixes up many-
body levels8 within the interval � whereby separation be-
tween many-body levels decreases as 
0	exp�−L�. We can
estimate ��b0 / �4L� within the XY �
=0� model which
gives right order of magnitude for observed N� in Fig. 2.
More detailed analysis in analogy to other systems8 is diffi-
cult due to the complicated nature of states at intermediate 
.

Closely related to the onset of the WD distribution by a
single impurity is the vanishing of the T�0 coherent �ballis-
tic� transport characteristic for integrable systems.5,6 The
measure of the coherent �dissipationless� component for the
spin transport is the spin stiffness D�T� �equivalent to the
charge stiffness for the related fermionic model�. It can be
defined via the gauge phase � into the spin-flip terms in Eq.
�1�, as exp�i��Sl+1

+ Sl
−+exp�−i��Sl+1

− Sl
+. At finite T�0 the

spin stiffness can be expressed as

D =
1

2L
�

n

pn
�2�n���

��2 �
�

2L
�

n

pn	 ��n���
��


2

, �4�

where pn=exp�−��n� /Z with Z=�nexp�−��n�, and the last
relation becomes an equality provided that the susceptibility
for persistent current vanishes �for finite systems at large
enough T�. On the other hand, D still depends on the value �
where derivatives in Eq. �4� are taken. For the XY model at

=0 corresponding via the Wigner-Jordan transformation to
tight-binding noninteracting fermions with t=J /2 and a po-
tential impurity �0=b0 /2 one can establish the relation with
the transmission through the barrier, as used also in connec-
tion with the evaluation of the 1D conductance16 at T=0. For
general T�0 one gets in the case of NI fermions and
L→�,

D =
�

2L
�

k

fk�1 − fk��vk�2gk. �5�

where vk=2t sin k, fk is the Fermi function with �=0 for
half-filling �Stot

z =0� and

gk =
�tk�2 sin2�L��

1 − �tk�2 cos2�L��
, �tk�2 =

4t2 sin2 k

4t2 sin2 k + �0
2 . �6�

Numerically we recover the behavior D��� as follows from
Eqs. �5� and �6� for arbitrary b0 as far as 
→0. For 
�0 the
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FIG. 1. �Color online� Parameter � for the deviation from the
WD level distribution vs impurity field b0 for 
=0.8 and various L.
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FIG. 2. �Color online� Level-fluctuation parameter 
3�N� for
fixed 
=0.8 and b0=0.8 and different system length L. For com-
parison the RMT result is presented �dotted line�.
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dependence on � remains qualitatively similar, although ir-
regular due to strong dependence on L. In the following we
calculate D�L� for fixed �=
 / �2L�. Results for 
�0 are
nontrivial for any T. Since results of full ED are best at high
T, we restrict ourselves here to the limit �→0. It has been
shown for the pure model that D /� remains finite and non-
trivial in the thermodynamic limit L→� due to integrability
of the model.6

In Fig. 3 we show results for D /� vs 1 /L for chosen 

=0.8 and for four cases b0=0 ,0.5,1 ,2. It is evident from
Fig. 3 that b0�0 cases are qualitatively different from the
b0=0 where D scales linearly in 1 /L toward a finite
D /��0.035. In contrast, b0�0 induces an exponential-like
decay of D→0, at least for large enough L�L�. This is
closely related to the onset of the WD distribution and the
effective breaking of the integrability. Here, L� is presumably
related to the transport mean-free path, on the other hand
such an interpretation is not straightforward. We expect that
the exponential decay is generic for any finite b0�0 al-
though it would be difficult to establish numerically for weak
b0 due to L� increasing beyond available system sizes L.

Rapid �exponential� vanishing of D�L→�� at T�0 is the
indication that the transport is not ballistic and becomes in-
coherent �resistive� beyond the characteristic L�. In order to
test this directly we evaluate dynamical spin conductivity
����= i�� j j

0 −� j j���� /�+L as well as the related thermal con-
ductivity ����= i��� jEjE

0 −� jEjE
���� /�+L, where j and jE are

spin and energy current, respectively, with corresponding
susceptibilities � j j���= i�dtei�+t��j�t� , j�
, and analogous
definition of � jEjE

���. For further discussion it is convenient
to present and analyze also corresponding memory functions
M��� and N��� defined, respectively, as17

���� =
i

L

� j j
0

� + M���
, ���� =

i�

L

� jEjE
0

� + N���
. �7�

Note that finite coherent component D represents the
strength of the ���� contribution in ����� requiring
� j j��→0��� j j

0 or from Eq. �7� M���=0�=0. On the
other hand, any finite M�����0 means the finite decay rate
of the spin current as well as a finite dc conductivity
�0=���=0���, i.e., strictly D=0.

We use further the advantage of studying closer ���� �in-
stead of ����� since jE is a conserved quantity in the pure
AHM,6 hence N0���=0 and consequently N����0 appears

only due to b0�0. On the other hand, j is not conserved and
M���=M0��� is nontrivial even in the absence of impurities.
Nevertheless, M0���=0�=0 at any T as required to obtain
D�T��0. In the following we evaluate ���� and ���� at
T�0 using the microcanonical Lanczos method �MCLM�
�Ref. 18� to calculate the dynamical susceptibilities in sys-
tems with L=16–24. Typically, NL�2000 Lanczos steps are
used to obtain spectra with high � resolution, so that the
additional broadening is only �=0.01. In the following we
present merely results at �→0, which do not qualitatively
change with T down to T�J. At least for larger L smooth
���� and ���� then allow the evaluation of M��� and N���
via Eq. �7�.

Let us start with the analysis of �real part� �����, which
reveals a Lorentzian �Drude� form for 
=0.5,b0=0.5 as
shown in Fig. 4�a�. Moreover, results show universal size
scaling as ���L�� /L. Hence, corresponding N���� also
scales as 1 /L, so that the size-independent quantity is

Ñ���=LN��� being quite structureless for ��1 as shown in
Fig. 4�b�. It is also evident from Fig. 4�c� that N����	b0

2 at
least for weaker b0�0.5. On the other hand, at larger
b0�0.5N���� obtains a characteristic peak at low �→0
which strongly reduces the dc value ���=0�. I.e., on enter-
ing the regime b0�1 the impurity starts to cut the ring for
the dc transport.

The regular behavior of N���� for weaker b0�1 gives
support to the attempt to evaluate the memory function
within the perturbation approach17 using the force-force cor-
relations,

Np��� =
1

�� jEjE
0 �� f f��� − � f f

0 �, f = i�H, jE� , �8�

where � f f��� is the force-force dynamical susceptibility. Re-
sults for Np���� /L evaluated using eigenstates obtained by the
ED of the system L=14 are for comparison also presented in
Fig. 4�b�. The correspondence is quite satisfactory.

Finally, we present in Fig. 5 also analogous scaled �� /L
vs L� and corresponding M���� for fixed 
=0.5,b0=0.6
and different L=16–24, as obtained via the ED �L=16� and
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FIG. 3. �Color online� High-T spin stiffness D /� vs 1 /L.
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FIG. 4. �Color online� �a� High-T results for scaled thermal con-
ductivity �� /L vs L� for 
=0.5 and b0=0.5 as calculated for dif-
ferent L=16–24. �b� Extracted scaled memory function LN����.
Perturbation-theory result is also plotted �dashed curve�. �c�
N���� /b0

2 for different impurity fields b0=0.4–0.6 with 
=0.5 and
L=24.
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MCLM �L=20,24� at �→0. Since M0��� is nontrivial even
for b0=0 one can discuss possible decomposition
M���=M0���+M̃��� /L. Results confirm that at low
��0.2 ���� reveals a Lorentzian with M���→0� scaling as
1 /L, the only contribution in this regime coming from the
impurity.

It should be pointed out that obtained incoherent
transport is characterized with the relaxation times �
and dc conductivities scaling linearly with L, as expected
for 1D systems with a single perturbed region. Hence, the
length independent quantities are ��0� /L=� j j

0 / �LM���=0��
=� j j

0 /M̃���=0� and the corresponding thermal one

��0� /L=�� jEjE
0 / Ñ���=0�.

In conclusion, we have shown that the transport in the
considered anisotropic Heisenberg model on the ring with a
single static impurity is quite unique. Since both the spin �for

�1� and thermal conductivity at any T�0 are dissipation-
less in the pure system, one can study directly the nontrivial
effect of a single impurity on the level statistics and transport

in the many-body quantum system. We have shown that
single static impurity induces an incoherent transport with a
well-defined current relaxation time which scales as �	L.
This should be contrasted with the case of noninteracting
fermions in Eq. �5� where a single impurity only reduces the
stiffness D but does not lead to the current relaxation within
the ring at any T. The fundamental difference seems to come
from the umklapp processes which are revived by the impu-
rity and lead to the decoherence between successive scatter-
ing events on the impurity. In this sense it is also plausible
that for a finite but low concentration ci of static impurities in
a chain �as relevant for experiments�12 we expect that our
results can be simply generalized as 1 /�	1 /L→ci, as evi-
dent also from the lowest-order perturbation theory, Eq. �8�.

Although we studied here the AHM model, results, and
conclusions could be plausibly generalized to 1D integrable
chain systems with periodic boundary conditions and a local-
ized perturbed region. In this paper we presented only results
in the high-T regime, still the phenomenon is expected to
persist as far as the umklapp processes are effective, i.e., for
T above some characteristic umklapp temperature TU. We
can speculate that the LL phenomenology1,2 can become ef-
fective only for T�TU, whereby there is another Kane-
Fisher scale T� which divides the regimes of cut chain for
T�T� and renormalized coherent transmission for T�T�.
Further studies are needed to establish these scales for rel-
evant impurities and models. In any case, such phenomena
are expected to be relevant in connection with recent experi-
ments on thermal conductivity in spin chains with dilute
impurities.12
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